




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2/2三角形全等幾何模型-一線三等角模型(培優(yōu)篇)(專項(xiàng)練習(xí))模型一一線三垂直全等模型如圖一,∠D=∠BCA=∠E=90°,BC=AC。結(jié)論:Rt△BDC≌Rt△CEA模型二一線三等角全等模型如圖二,∠D=∠BCA=∠E,BC=AC。結(jié)論:△BEC≌△CDA圖一圖二一、填空題1.如圖,中,,,D為延長線上一點(diǎn),,且,與的延長線交于點(diǎn)P,若,則__________.2.如圖,已知點(diǎn)在軸正半軸上,點(diǎn)在軸的正半軸上,為等腰直角三角形,為斜邊上的中點(diǎn).若,則________.3.如圖,Rt△ABC中,∠ACB=90°,AC=BC,CF交AB于E,BD⊥CF,AF⊥CF,則下列結(jié)論:①∠ACF=∠CBD②BD=FC③FC=FD+AF④AE=DC中,正確的結(jié)論是____________(填正確結(jié)論的編號(hào))二、解答題4.通過對(duì)下面數(shù)學(xué)模型的研究學(xué)習(xí),解決下列問題:(1)如圖1,∠BAD=90°,AB=AD,過點(diǎn)B作BC⊥AC于點(diǎn)C,過點(diǎn)D作DE⊥AC于點(diǎn)E.由∠1+∠2=∠2+∠D=90°,得∠1=∠D.又∠ACB=∠AED=90°,可以推理得到△ABC≌△DAE.進(jìn)而得到AC=,BC=AE.我們把這個(gè)數(shù)學(xué)模型稱為“K字”模型或“一線三等角”模型;(2)如圖2,∠BAD=∠CAE=90°,AB=AD,AC=AE,連接BC,DE,且BC⊥AF于點(diǎn)F,DE與直線AF交于點(diǎn)G.求證:點(diǎn)G是DE的中點(diǎn);(深入探究)(3)如圖,已知四邊形ABCD和DEGF為正方形,△AFD的面積為S1,△DCE的面積為S2,則有S1S2(填“>、=、<”)5.(1)某學(xué)習(xí)小組在探究三角形全等時(shí),發(fā)現(xiàn)了下面這種典型的基本圖形.如圖1,已知:在中,,,直線l經(jīng)過點(diǎn)A,直線l,直線l,垂足分別為點(diǎn)D,E.求證:.(2)組員小明想,如果三個(gè)角不是直角,那結(jié)論是否會(huì)成立呢?如圖2,將(1)中的條件改為:在中,,D,A,E三點(diǎn)都在直線l上,并且有,其中為任意銳角或鈍角.請(qǐng)問結(jié)論是否成立?若成立,請(qǐng)你給出證明;若不成立,請(qǐng)說明理由.(3)數(shù)學(xué)老師贊賞了他們的探索精神,并鼓勵(lì)他們運(yùn)用這個(gè)知識(shí)來解決問題:如圖3,過的邊AB,AC向外作正方形ABDE和正方形ACFG,AH是BC邊上的高.延長HA交EG于點(diǎn)I.若,則______.6.如圖,在ABC中,AB=AC=2,∠B=40°,點(diǎn)D在線段BC上運(yùn)動(dòng)(點(diǎn)D不與點(diǎn)B、C重合),連接AD,作∠ADE=40°,DE交線段AC于點(diǎn)E.(1)當(dāng)∠BDA=115°時(shí),∠EDC=______°,∠AED=______°;(2)線段DC的長度為何值時(shí),△ABD≌△DCE,請(qǐng)說明理由;(3)在點(diǎn)D的運(yùn)動(dòng)過程中,△ADE的形狀可以是等腰三角形嗎?若可以,求∠BDA的度數(shù);若不可以,請(qǐng)說明理由.7.在中,,直線經(jīng)過點(diǎn)C,且于D,于E,(1)當(dāng)直線繞點(diǎn)C旋轉(zhuǎn)到圖1的位置時(shí),顯然有:(不必證明);(2)當(dāng)直線繞點(diǎn)C旋轉(zhuǎn)到圖2的位置時(shí),求證:;(3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖3的位置時(shí),試問、、具有怎樣的等量關(guān)系?請(qǐng)直接寫出這個(gè)等量關(guān)系.8.問題背景:(1)如圖1,已知△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m,CE⊥直線m,垂足分別為點(diǎn)D、E.求證:DE=BD+CE.