




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆廣東省深圳市北環(huán)中學(xué)中考數(shù)學(xué)對點突破模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,有一矩形紙片ABCD,AB=6,AD=8,將紙片折疊使AB落在AD邊上,折痕為AE,再將△ABE以BE為折痕向右折疊,AE與CD交于點F,則的值是()A.1 B. C. D.2.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,a,b,c的取值范圍()A.a(chǎn)<0,b<0,c<0B.a(chǎn)<0,b>0,c<0C.a(chǎn)>0,b>0,c<0D.a(chǎn)>0,b<0,c<03.如圖,四邊形ABCD內(nèi)接于⊙O,若∠B=130°,則∠AOC的大小是()A.130° B.120° C.110° D.100°4.在數(shù)軸上表示不等式2(1﹣x)<4的解集,正確的是()A. B.C. D.5.下列二次函數(shù)中,圖象以直線x=2為對稱軸、且經(jīng)過點(0,1)的是()A.y=(x﹣2)2+1B.y=(x+2)2+1C.y=(x﹣2)2﹣3D.y=(x+2)2﹣36.如圖,邊長為1的小正方形構(gòu)成的網(wǎng)格中,半徑為1的⊙O的圓心O在格點上,則∠BED的正切值等于()A. B. C.2 D.7.如圖,A、B、C是⊙O上的三點,∠B=75°,則∠AOC的度數(shù)是()A.150° B.140° C.130° D.120°8.如圖,在?ABCD中,AC,BD相交于點O,點E是OA的中點,連接BE并延長交AD于點F,已知S△AEF=4,則下列結(jié)論:①;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正確的是()A.①②③④ B.①④ C.②③④ D.①②③9.如圖,△ABC中,AB=4,BC=6,∠B=60°,將△ABC沿射線BC的方向平移,得到△A′B′C′,再將△A′B′C′繞點A′逆時針旋轉(zhuǎn)一定角度后,點B′恰好與點C重合,則平移的距離和旋轉(zhuǎn)角的度數(shù)分別為()A.4,30° B.2,60° C.1,30° D.3,60°10.若一個正比例函數(shù)的圖象經(jīng)過A(3,﹣6),B(m,﹣4)兩點,則m的值為()A.2 B.8 C.﹣2 D.﹣8二、填空題(共7小題,每小題3分,滿分21分)11.計算:______.12.若關(guān)于x的方程有兩個不相等的實數(shù)根,則實數(shù)a的取值范圍是______.13.比較大?。篲____1(填“<”或“>”或“=”).14.分式方程=1的解為_____15.如圖,在△ABC中,AB=AC=2,BC=1.點E為BC邊上一動點,連接AE,作∠AEF=∠B,EF與△ABC的外角∠ACD的平分線交于點F.當(dāng)EF⊥AC時,EF的長為_______.16.下面是甲、乙兩人10次射擊成績(環(huán)數(shù))的條形統(tǒng)計圖,通常新手的成績不太確定,根據(jù)圖中的信息,估計這兩人中的新手是_____.17.如圖,身高是1.6m的某同學(xué)直立于旗桿影子的頂端處,測得同一時刻該同學(xué)和旗桿的影子長分別為1.2m和9m.則旗桿的高度為________m.三、解答題(共7小題,滿分69分)18.(10分)如圖,四邊形ABCD中,對角線AC、BD相交于點O,若AB,求證:四邊形ABCD是正方形19.