




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、概率論與數(shù)理統(tǒng)計(jì)作業(yè)班級(jí) 姓名 學(xué)號(hào) 任課教師 第一章 概率論的基本概念教學(xué)要求:一、 了解樣本空間的概念,理解隨機(jī)事件的概念,掌握事件的關(guān)系及運(yùn)算二、 理解概率、條件概率的概念,掌握概率的基本性質(zhì),會(huì)計(jì)算古典概率,掌握概率的加法公式、減法公式、乘法公式、全概率公式及貝葉斯公式三、 理解事件的獨(dú)立性的概念,掌握用事件獨(dú)立性進(jìn)行概率計(jì)算,理解獨(dú)立重復(fù)試驗(yàn)的概念,掌握計(jì)算有關(guān)事件概率的方法重點(diǎn):事件的表示與事件的獨(dú)立性;概率的性質(zhì)與計(jì)算 難點(diǎn):復(fù)雜事件的表示與分解;試驗(yàn)概型的選定與正確運(yùn)用公式計(jì)算概率;條件概率的理解與應(yīng)用;獨(dú)立性的應(yīng)用練習(xí)一 隨機(jī)試驗(yàn)、樣本空間、隨機(jī)事件1.寫出下列隨機(jī)事件的樣本
2、空間(1)同時(shí)擲兩顆骰子,記錄兩顆骰子點(diǎn)數(shù)之和;(2)生產(chǎn)產(chǎn)品直到有5件正品為止,記錄生產(chǎn)產(chǎn)品的總件數(shù);(3)在單位圓內(nèi)任意取一點(diǎn),記錄它的坐標(biāo) 解:(1)2;3;4;5;6;7;8;9;10;11;12;(2)5;6;7;;(3)2.設(shè)三事件,用的運(yùn)算關(guān)系表示下列事件:(1)發(fā)生,與不發(fā)生,記為 ;(2)至少有一個(gè)發(fā)生,記為;(3) 中只有一個(gè)發(fā)生,記為;(4)中不多于兩個(gè)發(fā)生,記為3.一盒中有3個(gè)黑球,2個(gè)白球,現(xiàn)從中依次取球,每次取一個(gè),設(shè)=第次取到黑球,敘述下列事件的內(nèi)涵:(1)=.(2)=. (3)= .(4)=.(5)=.4.若要擊落飛機(jī),必須同時(shí)擊毀2個(gè)發(fā)動(dòng)機(jī)或擊毀駕駛艙,記=擊
3、毀第1個(gè)發(fā)動(dòng)機(jī);=擊毀第2個(gè)發(fā)動(dòng)機(jī);=擊毀駕駛艙;試用、事件表示飛機(jī)被擊落的事件.解:練習(xí)二 頻率與概率、等可能概型(古典概率)1.若, , 求事件、都不發(fā)生的概率.解:由于 則 得于是所以2.設(shè)求解:因?yàn)?且則又 所以3.已知在8只晶體管中有2只次品,在其中任取三次,取后不放回,求下列事件的概率:(1)三只都是正品;(2)兩只是正品,一只是次品.解:(1)設(shè)任取三次三只都是正品,則基本事件總數(shù),包含基本事件數(shù),于是 .(2)設(shè)任取三次兩只是正品,一只是次品,則基本事件總數(shù),包含基本事件數(shù)于是 4.在房間里有10個(gè)人,分別佩戴從1號(hào)到10號(hào)的紀(jì)念章,任選3人記錄其紀(jì)念章的號(hào)碼,(1)求最小號(hào)碼
4、為6的概率;(2)求最大號(hào)碼為6的概率解:(1)設(shè)最小號(hào)碼為6,則基本事件總數(shù)包含基本事件數(shù)于是(2)設(shè)最大號(hào)碼為6,則基本事件總數(shù)包含基本事件數(shù)于是5.一盒中有2個(gè)黑球1個(gè)白球,現(xiàn)從中依次取球,每次取一個(gè),設(shè)=第次取到白球,. 求, .解: ;,.6.擲兩顆均勻的骰子,問點(diǎn)數(shù)之和等于7與等于8的概率哪個(gè)大?解:樣本空間基本事件總數(shù)設(shè)點(diǎn)數(shù)之和等于7,點(diǎn)數(shù)之和等于8,則,包含基本事件數(shù)等于6 ;,包含基本事件數(shù)等于5 ;于是 ; .所以 .7.一批產(chǎn)品共100件,對(duì)其抽樣檢查,整批產(chǎn)品不合格的條件是:在被檢查的4件產(chǎn)品中至少有1件是廢品如果在該批產(chǎn)品有5是廢品,問該批產(chǎn)品被拒收的概率解:設(shè)被檢查
