運城護(hù)理職業(yè)學(xué)院《智能數(shù)據(jù)可視化技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁
運城護(hù)理職業(yè)學(xué)院《智能數(shù)據(jù)可視化技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁
運城護(hù)理職業(yè)學(xué)院《智能數(shù)據(jù)可視化技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁
運城護(hù)理職業(yè)學(xué)院《智能數(shù)據(jù)可視化技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁
運城護(hù)理職業(yè)學(xué)院《智能數(shù)據(jù)可視化技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

裝訂線裝訂線PAGE2第1頁,共3頁運城護(hù)理職業(yè)學(xué)院《智能數(shù)據(jù)可視化技術(shù)》

2023-2024學(xué)年第二學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共20個小題,每小題1分,共20分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、人工智能中的遷移學(xué)習(xí)方法可以提高模型的泛化能力。假設(shè)要將一個在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的模型應(yīng)用于特定領(lǐng)域的圖像識別任務(wù),以下關(guān)于遷移學(xué)習(xí)的描述,哪一項是不正確的?()A.可以將預(yù)訓(xùn)練模型的參數(shù)作為初始值,在新數(shù)據(jù)上進(jìn)行微調(diào)B.能夠利用已有的知識和特征,減少在新任務(wù)上的數(shù)據(jù)標(biāo)注和訓(xùn)練時間C.遷移學(xué)習(xí)在任何情況下都能顯著提高新任務(wù)的模型性能D.需要根據(jù)新任務(wù)的特點選擇合適的預(yù)訓(xùn)練模型和遷移策略2、人工智能中的強化學(xué)習(xí)算法可以用于優(yōu)化資源分配。假設(shè)一個數(shù)據(jù)中心要通過人工智能分配計算資源,以下關(guān)于其應(yīng)用的描述,哪一項是不正確的?()A.根據(jù)服務(wù)器負(fù)載和任務(wù)需求,動態(tài)調(diào)整資源分配策略B.以最小化能耗和提高服務(wù)質(zhì)量為目標(biāo),優(yōu)化資源利用效率C.強化學(xué)習(xí)可以快速適應(yīng)數(shù)據(jù)中心的變化,無需人工重新配置D.強化學(xué)習(xí)算法在資源分配中總是能夠找到最優(yōu)解,不存在次優(yōu)情況3、人工智能中的多模態(tài)學(xué)習(xí)旨在融合多種不同類型的數(shù)據(jù),如圖像、文本和音頻。假設(shè)要開發(fā)一個能夠同時理解圖像和文本內(nèi)容的系統(tǒng),以下哪個挑戰(zhàn)是最突出的?()A.數(shù)據(jù)的標(biāo)注和對齊B.模型的訓(xùn)練效率C.不同模態(tài)數(shù)據(jù)的特征提取D.模型的可擴展性4、知識圖譜在人工智能中用于整合和表示知識。假設(shè)要構(gòu)建一個關(guān)于歷史事件的知識圖譜,以下關(guān)于知識圖譜構(gòu)建的描述,正確的是:()A.可以隨意收集和整合信息,無需對知識的準(zhǔn)確性和可靠性進(jìn)行驗證B.知識圖譜的結(jié)構(gòu)和關(guān)系定義不重要,只要包含大量的數(shù)據(jù)就行C.構(gòu)建知識圖譜需要對知識進(jìn)行精心的組織和關(guān)聯(lián),以支持有效的查詢和推理D.知識圖譜一旦構(gòu)建完成,就無需更新和維護(hù),因為知識是固定不變的5、在人工智能的文本分類任務(wù)中,類別不平衡是一個常見的問題。假設(shè)一個數(shù)據(jù)集包含大量屬于某一主要類別的樣本,而其他類別的樣本數(shù)量較少。以下哪種方法在處理類別不平衡問題時最為有效,能夠提高少數(shù)類別的分類性能?()A.重采樣技術(shù)B.代價敏感學(xué)習(xí)C.特征選擇D.以上方法綜合運用6、人工智能在醫(yī)療影像診斷中的應(yīng)用越來越廣泛。