(5分)為了維護(hù)國家主權(quán)和海洋權(quán)利,海監(jiān)部門對我國領(lǐng)海實現(xiàn)了常態(tài)化巡航管理,如圖,正在執(zhí)行巡航任務(wù)的海監(jiān)船以每小時50海里的速度向正東方航行,在A處測得燈塔P在北偏東60°方向上,繼續(xù)航行1小時到達(dá)B處,此時測得燈塔P在北偏東30°方向上.求∠APB的度數(shù);已知在燈塔P的周圍25海里內(nèi)有暗礁,問海監(jiān)船繼續(xù)向正東方向航行是否安全?.20.(8分)如圖,AB為⊙O的直徑,C是⊙O上一點,過點C的直線交AB的延長線于點D,AE⊥DC,垂足為E,F(xiàn)是AE與⊙O的交點,AC平分∠BAE.求證:DE是⊙O的切線;若AE=6,∠D=30°,求圖中陰影部分的面積.21.(10分)“垃圾不落地,城市更美麗”.某中學(xué)為了了解七年級學(xué)生對這一倡議的落實情況,學(xué)校安排政教處在七年級學(xué)生中隨機(jī)抽取了部分學(xué)生,并針對學(xué)生“是否隨手丟垃圾”這一情況進(jìn)行了問卷調(diào)查,統(tǒng)計結(jié)果為:A為從不隨手丟垃圾;B為偶爾隨手丟垃圾;C為經(jīng)常隨手丟垃圾三項.要求每位被調(diào)查的學(xué)生必須從以上三項中選一項且只能選一項.現(xiàn)將調(diào)查結(jié)果繪制成以下來不辜負(fù)不完整的統(tǒng)計圖.請你根據(jù)以上信息,解答下列問題:(1)補(bǔ)全上面的條形統(tǒng)計圖和扇形統(tǒng)計圖;(2)所抽取學(xué)生“是否隨手丟垃圾”情況的眾數(shù)是;(3)若該校七年級共有1500名學(xué)生,請你估計該年級學(xué)生中“經(jīng)常隨手丟垃圾”的學(xué)生約有多少人?談?wù)勀愕目捶ǎ?2.(10分)如圖,在平面直角坐標(biāo)系xOy中,直線y=kx+m與雙曲線y=﹣相交于點A(m,2).(1)求直線y=kx+m的表達(dá)式;(2)直線y=kx+m與雙曲線y=﹣的另一個交點為B,點P為x軸上一點,若AB=BP,直接寫出P點坐標(biāo).23.(12分)如圖1,已知拋物線y=﹣x2+x+與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,點D是點C關(guān)于拋物線對稱軸的對稱點,連接CD,過點D作DH⊥x軸于點H,過點A作AE⊥AC交DH的延長線于點E.(1)求線段DE的長度;(2)如圖2,試在線段AE上找一點F,在線段DE上找一點P,且點M為直線PF上方拋物線上的一點,求當(dāng)△CPF的周長最小時,△MPF面積的最大值是多少;(3)在(2)問的條件下,將得到的△CFP沿直線AE平移得到△C′F′P′,將△C′F′P′沿C′P′翻折得到△C′P′F″,記在平移過稱中,直線F′P′與x軸交于點K,則是否存在這樣的點K,使得△F′F″K為等腰三角形?若存在求出OK的值;若不存在,說明理由.24.(14分)如圖,矩形ABCD中,O是AC與BD的交點,過O點的直線EF與AB、CD的延長線分別交于E、F.(1)證明:△BOE≌△DOF;(2)當(dāng)EF⊥AC時,求證四邊形AECF是菱形.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】由題意知:AB=BE=6,BD=AD﹣AB=2(圖2中),AD=AB﹣BD=4(圖3中);∵CE∥AB,∴△ECF∽△ADF,得,即DF=2CF,所以CF:CD=1:3,故選C.【點睛】本題考查了矩形的性質(zhì),折疊問題,相似三角形的判定與性質(zhì)等,準(zhǔn)確識圖是解題的關(guān)鍵.2、D【解析】試題分析:根據(jù)二次函數(shù)的圖象依次分析各項即可。由拋物線開口向上,可得,再由對稱軸是,可得,由圖象與y軸的交點再x軸下方,可得,故選D.