




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆湖北省孝感市漢川市畢業(yè)升學考試模擬卷數(shù)學卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,△ABC中,D為BC的中點,以D為圓心,BD長為半徑畫一弧交AC于E點,若∠A=60°,∠B=100°,BC=4,則扇形BDE的面積為何?()A. B. C. D.2.據(jù)統(tǒng)計,第22屆冬季奧林匹克運動會的電視轉播時間長達88000小時,社交網(wǎng)站和國際奧委會官方網(wǎng)站也創(chuàng)下冬奧會收看率紀錄.用科學記數(shù)法表示88000為()A.0.88×105B.8.8×104C.8.8×105D.8.8×1063.在下面的四個幾何體中,左視圖與主視圖不相同的幾何體是()A. B. C. D.4.一個正方體的平面展開圖如圖所示,將它折成正方體后“建”字對面是()A.和 B.諧 C.涼 D.山5.計算-3-1的結果是()A.2B.-2C.4D.-46.如圖,在?ABCD中,用直尺和圓規(guī)作∠BAD的平分線AG交BC于點E.若BF=8,AB=5,則AE的長為()A.5 B.6 C.8 D.127.已知,如圖,AB是⊙O的直徑,點D,C在⊙O上,連接AD、BD、DC、AC,如果∠BAD=25°,那么∠C的度數(shù)是()A.75° B.65° C.60° D.50°8.把不等式組的解集表示在數(shù)軸上,下列選項正確的是()A. B.C. D.9.如圖,已知直線AD是⊙O的切線,點A為切點,OD交⊙O于點B,點C在⊙O上,且∠ODA=36°,則∠ACB的度數(shù)為()A.54°B.36°C.30°D.27°10.已知反比例函數(shù)y=的圖象位于第一、第三象限,則k的取值范圍是()A.k>8 B.k≥8 C.k≤8 D.k<8二、填空題(本大題共6個小題,每小題3分,共18分)11.將多項式因式分解的結果是.12.如圖為兩正方形ABCD、CEFG和矩形DFHI的位置圖,其中D,A兩點分別在CG、BI上,若AB=3,CE=5,則矩形DFHI的面積是_____.13.若實數(shù)a、b在數(shù)軸上的位置如圖所示,則代數(shù)式|b﹣a|+化簡為_____.14.分解因式:mx2﹣6mx+9m=_____.15.如圖,矩形ABCD中,如果以AB為直徑的⊙O沿著滾動一周,點恰好與點C重合,那么的值等于________.(結果保留兩位小數(shù))16.如圖,正比例函數(shù)y=kx(k>0)與反比例函數(shù)y=6x三、解答題(共8題,共72分)17.(8分)如果a2+2a-1=0,求代數(shù)式的值.18.(8分)已知是上一點,.如圖①,過點作的切線,與的延長線交于點,求的大小及的長;如圖②,為上一點,延長線與交于點,若,求的大小及的長.19.(8分)春節(jié)期間,小麗一家乘坐高鐵前往某市旅游,計劃第二天租用新能源汽車自駕出游.租車公司:按日收取固定租金80元,另外再按租車時間計費.共享汽車:無固定租金,直接以租車時間(時)計費.如圖是兩種租車方式所需費用y1(元)、y2(元)與租車時間x(時)之間的函數(shù)圖象,根據(jù)以上信息,回答下列問題:(1)分別求出y1、y2與x的函數(shù)表達式;(2)請你幫助小麗一家選擇合算的租車方案.20.(8分)黃石市在創(chuàng)建國家級文明衛(wèi)生城市中,綠化檔次不斷提升.某校計劃購進A,B兩種樹木共100棵進行校園綠化升級,經(jīng)市場調(diào)查:購買A種樹木2棵,B種樹木5棵,共需600元;購買A種樹木3棵,B種樹木1棵,共需380元.(1)求A種,B種樹木每棵各多少元;(2)因布局需要,購買A種樹木的數(shù)量不少于B種樹木數(shù)量的3倍.學校與中標公司簽訂的合同中規(guī)定:在市場價格不變的情況下(不考慮其他因素),實際付款總金額按市場價九折優(yōu)惠,請設計一種購買樹木的方案,使實際所花費用最省,并求出最省的費用.21.