假設(shè)利用人工智能輔助醫(yī)生診斷X光片,以下關(guān)于其應(yīng)用的描述,哪一項是不正確的?()A.能夠快速檢測出影像中的異常區(qū)域,提高診斷效率B.可以為醫(yī)生提供量化的分析指標(biāo)和輔助診斷建議C.人工智能的診斷結(jié)果總是準(zhǔn)確無誤的,醫(yī)生可以完全依賴D.醫(yī)生的專業(yè)知識和臨床經(jīng)驗在結(jié)合人工智能診斷結(jié)果時仍然非常重要7、在人工智能的文本生成任務(wù)中,除了生成連貫的文字內(nèi)容,還需要考慮語言的邏輯性和合理性。假設(shè)我們要生成一篇新聞報道,以下關(guān)于文本生成的說法,哪一項是正確的?()A.可以完全依靠隨機生成來創(chuàng)造新穎的內(nèi)容B.語言模型的規(guī)模越大,生成的質(zhì)量一定越高C.預(yù)訓(xùn)練語言模型結(jié)合微調(diào)可以提高生成效果D.不需要考慮語法和語義的約束8、在人工智能的圖像生成領(lǐng)域,例如生成逼真的藝術(shù)作品或虛擬場景,以下哪種技術(shù)的發(fā)展起到了關(guān)鍵作用?()A.生成對抗網(wǎng)絡(luò)B.自編碼器C.變分自編碼器D.玻爾茲曼機9、在人工智能的倫理和社會影響方面,存在許多值得關(guān)注的問題。假設(shè)人工智能系統(tǒng)在招聘過程中被用于篩選候選人,以下關(guān)于這種應(yīng)用的說法,哪一項是需要謹(jǐn)慎考慮的?()A.可以完全避免人為的偏見和不公平B.可能會因為數(shù)據(jù)偏差導(dǎo)致某些群體受到不公平對待C.其決策結(jié)果應(yīng)該無條件被接受和執(zhí)行D.不需要對其進(jìn)行監(jiān)管和評估10、人工智能在智能客服領(lǐng)域的應(yīng)用越來越廣泛。假設(shè)一個企業(yè)要部署智能客服系統(tǒng)。以下關(guān)于智能客服的描述,哪一項是不正確的?()A.能夠快速回答常見問題,提高客戶服務(wù)的響應(yīng)速度B.可以通過不斷學(xué)習(xí)和優(yōu)化,提高回答的準(zhǔn)確性和滿意度C.智能客服能夠完全理解客戶的復(fù)雜情感和意圖,提供個性化的服務(wù)D.與人工客服相結(jié)合,可以提供更優(yōu)質(zhì)的客戶服務(wù)體驗11、人工智能中的遷移學(xué)習(xí)方法可以利用已有的知識和模型來解決新的問題。假設(shè)要將一個在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的模型應(yīng)用到小樣本的特定領(lǐng)域圖像分類任務(wù)中。以下關(guān)于遷移學(xué)習(xí)的描述,哪一項是不準(zhǔn)確的?()A.可以將預(yù)訓(xùn)練模型的特征提取部分應(yīng)用到新任務(wù)中,并在新數(shù)據(jù)上微調(diào)B.遷移學(xué)習(xí)能夠有效解決新任務(wù)數(shù)據(jù)量不足的問題,提高模型的泛化能力C.直接使用預(yù)訓(xùn)練模型的輸出結(jié)果,無需任何調(diào)整,就能在新任務(wù)中取得好的效果D.選擇合適的預(yù)訓(xùn)練模型和遷移策略對于遷移學(xué)習(xí)的成功至關(guān)重要12、知識圖譜是一種用于表示知識和關(guān)系的結(jié)構(gòu)化數(shù)據(jù)模型。以下關(guān)于知識圖譜的說法,不正確的是()A.知識圖譜可以整合來自不同來源的知識,構(gòu)建一個全面的知識體系B.知識圖譜中的節(jié)點表示實體,邊表示實體之間的關(guān)系C.知識圖譜在智能搜索、推薦系統(tǒng)和問答系統(tǒng)等領(lǐng)域有著重要的應(yīng)用D.構(gòu)建知識圖譜非常簡單,不需要大量的人力和時間投入13、人工智能中的聯(lián)邦學(xué)習(xí)可以在保護(hù)數(shù)據(jù)隱私的前提下進(jìn)行模型訓(xùn)練。假設(shè)多個機構(gòu)想要合作訓(xùn)練一個模型,但又不想共享原始數(shù)據(jù),以下哪個技術(shù)是聯(lián)邦學(xué)習(xí)的核心?()A.加密通信B.模型參數(shù)的加密共享和聚合C.分布式計算框架D.數(shù)據(jù)脫敏14、人工智能中的預(yù)訓(xùn)練語言模型,如GPT-3,引起了廣泛關(guān)注。假設(shè)要利用預(yù)訓(xùn)練語言模型進(jìn)行特定任務(wù)的微調(diào)。以下關(guān)于預(yù)訓(xùn)練語言模型的描述,哪一項是不正確的?()A.預(yù)訓(xùn)練語言模型在大規(guī)模通用語料上學(xué)習(xí)了語言的通用知識和模式B.