考點:本題考查的是二次函數(shù)的性質(zhì)點評:解答本題的關(guān)鍵是熟練掌握二次函數(shù)的性質(zhì):的正負(fù)決定拋物線開口方向,對稱軸是,C的正負(fù)決定與Y軸的交點位置。3、D【解析】分析:先根據(jù)圓內(nèi)接四邊形的性質(zhì)得到然后根據(jù)圓周角定理求詳解:∵∴∴故選D.點睛:考查圓內(nèi)接四邊形的性質(zhì),圓周角定理,掌握圓內(nèi)接四邊形的對角互補(bǔ)是解題的關(guān)鍵.4、A【解析】根據(jù)解一元一次不等式基本步驟:去分母、去括號、移項、合并同類項、系數(shù)化為1可得不等式解集,然后得出在數(shù)軸上表示不等式的解集.2(1–x)<4去括號得:2﹣2x<4移項得:2x>﹣2,系數(shù)化為1得:x>﹣1,故選A.“點睛”本題主要考查解一元一次不等式的基本能力,嚴(yán)格遵循解不等式的基本步驟是關(guān)鍵,尤其需要注意不等式兩邊都乘以或除以同一個負(fù)數(shù)不等號方向要改變.5、C【解析】試題分析:根據(jù)頂點式,即A、C兩個選項的對稱軸都為x=2,再將(0,1)代入,符合的式子為C選項考點:二次函數(shù)的頂點式、對稱軸點評:本題考查學(xué)生對二次函數(shù)頂點式的掌握,難度較小,二次函數(shù)的頂點式解析式為y=(x-a)2+h,頂點坐標(biāo)為6、D【解析】
根據(jù)同弧或等弧所對的圓周角相等可知∠BED=∠BAD,再結(jié)合圖形根據(jù)正切的定義進(jìn)行求解即可得.【詳解】∵∠DAB=∠DEB,∴tan∠DEB=tan∠DAB=,故選D.【點睛】本題考查了圓周角定理(同弧或等弧所對的圓周角相等)和正切的概念,正確得出相等的角是解題關(guān)鍵.7、A【解析】
直接根據(jù)圓周角定理即可得出結(jié)論.【詳解】∵A、B、C是⊙O上的三點,∠B=75°,∴∠AOC=2∠B=150°.故選A.8、D【解析】
∵在?ABCD中,AO=AC,∵點E是OA的中點,∴AE=CE,∵AD∥BC,∴△AFE∽△CBE,∴=,∵AD=BC,∴AF=AD,∴;故①正確;∵S△AEF=4,=()2=,∴S△BCE=36;故②正確;∵=,∴=,∴S△ABE=12,故③正確;∵BF不平行于CD,∴△AEF與△ADC只有一個角相等,∴△AEF與△ACD不一定相似,故④錯誤,故選D.9、B【解析】試題分析:∵∠B=60°,將△ABC沿射線BC的方向平移,得到△A′B′C′,再將△A′B′C′繞點A′逆時針旋轉(zhuǎn)一定角度后,點B′恰好與點C重合,∴∠A′B′C=60°,AB=A′B′=A′C=4,∴△A′B′C是等邊三角形,∴B′C=4,∠B′A′C=60°,∴BB′=6﹣4=2,∴平移的距離和旋轉(zhuǎn)角的度數(shù)分別為:2,60°故選B.考點:1、平移的性質(zhì);2、旋轉(zhuǎn)的性質(zhì);3、等邊三角形的判定10、A【解析】試題分析:設(shè)正比例函數(shù)解析式為:y=kx,將點A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函數(shù)解析式為:y=﹣2x,將B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故選A.考點:一次函數(shù)圖象上點的坐標(biāo)特征.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】原式==.故答案為:.12、a>﹣.【解析】試題分析:已知關(guān)于x的方程2x2+x﹣a=0有兩個不相等的實數(shù)根,所以△=12﹣4×2×(﹣a)=1+8a>0,解得a>﹣.考點:根的判別式.13、<【解析】