(8分)“足球運球”是中考體育必考項目之一.蘭州市某學校為了解今年九年級學生足球運球的掌握情況,隨機抽取部分九年級學生足球運球的測試成績作為一個樣本,按A,B,C,D四個等級進行統(tǒng)計,制成了如下不完整的統(tǒng)計圖.(說明:A級:8分﹣10分,B級:7分﹣7.9分,C級:6分﹣6.9分,D級:1分﹣5.9分)根據(jù)所給信息,解答以下問題:(1)在扇形統(tǒng)計圖中,C對應的扇形的圓心角是_____度;(2)補全條形統(tǒng)計圖;(3)所抽取學生的足球運球測試成績的中位數(shù)會落在_____等級;(4)該校九年級有300名學生,請估計足球運球測試成績達到A級的學生有多少人?22.(10分)已知關于x的一元二次方程3x2﹣6x+1﹣k=0有實數(shù)根,k為負整數(shù).求k的值;如果這個方程有兩個整數(shù)根,求出它的根.23.(12分)如圖,將等邊△ABC繞點C順時針旋轉90°得到△EFC,∠ACE的平分線CD交EF于點D,連接AD、AF.求∠CFA度數(shù);求證:AD∥BC.24.某校航模小組借助無人飛機航拍校園,如圖,無人飛機從A處水平飛行至B處需10秒,A在地面C的北偏東12°方向,B在地面C的北偏東57°方向.已知無人飛機的飛行速度為4米/秒,求這架無人飛機的飛行高度.(結果精確到0.1米,參考數(shù)據(jù):sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】分析:求出扇形的圓心角以及半徑即可解決問題;詳解:∵∠A=60°,∠B=100°,∴∠C=180°﹣60°﹣100°=20°,∵DE=DC,∴∠C=∠DEC=20°,∴∠BDE=∠C+∠DEC=40°,∴S扇形DBE=.故選C.點睛:本題考查扇形的面積公式、三角形內(nèi)角和定理等知識,解題的關鍵是記住扇形的面積公式:S=.2、B【解析】試題分析:根據(jù)科學記數(shù)法的定義,科學記數(shù)法的表示形式為a×10n,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.在確定n的值時,看該數(shù)是大于或等于1還是小于1.當該數(shù)大于或等于1時,n為它的整數(shù)位數(shù)減1;當該數(shù)小于1時,-n為它第一個有效數(shù)字前0的個數(shù)(含小數(shù)點前的1個0).因此,∵88000一共5位,∴88000=8.88×104.故選B.考點:科學記數(shù)法.3、B【解析】
由幾何體的三視圖知識可知,主視圖、左視圖是分別從物體正面、左面看所得到的圖形,細心觀察即可求解.【詳解】A、正方體的左視圖與主視圖都是正方形,故A選項不合題意;B、長方體的左視圖與主視圖都是矩形,但是矩形的長寬不一樣,故B選項與題意相符;C、球的左視圖與主視圖都是圓,故C選項不合題意;D、圓錐左視圖與主視圖都是等腰三角形,故D選項不合題意;故選B.【點睛】本題主要考查了幾何題的三視圖,解題關鍵是能正確畫出幾何體的三視圖.4、D【解析】分析:本題考查了正方體的平面展開圖,對于正方體的平面展開圖中相對的面一定相隔一個小正方形,據(jù)此作答.詳解:對于正方體的平面展開圖中相對的面一定相隔一個小正方形,由圖形可知,與“建”字相對的字是“山”.故選:D.點睛:注意正方體的空間圖形,從相對面入手,分析及解答問題.5、D【解析】試題解析:-3-1=-3+(-1)=-(3+1)=-1.故選D.6、B【解析】試題分析:由基本作圖得到AB=AF,AG平分∠BAD,故可得出四邊形ABEF是菱形,由菱形的性質(zhì)可知AE⊥BF,故可得出OB=4,再由勾股定理即可得出OA=3,進而得出AE=2AO=1.故選B.考點:1、作圖﹣基本作圖,2、平行四邊形的性質(zhì),3、勾股定理,4、平行線的性質(zhì)7、B【解析】因為AB是⊙O的直徑,所以求得∠ADB=90°,進而求得∠B的度數(shù),又因為∠B=∠C,所以∠C的度數(shù)可求出.解:∵AB是⊙O的直徑,
∴∠ADB=90°.