5、的4件產(chǎn)品至少有1件廢品,則;所以 .8.將3個(gè)球隨機(jī)放入4個(gè)杯子中,求杯子中球數(shù)的最大值為2的概率解:基本事件總數(shù) ,設(shè)杯子中球數(shù)最大值為2,則包含的基本事件數(shù)(3個(gè)球任取兩個(gè),然后4個(gè)杯子任取1個(gè)放入,再對(duì)1個(gè)球在3個(gè)杯子中任取一個(gè)放入),于是 .練習(xí)三 條件概率1.甲、乙兩班共有70名同學(xué),其中女同學(xué)40名設(shè)甲班有30名同學(xué),而女生15名求在碰到甲班同學(xué)時(shí),正好碰到1名女同學(xué)的概率解:設(shè)碰到甲班同學(xué),碰到乙班同學(xué),則 于是 .2.箱子里有10個(gè)白球,5個(gè)黃球,10個(gè)黑球從中隨機(jī)地抽取1個(gè)已知它不是黑球,求它是黃球的概率解:設(shè)任取一個(gè)不是黑球,任取一個(gè)是黃球,則 又 ,則 ,于是3.某人有
6、5把鑰匙,其中2把能打開房門.從中隨機(jī)地取1把試開房門,求第3次才打開房門的概率.解:設(shè)第次能打開門 ,則 第3次才打開門,于是由乘法公式有 .4.假設(shè)某地區(qū)位于甲、乙二河流的匯合處,當(dāng)任一河流泛濫時(shí),該地區(qū)就遭受水災(zāi)設(shè)某時(shí)期內(nèi)甲河流泛濫的概率為0.1,乙河流泛濫的概率為0.2.當(dāng)甲河流泛濫時(shí),乙河流泛濫的概率為0.3.求(1)該時(shí)期內(nèi)這個(gè)地區(qū)遭受水災(zāi)的概率;(2)當(dāng)乙河泛濫時(shí)甲河流泛濫的概率.解:設(shè)某時(shí)期甲河泛濫,某時(shí)期乙河泛濫,則 , 于是 5. 甲、乙兩車間加工同一種產(chǎn)品,已知甲、乙兩車間出現(xiàn)廢品的概率分別為3、2,加工的產(chǎn)品放在一起,且已知甲車間加工的產(chǎn)品是乙車間加工的產(chǎn)品的兩倍求任取
7、一個(gè)產(chǎn)品是合格品的概率解:設(shè)任取一個(gè)為甲生產(chǎn)的產(chǎn)品,任取一個(gè)產(chǎn)品為廢品,則由全概率公式有6.設(shè)甲袋中有3個(gè)紅球及1個(gè)白球.乙袋中有4個(gè)紅球及2個(gè)白球.從甲袋中任取一個(gè)球(不看顏色)放到乙袋中后,再?gòu)囊掖腥稳∫粋€(gè)球,求最后取得紅球的概率解:設(shè)從甲袋中任取一個(gè)球?yàn)榧t球,最后從乙袋中任取一個(gè)球?yàn)榧t球,則由全概率公式7.玻璃杯成箱出售,每箱20只,假設(shè)各箱含0,1,2只殘次品的概率分別為0.8,0.1和0.1,一顧客欲購(gòu)一箱玻璃杯,在購(gòu)買時(shí),售貨員隨意取一箱,而顧客隨機(jī)的一次性抽取4只察看,若無殘次品,則買下該箱玻璃杯,否則退回,試求:(1)顧客買下該箱的概率;(2)在顧客買下的一箱中,確實(shí)沒有殘次
8、品的概率解:設(shè)售貨員任取一箱玻璃杯有個(gè)殘品,顧客買下該箱玻璃杯,則(1)由全概率公式得(2)由貝葉斯公式得8.已知一批產(chǎn)品中有95是合格品,檢查產(chǎn)品質(zhì)量時(shí),一個(gè)合格品被誤判為次品的概率為0.02,一個(gè)次品被誤判為合格品的概率是0.03,求:(1)任意抽查一個(gè)產(chǎn)品,它被判為合格品的概率;(2)一個(gè)經(jīng)檢查被判為合格的產(chǎn)品確實(shí)是合格品的概率解:設(shè)任取一個(gè)產(chǎn)品為合格品,任取一個(gè)產(chǎn)品被判為合格品,則于是(1) 任意抽查一個(gè)產(chǎn)品,它被判為合格品的概率是(2)一個(gè)經(jīng)檢查被判為合格的產(chǎn)品確實(shí)是合格品的概率是練習(xí)四 事件的獨(dú)立性1.設(shè)甲、乙兩人獨(dú)立射擊同一目標(biāo),他們擊中目標(biāo)的概率分別為0.9和0.8,求在一次射