拓展延伸:(2)如圖2,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC.請(qǐng)寫出DE、BD、CE三條線段的數(shù)量關(guān)系.(不需要證明)實(shí)際應(yīng)用:(3)如圖,在△ACB中,∠ACB=90°,AC=BC,點(diǎn)C的坐標(biāo)為(-2,0),點(diǎn)A的坐標(biāo)為(-6,3),請(qǐng)直接寫出B點(diǎn)的坐標(biāo).參考答案1.【分析】作于,根據(jù)全等三角形性質(zhì)得出CP=PM,DC=AM,設(shè)PC=PM=x,AC=BC=3x,AM=DC=5x,求出BD=2x,即可求出答案.解:作于,,,,,,,,在和中,,,,,,,,在和中,,,,,設(shè),,,,,故答案為:.【點(diǎn)撥】本題考查了三角形內(nèi)角和定理,全等三角形的性質(zhì)和判定的應(yīng)用,主要考查學(xué)生的推理能力.2.2【分析】根據(jù)等腰直角三角形的性質(zhì),可得AP與BC的關(guān)系,根據(jù)垂線的性質(zhì),可得答案解:如圖:作CP⊥x軸于點(diǎn)P,由余角的性質(zhì),得∠OBA=∠PAC,在Rt△OBA和Rt△PAC中,,Rt△OBA≌Rt△PAC(AAS),∴AP=OB=b,PC=OA=a.由線段的和差,得OP=OA+AP=a+b,即C點(diǎn)坐標(biāo)是(a+b,a),由B(0,b),C(a+b,a),D是BC的中點(diǎn),得D(,),∴OD=∴=,∴a+b=2.故答案為2.【點(diǎn)撥】本題解題主要①利用了等腰直角三角形的性質(zhì);②利用了全等三角形的判定與性質(zhì);③利用了線段中點(diǎn)的性質(zhì).3.①②③【分析】根據(jù)同角的余角相等,可得到結(jié)論①,再證明△ACF≌△CBD,然后根據(jù)全等三角形的性質(zhì)判斷結(jié)論②、③、④即可.解:∵BD⊥CF,AF⊥CF,∴∠BDC=∠AFC=90°,∵∠ACB=90°,∴∠ACF+∠BCD=∠CBD+∠BCD=90°,∴∠ACF=∠CBD,故①正確;在△ACF和△CBD中,,∴△ACF≌△CBD,∴BD=FC,CD=AF,故結(jié)論②正確∴FC=FD+CD=FD+AF,故結(jié)論③正確,∵在Rt△AEF中,AE>AF,∴AE>CD,故結(jié)論④錯(cuò)誤.綜上所述,正確的結(jié)論是:①②③.【點(diǎn)撥】本題主要考查全等三角形的判定與性質(zhì),熟練掌握判定方法及全等的性質(zhì)是解題的關(guān)鍵.4.(1)DE;(2)見分析;(3)=【分析】(1)根據(jù)全等三角形的性質(zhì)可直接進(jìn)行求解;(2)分別過點(diǎn)D和點(diǎn)E作DH⊥FG于點(diǎn)H,EQ⊥FG于點(diǎn)Q,進(jìn)而可得∠BAF=∠ADH,然后可證△ABF≌△DAH,則有AF=DH,進(jìn)而可得DH=EQ,通過證明△DHG≌△EQG可求解問題;(3)過點(diǎn)D作DO⊥AF交AF于O,過點(diǎn)E作EN⊥OD交OD延長線于N,過點(diǎn)C作CM⊥OD交OD延長線于M,由題意易得∠ADC=∠90°,AD=DC,DF=DE,然后可得∠ADO=∠DCM,則有△AOD≌△DMC,△FOD≌△DNE,進(jìn)而可得OD=NE,通過證明△ENP≌△CMP及等積法可進(jìn)行求解問題.解:(1)∵,∴;(2)分別過點(diǎn)D和點(diǎn)E作DH⊥FG于點(diǎn)H,EQ⊥FG于點(diǎn)Q,如圖所示:∴,∵,∴,∴,∵,∴,∵,∴△ABF≌△DAH,∴AF=DH,同理可知AF=EQ,∴DH=EQ,∵DH⊥FG,EQ⊥FG,∴,∵∴△DHG≌△EQG,∴DG=EG,即點(diǎn)G是DE的中點(diǎn);(3),理由如下:如圖所示,過點(diǎn)D作DO⊥AF交AF于O,過點(diǎn)E作EN⊥OD交OD延長線于N,過點(diǎn)C作CM⊥OD交OD延長線于M∵四邊形ABCD與四邊形DEGF都是正方形∴∠ADC=∠90°,AD=DC,DF=DE∵DO⊥AF,CM⊥OD,∴∠AOD=∠CMD=90°,∠OAD+∠ODA=90°,∠CDM+∠DCM=90°,又∵∠ODA+∠CDM=90°,∴∠ADO=∠DCM,∴△AOD≌△DMC,∴,OD=MC,同理可以證明△FOD≌△DNE,∴,OD=NE,∴MC=NE,∵EN⊥OD,CM⊥OD,∠EPN=∠CMP,∴△ENP≌△CMP,∴,∵,∴,∴即.