∵∠BAD=25°,
∴∠B=65°,
∴∠C=∠B=65°(同弧所對的圓周角相等).
故選B.
8、C【解析】
求得不等式組的解集為x<﹣1,所以C是正確的.【詳解】解:不等式組的解集為x<﹣1.故選C.【點睛】本題考查了不等式問題,在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.9、D【解析】解:∵AD為圓O的切線,∴AD⊥OA,即∠OAD=90°,∵∠ODA=36°,∴∠AOD=54°,∵∠AOD與∠ACB都對,∴∠ACB=∠AOD=27°.故選D.10、A【解析】
本題考查反比例函數(shù)的圖象和性質(zhì),由k-8>0即可解得答案.【詳解】∵反比例函數(shù)y=的圖象位于第一、第三象限,∴k-8>0,解得k>8,故選A.【點睛】本題考查了反比例函數(shù)的圖象和性質(zhì):①、當k>0時,圖象分別位于第一、三象限;當k<0時,圖象分別位于第二、四象限.②、當k>0時,在同一個象限內(nèi),y隨x的增大而減小;當k<0時,在同一個象限,y隨x的增大而增大.二、填空題(本大題共6個小題,每小題3分,共18分)11、m(m+n)(m﹣n).【解析】試題分析:原式==m(m+n)(m﹣n).故答案為:m(m+n)(m﹣n).考點:提公因式法與公式法的綜合運用.12、【解析】
由題意先求出DG和FG的長,再根據(jù)勾股定理可求得DF的長,然后再證明△DGF∽△DAI,依據(jù)相似三角形的性質(zhì)可得到DI的長,最后依據(jù)矩形的面積公式求解即可.【詳解】∵四邊形ABCD、CEFG均為正方形,∴CD=AD=3,CG=CE=5,∴DG=2,在Rt△DGF中,DF==,∵∠FDG+∠GDI=90°,∠GDI+∠IDA=90°,∴∠FDG=∠IDA.又∵∠DAI=∠DGF,∴△DGF∽△DAI,∴,即,解得:DI=,∴矩形DFHI的面積是=DF?DI=,故答案為:.【點睛】本題考查了正方形的性質(zhì),矩形的性質(zhì),相似三角形的判定和性質(zhì),三角形的面積,熟練掌握相關性質(zhì)定理與判定定理是解題的關鍵.13、2a﹣b.【解析】
直接利用數(shù)軸上a,b的位置進而得出b﹣a<0,a>0,再化簡得出答案.【詳解】解:由數(shù)軸可得:b﹣a<0,a>0,則|b﹣a|+=a﹣b+a=2a﹣b.故答案為2a﹣b.【點睛】此題主要考查了二次根式的性質(zhì)與化簡,正確得出各項符號是解題關鍵.14、m(x﹣3)1.【解析】
先把m提出來,然后對括號里面的多項式用公式法分解即可?!驹斀狻縨=m(=m【點睛】解題的關鍵是熟練掌握因式分解的方法。15、3.1【解析】分析:由題意可知:BC的長就是⊙O的周長,列式即可得出結論.詳解:∵以AB為直徑的⊙O沿著滾動一周,點恰好與點C重合,∴BC的長就是⊙O的周長,∴π?AB=BC,∴=π≈3.1.故答案為3.1.點睛:本題考查了圓的周長以及線段的比.解題的關鍵是弄懂BC的長就是⊙O的周長.16、1.【解析】
根據(jù)反比例函數(shù)的性質(zhì)可判斷點A與點B關于原點對稱,則S△BOC=S△AOC,再利用反比例函數(shù)k的幾何意義得到S△AOC=3,則易得S△ABC=1.【詳解】∵雙曲線y=6x∴點A與點B關于原點對稱,∴S△BOC=S△AOC,∵S△AOC=12×1=3,∴S△ABC=2S△AOC故答案為1.三、解答題(共8題,共72分)17、1【解析】==1.故答案為1.18、(Ⅰ),PA=4;(Ⅱ),【解析】