9、擊中目標(biāo)被擊中的概率.解:設(shè) 甲擊中目標(biāo),乙擊中目標(biāo), 則目標(biāo)被擊中,于是2.三人獨(dú)立地去破譯一個(gè)密碼,他們能譯出的概率分別是,問能將此密碼譯出的概率是多少?解:設(shè)第人破譯密碼 ,破譯密碼, 則 ,于是3.電路由元件與兩個(gè)并聯(lián)的元件及串聯(lián)而成,且它們工作是相互獨(dú)立的設(shè)元件、損壞的概率分別是0.3,0.2,0.2,求電路發(fā)生間斷的概率.解:設(shè)電路正常,則, 則所以4. 設(shè)每次射擊時(shí)命中率為0.2,問至少必須進(jìn)行多少次獨(dú)立射擊才能使至少擊中一次的概率不小于0.9?解:設(shè)至少要進(jìn)行次獨(dú)立射擊,則至少擊中一次的概率不小于0.9可表為:由于則于是,所以有即所以至少進(jìn)行11次獨(dú)立射擊才能使至少擊中一次的概
10、率不小于0.9.綜合練習(xí)題一、選擇題1設(shè)事件,有,則下列式子正確的是( A ). (A) (B) (C) (D) 2設(shè)與為兩個(gè)相互獨(dú)立的事件,則一定有( B ).(A) (B) (C) (D).3設(shè)為兩事件,且,則下列結(jié)論成立的是( C ).(A)與互斥;(B) 與互斥;(C)與互斥;(D) 與 互斥.4設(shè)為任意兩事件,且則下列選擇必然成立的是( C ). (A); (B) ; (C) ; (D) .5假設(shè)事件和滿足,則下列正確的是( D )(A)是必然事件; (B); (C) ; (D).6對(duì)于任意二事件( B ).(A) 若,則一定獨(dú)立; (B) 則有可能獨(dú)立; (C) ,則一定獨(dú)立; (
11、D) ,則一定不獨(dú)立;7若事件和滿足,則正確的是( D ) (A); (B) ; (C) ; (D) 8設(shè)當(dāng)事件與同時(shí)發(fā)生時(shí),事件必發(fā)生,則( B )(A); (B);(C); (D).9設(shè)是兩個(gè)事件,則( C )(A); (B);(C) ; (D) .10設(shè)是三個(gè)隨機(jī)事件,則三個(gè)隨機(jī)事件中至少有一個(gè)發(fā)生的概率是( B )(A); (B) ; (C) ; (D) .11某學(xué)生做電路實(shí)驗(yàn),成功的概率是1,則在3次重復(fù)實(shí)驗(yàn)中至少失敗1次的概率是( B )(A); (B); (C); (D).12設(shè)|,則下面結(jié)論正確的是( A )(A)事件與互相獨(dú)立; (B)事件與互不相容;(C) (D)13下列事
12、件中與互不相容的事件是( D )(A); (B) ; (C) ; (D) .14若事件、相互獨(dú)立且互不相容,則( C ) (A) ; (B) ; (C) ; (D) . 15則( A )(A) ; (B) ;(C) ; (D) .二、填空題1已知,則02設(shè),則 0.2 3三次獨(dú)立的試驗(yàn)中,成功的概率相同,已知至少成功一次的概率為,則每次試驗(yàn)成功的概率為 1/3 4已知,且,則 0.9 5. 設(shè),則= 20/29 6假設(shè)事件和滿足,則和的關(guān)系是7已知,則 0.4 8已知,則 1/3 9設(shè)兩個(gè)相互獨(dú)立的事件和都不發(fā)生的概率為,發(fā)生不發(fā)生的概率與發(fā)生不發(fā)生的概率相等,則 2/3 10設(shè)構(gòu)成一個(gè)完備事