微調(diào)時可以使用少量的特定任務(wù)數(shù)據(jù),快速適應(yīng)新的任務(wù)C.預(yù)訓(xùn)練語言模型的參數(shù)規(guī)模越大,性能一定越好D.可以根據(jù)具體需求對預(yù)訓(xùn)練語言模型的輸出進(jìn)行進(jìn)一步的處理和優(yōu)化15、在人工智能的研究領(lǐng)域中,自然語言處理是重要的一部分。假設(shè)我們要開發(fā)一個能夠自動回答用戶問題的智能客服系統(tǒng),需要對大量的文本數(shù)據(jù)進(jìn)行學(xué)習(xí)和分析。以下哪種技術(shù)在處理自然語言的語義理解方面可能發(fā)揮關(guān)鍵作用?()A.詞法分析B.句法分析C.語義網(wǎng)絡(luò)D.語音識別16、在一個利用人工智能進(jìn)行自動化文本分類的項目中,例如將新聞文章分類為不同的主題,為了提高分類的準(zhǔn)確性,以下哪種措施可能是有效的?()A.增加訓(xùn)練數(shù)據(jù)的多樣性B.選擇更復(fù)雜的分類算法C.對文本進(jìn)行更精細(xì)的預(yù)處理D.以上都是17、在人工智能的自然語言生成任務(wù)中,假設(shè)要生成一篇結(jié)構(gòu)清晰、邏輯連貫的文章。以下哪種方法能夠有助于提高生成文章的質(zhì)量?()A.引入先驗知識和約束,指導(dǎo)生成過程B.完全依靠模型的隨機輸出,不進(jìn)行任何引導(dǎo)C.減少生成的文本長度,降低復(fù)雜性D.不考慮語法和邏輯,只關(guān)注內(nèi)容的豐富性18、在人工智能的發(fā)展歷程中,機器學(xué)習(xí)作為重要的分支取得了顯著的成果。假設(shè)要開發(fā)一個能夠自動識別手寫數(shù)字的系統(tǒng),需要從大量的手寫數(shù)字圖像數(shù)據(jù)中學(xué)習(xí)特征和模式。以下哪種機器學(xué)習(xí)算法在處理這種圖像數(shù)據(jù)分類問題上具有較大的優(yōu)勢,同時能夠適應(yīng)不同的書寫風(fēng)格和變形?()A.決策樹算法B.樸素貝葉斯算法C.卷積神經(jīng)網(wǎng)絡(luò)(CNN)D.支持向量機(SVM)19、在人工智能的語音情感識別中,以下哪個特征對于準(zhǔn)確判斷情感可能最具挑戰(zhàn)性?()A.語音的語調(diào)B.語音的語速C.說話人的口音D.背景噪音20、人工智能在金融領(lǐng)域的風(fēng)險評估和欺詐檢測中發(fā)揮著重要作用。假設(shè)要構(gòu)建一個系統(tǒng)來檢測信用卡交易中的欺詐行為,需要實時分析交易數(shù)據(jù)和用戶行為模式。以下哪種技術(shù)或方法在處理這種實時、動態(tài)的數(shù)據(jù)時最為有效?()A.實時數(shù)據(jù)分析和監(jiān)控B.離線批量處理和分析C.基于經(jīng)驗的規(guī)則判斷D.隨機抽樣檢查二、簡答題(本大題共5個小題,共25分)1、(本題5分)簡述人工智能在智能客服滿意度提升中的技術(shù)。2、(本題5分)談?wù)勅斯ぶ悄茉谥圃鞓I(yè)中的應(yīng)用。3、(本題5分)簡述計算機視覺的研究內(nèi)容和應(yīng)用。4、(本題5分)解釋人工智能在可持續(xù)金融和綠色投資中的策略。5、(本題5分)說明卷積神經(jīng)網(wǎng)絡(luò)在圖像識別中的應(yīng)用。三、案例分析題(本大題共5個小題,共25分)1、(本題5分)考察一款智能交通管理系統(tǒng)中人工智能的運用,如交通流量預(yù)測和信號燈控制。2、(本題5分)以某智能珠寶鑒定系統(tǒng)為例,研究人工智能在寶石品質(zhì)評估和真?zhèn)舞b別中的作用。3、(本題5分)以某智能供應(yīng)鏈風(fēng)險管理系統(tǒng)為例,探討人工智能在風(fēng)險識別和應(yīng)對中的作用。4、(本題5分)分析一個基于人工智能的圖像生成模型,如生成對抗網(wǎng)絡(luò)(GAN),探討其如何創(chuàng)造逼真的圖像以及潛在的應(yīng)用。5、(本題5分)研究一個基于人工智能的舞蹈動作設(shè)計系統(tǒng),分析其動作創(chuàng)新和藝術(shù)美感。四、操作題(本大題共3個小題,共30分)1、(本題10分)運用OpenCV和深度學(xué)習(xí)模型,實現(xiàn)對視頻中的人物動作進(jìn)行精細(xì)分類,如舞蹈動作、體育動作等。對動作進(jìn)行關(guān)鍵幀提取和特征分析,訓(xùn)練模

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論