【點(diǎn)撥】本題主要考查全等三角形的性質(zhì)與判定、直角三角形的兩個(gè)銳角互余及等積法,熟練掌握全等三角形的判定條件是解題的關(guān)鍵.5.(1)見分析;(2)結(jié)論成立,理由見分析;(3)3.5【分析】(1)由條件可證明△ABD≌△CAE,可得DA=CE,AE=BD,可得DE=BD+CE;(2)由條件可知∠BAD+∠CAE=180°-α,且∠DBA+∠BAD=180°-α,可得∠DBA=∠CAE,結(jié)合條件可證明△ABD≌△CAE,同(1)可得出結(jié)論;(3)由條件可知EM=AH=GN,可得EM=GN,結(jié)合條件可證明△EMI≌△GNI,可得出結(jié)論I是EG的中點(diǎn).解:(1)證明:如圖1中,∵BD⊥直線l,CE⊥直線l,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE.(2)解:成立.理由:如圖2中,∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α,∴∠DBA=∠CAE,在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE.(3)如圖3,過E作EM⊥HI于M,GN⊥HI的延長線于N.∴∠EMI=∠GNI=90°由(1)和(2)的結(jié)論可知EM=AH=GN∴EM=GN在△EMI和△GNI中,,∴△EMI≌△GNI(AAS),∴EI=GI,∴I是EG的中點(diǎn).∴S△AEI=S△AEG=3.5.故答案為:3.5.【點(diǎn)撥】本題是四邊形綜合題,考查了全等三角形的判定和性質(zhì),正方形的性質(zhì),直角三角形的性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵.6.(1)25°,65°;(2)2,理由見詳解;(3)可以,110°或80°.【分析】(1)利用鄰補(bǔ)角的性質(zhì)和三角形內(nèi)角和定理解題;(2)當(dāng)DC=2時(shí),利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,求出∠ADB=∠DEC,再利用AB=DC=2,即可得出△ABD≌△DCE.(3)當(dāng)∠BDA的度數(shù)為110°或80°時(shí),△ADE的形狀是等腰三角形.解:(1)∵∠B=40°,∠ADB=115°,∴∠BAD=180°-∠B-∠ADB=180°-115°-40°=25°,∵AB=AC,∴∠C=∠B=40°,∵∠EDC=180°-∠ADB-∠ADE=25°,∴∠DEC=180°-∠EDC-∠C=115°,∴∠AED=180°-∠DEC=180°-115°=65°;(2)當(dāng)DC=2時(shí),△ABD≌△DCE,理由:∵∠C=40°,∴∠DEC+∠EDC=140°,又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,在△ABD和△DCE中,∴△ABD≌△DCE(AAS);(3)當(dāng)∠BDA的度數(shù)為110°或80°時(shí),△ADE的形狀是等腰三角形,∵∠BDA=110°時(shí),∴∠ADC=70°,∵∠C=40°,∴∠DAC=70°,∴△ADE的形狀是等腰三角形;∵當(dāng)∠BDA的度數(shù)為80°時(shí),∴∠ADC=100°,∵∠C=40°,∴∠DAC=40°,∴△ADE的形狀是等腰三角形.【點(diǎn)撥】本題主要考查學(xué)生對(duì)等腰三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),三角形外角的性質(zhì)等知識(shí)點(diǎn)的理解和掌握,此題涉及到的知識(shí)點(diǎn)較多,綜合性較強(qiáng),但難度不大,屬于基礎(chǔ)題.7.(1)見分析;(2)見分析;(3)DE=BE-AD【分析】(1)由于△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點(diǎn)C,且AD⊥MN于D,BE⊥MN于E,由此即可證明△ADC≌△CEB,然后利用全等三角形的性質(zhì)即可解決問題;(2)由于△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點(diǎn)C,且AD⊥MN于D,BE⊥MN于E,由此仍然可以證明△ADC≌△CEB,然后利用全等三角形的性質(zhì)也可以解決問題;(3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖(3)的位置時(shí),仍然△ADC≌△CEB,然后利用全等三角形的性質(zhì)可以得到DE=BE-AD.