(Ⅰ)易得△OAC是等邊三角形即∠AOC=60°,又由PC是○O的切線故PC⊥OC,即∠OCP=90°可得∠P的度數(shù),由OC=4可得PA的長度(Ⅱ)由(Ⅰ)知△OAC是等邊三角形,易得∠APC=45°;過點C作CD⊥AB于點D,易得AD=AO=CO,在Rt△DOC中易得CD的長,即可求解【詳解】解:(Ⅰ)∵AB是○O的直徑,∴OA是○O的半徑.∵∠OAC=60°,OA=OC,∴△OAC是等邊三角形.∴∠AOC=60°.∵PC是○O的切線,OC為○O的半徑,∴PC⊥OC,即∠OCP=90°∴∠P=30°.∴PO=2CO=8.∴PA=PO-AO=PO-CO=4.(Ⅱ)由(Ⅰ)知△OAC是等邊三角形,∴∠AOC=∠ACO=∠OAC=60°∴∠AQC=30°.∵AQ=CQ,∴∠ACQ=∠QAC=75°∴∠ACQ-∠ACO=∠QAC-∠OAC=15°即∠QCO=∠QAO=15°.∴∠APC=∠AQC+∠QAO=45°.如圖②,過點C作CD⊥AB于點D.∵△OAC是等邊三角形,CD⊥AB于點D,∴∠DCO=30°,AD=AO=CO=2.∵∠APC=45°,∴∠DCQ=∠APC=45°∴PD=CD在Rt△DOC中,OC=4,∠DCO=30°,∴OD=2,∴CD=2∴PD=CD=2∴AP=AD+DP=2+2【點睛】此題主要考查圓的綜合應用19、(1)y1=kx+80,y2=30x;(2)見解析.【解析】
(1)設y1=kx+80,將(2,110)代入求解即可;設y2=mx,將(5,150)代入求解即可;(2)分y1=y2,y1<y2,y1>y2三種情況分析即可.【詳解】解:(1)由題意,設y1=kx+80,將(2,110)代入,得110=2k+80,解得k=15,則y1與x的函數(shù)表達式為y1=15x+80;設y2=mx,將(5,150)代入,得150=5m,解得m=30,則y2與x的函數(shù)表達式為y2=30x;(2)由y1=y2得,15x+80=30x,解得x=;由y1<y2得,15x+80<30x,解得x>;由y1>y2得,15x+80>30x,解得x<.故當租車時間為小時時,兩種選擇一樣;當租車時間大于小時時,選擇租車公司合算;當租車時間小于小時時,選擇共享汽車合算.【點睛】本題考查了一次函數(shù)的應用及分類討論的數(shù)學思想,解答本題的關鍵是掌握待定系數(shù)法求函數(shù)解析式的方法.20、(1)A種樹每棵2元,B種樹每棵80元;(2)當購買A種樹木1棵,B種樹木25棵時,所需費用最少,最少為8550元.【解析】
(1)設A種樹每棵x元,B種樹每棵y元,根據(jù)“購買A種樹木2棵,B種樹木5棵,共需600元;購買A種樹木3棵,B種樹木1棵,共需380元”列出方程組并解答;(2)設購買A種樹木為x棵,則購買B種樹木為(2-x)棵,根據(jù)“購買A種樹木的數(shù)量不少于B種樹木數(shù)量的3倍”列出不等式并求得x的取值范圍,結合實際付款總金額=0.9(A種樹的金額+B種樹的金額)進行解答.【詳解】解:(1)設A種樹木每棵x元,B種樹木每棵y元,根據(jù)題意,得,解得,答:A種樹木每棵2元,B種樹木每棵80元.(2)設購買A種樹木x棵,則B種樹木(2-x)棵,則x≥3(2-x).解得x≥1.又2-x≥0,解得x≤2.∴1≤x≤2.設實際付款總額是y元,則y=0.9[2x+80(2-x)].即y=18x+73.∵18>0,y隨x增大而增大,∴當x=1時,y最小為18×1+73=8550(元).答:當購買A種樹木1棵,B種樹木25棵時,所需費用最少,為8550元.21、(1)117;(2)答案見圖;(3)B;(4)30.【解析】