∵≈0.62,0.62<1,∴<1;故答案為<.14、x=0.1【解析】分析:方程兩邊都乘以最簡公分母,化為整式方程,然后解方程,再進(jìn)行檢驗.詳解:方程兩邊都乘以2(x2﹣1)得,8x+2﹣1x﹣1=2x2﹣2,解得x1=1,x2=0.1,檢驗:當(dāng)x=0.1時,x﹣1=0.1﹣1=﹣0.1≠0,當(dāng)x=1時,x﹣1=0,所以x=0.1是方程的解,故原分式方程的解是x=0.1.故答案為:x=0.1點睛:本題考查了解分式方程,(1)解分式方程的基本思想是“轉(zhuǎn)化思想”,把分式方程轉(zhuǎn)化為整式方程求解.(2)解分式方程一定注意要驗根.15、1+【解析】
當(dāng)AB=AC,∠AEF=∠B時,∠AEF=∠ACB,當(dāng)EF⊥AC時,∠ACB+∠CEF=90°=∠AEF+∠CEF,即可得到AE⊥BC,依據(jù)Rt△CFG≌Rt△CFH,可得CH=CG=,再根據(jù)勾股定理即可得到EF的長.【詳解】解:如圖,當(dāng)AB=AC,∠AEF=∠B時,∠AEF=∠ACB,當(dāng)EF⊥AC時,∠ACB+∠CEF=90°=∠AEF+∠CEF,∴AE⊥BC,∴CE=BC=2,又∵AC=2,∴AE=1,EG==,∴CG==,作FH⊥CD于H,∵CF平分∠ACD,∴FG=FH,而CF=CF,∴Rt△CFG≌Rt△CFH,∴CH=CG=,設(shè)EF=x,則HF=GF=x-,∵Rt△EFH中,EH2+FH2=EF2,∴(2+)2+(x-)2=x2,解得x=1+,故答案為1+.【點睛】本題主要考查了角平分線的性質(zhì),勾股定理以及等腰三角形的性質(zhì)的運用,解決問題的關(guān)鍵是掌握等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合.16、甲.【解析】
根據(jù)方差的意義可作出判斷.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定,方差越大,數(shù)據(jù)不穩(wěn)定,則為新手.【詳解】∵通過觀察條形統(tǒng)計圖可知:乙的成績更整齊,也相對更穩(wěn)定,∴甲的方差大于乙的方差.故答案為:甲.【點睛】本題考查的知識點是方差,條形統(tǒng)計圖,解題的關(guān)鍵是熟練的掌握方差,條形統(tǒng)計圖.17、1【解析】試題分析:利用相似三角形的相似比,列出方程,通過解方程求出旗桿的高度即可.解:∵同一時刻物高與影長成正比例.設(shè)旗桿的高是xm.∴1.6:1.2=x:9∴x=1.即旗桿的高是1米.故答案為1.考點:相似三角形的應(yīng)用.三、解答題(共7小題,滿分69分)18、詳見解析.【解析】
四邊形ABCD是正方形,利用已知條件先證明四邊形ABCD是平行四邊形,再證明四邊形ABCD是矩形,再根據(jù)對角線垂直的矩形是正方形即可證明四邊形ABCD是正方形.【詳解】證明:在四邊形ABCD中,OA=OC,OB=OD,∴四邊形ABCD是平行四邊形,∵OA=OB=OC=OD,又∵AC=AO+OC,BD=OB+DO,∴AC=BD,∴平行四邊形是矩形,在△AOB中,,∴△AOB是直角三角形,即AC⊥BD,∴矩形ABCD是正方形.【點睛】本題考查了平行四邊形的判定、矩形的判定、正方形的判定以及勾股定理的運用和勾股定理的逆定理的運用,題目的綜合性很強(qiáng).19、(1)30°;(2)海監(jiān)船繼續(xù)向正東方向航行是安全的.【解析】
(1)根據(jù)直角的性質(zhì)和三角形的內(nèi)角和求解;(2)過點P作PH⊥AB于點H,根據(jù)解直角三角形,求出點P到AB的距離,然后比較即可.【詳解】解:(1)在△APB中,∠PAB=30°,∠ABP=120°∴∠APB=180°-30°-120°=30°(2)過點P作PH⊥AB于點H在Rt△APH中,∠PAH=30°,AH=PH在Rt△BPH中,∠PBH=30°,BH=PH∴AB=AH-BH=PH=50解得PH=25>25,因此不會進(jìn)入暗礁區(qū),繼續(xù)航行仍然安全.考點:解直角三角形20、(1)證明見解析;(2)陰影部分的面積為.【解析】