解:(1)∵△ABC中,∠ACB=90°,∴∠ACD+∠BCE=90°,又直線MN經(jīng)過點(diǎn)C,且AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°∴∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴CD=BE,CE=AD,∴DE=CD+CE=AD+BE;(2)∵△ABC中,∠ACB=90°,直線MN經(jīng)過點(diǎn)C,且AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠ACD+∠BCE=∠BCE+∠CBE=90°,而AC=BC,∴△ADC≌△CEB,∴CD=BE,CE=AD,∴DE=CE-CD=AD-BE;(3)如圖3,∵△ABC中,∠ACB=90°,直線MN經(jīng)過點(diǎn)C,且AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠ACD+∠BCE=∠BCE+∠CBE=90°,∴∠ACD=∠CBE,∵AC=BC,∴△ADC≌△CEB,∴CD=BE,CE=AD,∴DE=CD-CE=BE-AD;DE、AD、BE之間的關(guān)系為DE=BE-AD.【點(diǎn)撥】此題需要考查了全等三角形的判定與性質(zhì),也利用了直角三角形的性質(zhì),是一個(gè)探究性題目,對(duì)于學(xué)生的能力要求比較高.8.(1)證明見分析;(2)DE=BD+CE;(3)B(1,4)【分析】(1)證明△ABD≌△CAE,根據(jù)全等三角形的性質(zhì)得到AE=BD,AD=CE,結(jié)合圖形解答即可;(2)根據(jù)三角形內(nèi)角和定理、平角的定義證明∠ABD=∠CAE,證明△ABD≌△CAE,根據(jù)全等三角形的性質(zhì)得到AE=BD,AD=CE,結(jié)合圖形解答即可;(3)根據(jù)△AEC≌△CFB,得到CF=AE=3,BF=CE=OE-OC=4,根據(jù)坐標(biāo)與圖形性質(zhì)解答.解:(1)∵BD⊥直線m,CE⊥直線m,∴∠ADB=∠CEA=90°∵∠BAC=90°∴∠BAD+∠CAE=90°∵∠BAD+∠ABD=90°∴∠CAE=∠ABD∵在△ADB和△CEA中∴△ADB≌△CEA(AAS)∴AE=BD,AD=CE∴DE=AE+AD=BD+CE即:DE=BD+C
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025福建福州萬山電力咨詢有限公司校園招聘46人筆試歷年參考題庫附帶答案詳解
- 健康巡講科學(xué)健身課件
- 醫(yī)保相關(guān)政策解讀課件
- 企業(yè)安全生產(chǎn)會(huì)議記錄內(nèi)容
- 班克街教育方案實(shí)施綱要
- 年會(huì)流程安排
- 腦出血早期降壓治療新進(jìn)展
- 2024年山東省曹縣人民醫(yī)院公開招聘護(hù)理工作人員試題帶答案詳解
- 學(xué)生用不用網(wǎng)上教學(xué)課件
- 2025年中國干燥筒行業(yè)市場發(fā)展前景及發(fā)展趨勢與投資戰(zhàn)略研究報(bào)告
- 胸痛單元建設(shè)課件介紹
- 超市消防安全管理制度制度
- 酒店服務(wù)流程與空間布局優(yōu)化
- DB11∕T 2380-2024 城市軌道交通工程蓋挖法施工技術(shù)規(guī)程
- (2025)醫(yī)療護(hù)理員理論考試試題含答案
- 2025年貴州省中考英語真題含答案
- 2025年廣西中考語文試題卷(含答案)
- 建設(shè)工程法律培訓(xùn)
- 江蘇省南通市2024-2025學(xué)年高二下學(xué)期6月期末質(zhì)量監(jiān)測政治試題(含答案)
- (高清版)DB31∕T 1427-2023 首席質(zhì)量官評(píng)價(jià)規(guī)范
- 一級(jí)醫(yī)院醫(yī)保管理制度
評(píng)論
0/150
提交評(píng)論