(1)先根據(jù)B等級人數(shù)及其百分比求得總人數(shù),總人數(shù)減去其他等級人數(shù)求得C等級人數(shù),繼而用360°乘以C等級人數(shù)所占比例即可得;(2)根據(jù)以上所求結果即可補全圖形;(3)根據(jù)中位數(shù)的定義求解可得;(4)總人數(shù)乘以樣本中A等級人數(shù)所占比例可得.【詳解】(1)∵總人數(shù)為18÷45%=40人,∴C等級人數(shù)為40﹣(4+18+5)=13人,則C對應的扇形的圓心角是360°×1340故答案為:117;(2)補全條形圖如下:(3)因為共有40個數(shù)據(jù),其中位數(shù)是第20、21個數(shù)據(jù)的平均數(shù),而第20、21個數(shù)據(jù)均落在B等級,所以所抽取學生的足球運球測試成績的中位數(shù)會落在B等級,故答案為:B.(4)估計足球運球測試成績達到A級的學生有300×440【點睛】本題考查了條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.22、(2)k=﹣2,﹣2.(2)方程的根為x2=x2=2.【解析】
(2)根據(jù)方程有實數(shù)根,得到根的判別式的值大于等于0列出關于k的不等式,求出不等式的解集即可得到k的值;(2)將k的值代入原方程,求出方程的根,經(jīng)檢驗即可得到滿足題意的k的值.【詳解】解:(2)根據(jù)題意,得△=(﹣6)2﹣4×3(2﹣k)≥0,解得k≥﹣2.∵k為負整數(shù),∴k=﹣2,﹣2.(2)當k=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【7歷期末】安徽省安慶市外國語學校2023-2024學年七年級下學期期末歷史試題(含解析)
- DB62T 4189-2020 地理標志產(chǎn)品 甘加藏羊
- 污水處理廠及管網(wǎng)工程可行性研究報告
- DB62T 4083-2019 馬鈴薯脫毒原原種繁育病蟲害防治技術規(guī)程
- 紙類廢品處理流程的環(huán)保措施
- 北師大版八年級數(shù)學下冊學生輔導計劃
- DB62T 4113.1-2020 呼吸道傳染病流行期間衛(wèi)生防護規(guī)范 第1部分:外賣配送(餐飲)
- 《能量流動的相關計算-素能提升課》參考課件
- 2025年秋季課程改革實施計劃
- 海洋工程施工安全與治安管理計劃
- 人保農(nóng)險理賠試題
- Machine-Cmk-設備能力指數(shù)Cmk分析表
- 心理健康教育特色學校建設路徑
- 2025年全國保密教育線上培訓考試試題庫【完整版】附帶答案詳解
- (二模)2025年5月濟南市高三高考針對性訓練英語試卷(含答案解析)
- 修腳師勞動合同(新標準版)6篇
- TCHSA-012-2023-兒童口腔疾病治療中靜脈鎮(zhèn)靜技術規(guī)范
- 福建農(nóng)信招聘筆試真題2024
- 三方合伙開店協(xié)議合同
- 2025年新疆中考第一次模擬化學試題(含答案)
- 2025年危險品水路運輸從業(yè)資格考試復習題庫-上(單選題)
評論
0/150
提交評論