(1)連接OC,先證明∠OAC=∠OCA,進(jìn)而得到OC∥AE,于是得到OC⊥CD,進(jìn)而證明DE是⊙O的切線;(2)分別求出△OCD的面積和扇形OBC的面積,利用S陰影=S△COD﹣S扇形OBC即可得到答案.【詳解】解:(1)連接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAE,∴∠OAC=∠CAE,∴∠OCA=∠CAE,∴OC∥AE,∴∠OCD=∠E,∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,∵點C在圓O上,OC為圓O的半徑,∴CD是圓O的切線;(2)在Rt△AED中,∵∠D=30°,AE=6,∴AD=2AE=12,在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,∴DB=OB=OC=AD=4,DO=8,∴CD=∴S△OCD==8,∵∠D=30°,∠OCD=90°,∴∠DOC=60°,∴S扇形OBC=×π×OC2=,∵S陰影=S△COD﹣S扇形OBC∴S陰影=8﹣,∴陰影部分的面積為8﹣.21、(1)補(bǔ)全圖形見解析;(2)B;(3)估計該年級學(xué)生中“經(jīng)常隨手丟垃圾”的學(xué)生約有75人,就該年級經(jīng)常隨手丟垃圾的學(xué)生人數(shù)看出仍需要加強(qiáng)公共衛(wèi)生教育、宣傳和監(jiān)督.【解析】
(1)根據(jù)被調(diào)查的總?cè)藬?shù)求出C情況的人數(shù)與B情況人數(shù)所占比例即可;(2)根據(jù)眾數(shù)的定義求解即可;(3)該年級學(xué)生中“經(jīng)常隨手丟垃圾”的學(xué)生=總?cè)藬?shù)×C情況的比值.【詳解】(1)∵被調(diào)查的總?cè)藬?shù)為60÷30%=200人,∴C情況的人數(shù)為200﹣(60+130)=10人,B情況人數(shù)所占比例為×100%=65%,補(bǔ)全圖形如下:(2)由條形圖知,B情況出現(xiàn)次數(shù)最多,所以眾數(shù)為B,故答案為B.(3)1500×5%=75,答:估計該年級學(xué)生中“經(jīng)常隨手丟垃圾”的學(xué)生約有75人,就該年級經(jīng)常隨手丟垃圾的學(xué)生人數(shù)看出仍需要加強(qiáng)公共衛(wèi)生教育、宣傳和監(jiān)督.【點睛】本題考查了眾數(shù)與扇形統(tǒng)計圖與條形統(tǒng)計圖,解題的關(guān)鍵是熟練的掌握眾數(shù)與扇形統(tǒng)計圖與條形統(tǒng)計圖的相關(guān)知識點.22、(1)m=﹣1;y=﹣3x﹣1;(2)P1(5,0),P2(,0).【解析】
(1)將A代入反比例函數(shù)中求出m的值,即可求出直線解析式,(2)聯(lián)立方程組求出B的坐標(biāo),理由過兩點之間距離公式求出AB的長,求出P點坐標(biāo),表示出BP長即可解題.【詳解】解:(1)∵點A(m,2)在雙曲線上,∴m=﹣1,∴A(﹣1,2),直線y=kx﹣1,∵點A(﹣1,2)在直線y=kx﹣1上,∴y=﹣3x﹣1.(2),解得或,∴B(,﹣3),∴AB==,設(shè)P(n,0),則有(n﹣)2+32=解得n=5或,∴P1(5,0),P2(,0).【點睛】本題考查了一次函數(shù)和反比例函數(shù)的交點問題,中等難度,聯(lián)立方程組,會用兩點之間距離公式是解題關(guān)鍵.23、(1)2;(2);(3)見解析.