13、件組,且,則 0.2 11設(shè)與為互不相容的事件,則 0 12.設(shè)事件兩兩互斥,且則0.5 .13設(shè)事件與相互獨(dú)立,已知,則5/3或4/3 14甲、乙兩人獨(dú)立的對(duì)同一目標(biāo)射擊一次,其命中率分別為和,現(xiàn)已知目標(biāo)被命中,則它是甲射中的概率為 3/4 15假設(shè)隨機(jī)事件與滿足且,則三、應(yīng)用題1甲、乙、丙3人同向一飛機(jī)射擊,設(shè)擊中飛機(jī)的概率分別為0.4,0.5,0.7.如果只有一人擊中飛機(jī),則飛機(jī)被擊落的概率是0.2;如果有2人擊中飛機(jī),則飛機(jī)被擊落的概率是0.6;如果3人都擊中飛機(jī),則飛機(jī)一定被擊落求飛機(jī)被擊落的概率 解:設(shè)第人擊中飛機(jī),甲,乙,丙;人擊中飛機(jī),飛機(jī)被擊落;則,; 所以2甲、乙2人投籃命
14、中率分別為0.7,0.8,每人投籃三次,求(1)兩人進(jìn)球數(shù)相等的概率;(2)甲比乙進(jìn)球數(shù)多的概率解:設(shè)甲人三次投籃進(jìn)個(gè)球,乙人三次投籃進(jìn)個(gè)球,則 (1)兩人進(jìn)球相等,(2) 甲比乙進(jìn)球數(shù)多3一射手命中10環(huán)的概率為0.7,命中9環(huán)的概率為0.3.該射手3發(fā)子彈得到不小于29環(huán)的概率解:設(shè)命中10環(huán),命中9環(huán),則于是3發(fā)子彈得到不小于29環(huán)=3發(fā)子彈均為10環(huán)有2發(fā)擊中10環(huán),所以4有2500人參加人壽保險(xiǎn),每年初每人向保險(xiǎn)公司交付保險(xiǎn)費(fèi)12元若在這一年內(nèi)投保人死亡,則其家屬可以向保險(xiǎn)公司領(lǐng)取2000元假設(shè)每人在這一年內(nèi)死亡的概率都是0.002,求保險(xiǎn)公司獲利不少于10000元的概率解:設(shè)參加保險(xiǎn)的人中有人死亡,當(dāng)即時(shí),保險(xiǎn)公司獲利不少于10000元。于是所求的概率為,其中。5甲、乙、丙3人各自加工1個(gè)產(chǎn)品,檢查的結(jié)果是在3個(gè)產(chǎn)品中發(fā)現(xiàn)1個(gè)次品設(shè)甲、乙、丙加工產(chǎn)品的次品率分別是0.1,0.2,0.3.求這個(gè)產(chǎn)品是甲加工的概率 解:設(shè)分別表示甲
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 商品房預(yù)售合同模板及示例詳解
- 有關(guān)合同管理(商務(wù)領(lǐng)域)新規(guī)定
- 購(gòu)房合同示范文本
- 分布式風(fēng)力發(fā)電項(xiàng)目建設(shè)與運(yùn)維服務(wù)合同2025
- 度施工安全防范合同協(xié)議書
- 路政七五培訓(xùn)課件
- 賣課件的合法性與安全性
- 整車制造綠色環(huán)保技術(shù)應(yīng)用考核試卷
- 木材采伐作業(yè)成本控制考核試卷
- 衛(wèi)生材料的社會(huì)影響與企業(yè)責(zé)任考核試卷
- 《調(diào)整心態(tài)迎接中考》主題班會(huì)
- 冠心病患者運(yùn)動(dòng)恐懼的現(xiàn)狀及影響因素分析
- 全國(guó)2018年10月自考00043經(jīng)濟(jì)法概論(財(cái)經(jīng)類)試題及答案
- 《又見平遙》課件
- 噴涂設(shè)備點(diǎn)檢表
- 廣東省佛山市《綜合基礎(chǔ)知識(shí)》事業(yè)單位國(guó)考真題
- 02 第2章 城市與城市化-城市管理學(xué)
- 六年級(jí)上冊(cè)英語(yǔ)教案-Culture 2 Going Green 第二課時(shí) 廣東開心英語(yǔ)
- 警察叔叔是怎樣破案的演示文稿課件
- 2019石景山初三一模語(yǔ)文試題及答案
- 09式 新擒敵拳 教學(xué)教案 教學(xué)法 圖解
評(píng)論
0/150
提交評(píng)論