【解析】分析:(1)根據(jù)解析式求得C的坐標(biāo),進(jìn)而求得D的坐標(biāo),即可求得DH的長度,令y=0,求得A,B的坐標(biāo),然后證得△ACO∽△EAH,根據(jù)對應(yīng)邊成比例求得EH的長,進(jìn)繼而求得DE的長;(2)找點C關(guān)于DE的對稱點N(4,),找點C關(guān)于AE的對稱點G(-2,-),連接GN,交AE于點F,交DE于點P,即G、F、P、N四點共線時,△CPF周長=CF+PF+CP=GF+PF+PN最小,根據(jù)點的坐標(biāo)求得直線GN的解析式:y=x-;直線AE的解析式:y=-x-,過點M作y軸的平行線交FH于點Q,設(shè)點M(m,-m2+m+),則Q(m,m-),根據(jù)S△MFP=S△MQF+S△MQP,得出S△MFP=-m2+m+,根據(jù)解析式即可求得,△MPF面積的最大值;(3)由(2)可知C(0,),F(xiàn)(0,),P(2,),求得CF=,CP=,進(jìn)而得出△CFP為等邊三角形,邊長為,翻折之后形成邊長為的菱形C′F′P′F″,且F′F″=4,然后分三種情況討論求得即可.本題解析:(1)對于拋物線y=﹣x2+x+,令x=0,得y=,即C(0,),D(2,),∴DH=,令y=0,即﹣x2+x+=0,得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∵AE⊥AC,EH⊥AH,∴△ACO∽△EAH,∴=,即=,解得:EH=,則DE=2;(2)找點C關(guān)于DE的對稱點N(4,),找點C關(guān)于AE的對稱點G(﹣2,﹣),連接GN,交AE于點F,交DE于點P,即G、F、P、N四點共線時,△CPF周長=CF+PF+CP=GF+PF+PN最小,直線GN的解析式:y=x﹣;直線AE的解析式:y=﹣x﹣,聯(lián)立得:F(0,﹣),P(2,),過點M作y軸的平行線交FH于點Q,設(shè)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025江蘇揚州人才集團(tuán)下屬企業(yè)招聘6人筆試備考試題及答案詳解一套
- 2025江蘇揚州寶應(yīng)縣“鄉(xiāng)村振興青年人才”招聘67人筆試備考題庫及一套答案詳解
- 2025邯鄲武安市選聘農(nóng)村黨務(wù)(村務(wù))工作者180名筆試備考試題及完整答案詳解一套
- 2025年人教部編版語文四年級下冊第三次月考測試題(配有答案)
- 2025年河南省南陽市桐柏縣三?;瘜W(xué)試題含答案
- 山西省呂梁市孝義市2024-2025學(xué)年高一上學(xué)期期中考試物理試題
- 江西省智慧上進(jìn)2024-2025學(xué)年高一上學(xué)期1月期末聯(lián)考物理試題(解析版)
- 陜西省安康市2023-2024學(xué)年高二下學(xué)期期末質(zhì)量聯(lián)考數(shù)學(xué)試卷(解析版)
- 慢性病管理與護(hù)理策略
- 妝前護(hù)膚 打造完美妝效的第一步
- 《新能源材料概論》 課件 第5章 儲能材料
- 光伏發(fā)電設(shè)備檢修維護(hù)(技師)職業(yè)技能鑒定備考試題庫(含答案)
- TCACM 1470-2023 胃癌前病變治未病干預(yù)指南
- DGJ08-102-2003 城鎮(zhèn)高壓、超高壓天然氣管道工程技術(shù)規(guī)程
- 北師大版數(shù)學(xué)一年級上冊第四單元分類測試卷含答案
- 線控轉(zhuǎn)向電機(jī)控制策略設(shè)計與仿真研究
- 會議效果評估模型構(gòu)建-深度研究
- 高炮廣告牌施工方案
- FIDIC標(biāo)準(zhǔn)合同范本
- 《核電廠實物保護(hù)系統(tǒng)定期試驗規(guī)范》
- 前列腺增生小講課
評論
0/150
提交評論