



全文預(yù)覽已結(jié)束
下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
VAMA:aversatileweb-basedtoolforvariabilityanalysisinmultiply-alignedaminoacidsequencesVAMA:VariabilityAnalysisofMultipleAlignmentsAditiGupta,AridamanPanditandSomdattaSinhaMathematicalModelingandComputationalBiologyGroup,CentreforCellularandMolecularBiology(CSIR)Hyderabad500007,IndiaEmail:sinhaccmb.res.inAbstractQuantifyingresiduevariabilityateachcolumninamultiplesequencealignmentofaminoacidshelpsinindicatingtheirsimilarities,andisusefultohighlightinformationaboutthesignificancesofeachpositionfromtheperspectiveoftheirstructure,function,andevolution.Itisbecomingincreasinglyclearthatthegroupsofaminoacidsthatallowconservedreplacementvarywiththepositionoftheresidueintheprotein.Mostmultiplealignmentalgorithmscatertogeneralusersandhencedonotaddressthisspecificfeature.Atoolforscoringvariabilityinmultiply-alignedaminoacidsequences,thatallowsdifferentconservationgroups,ishighlydesirable.VAMA(VariabilityAnalysisofMultipleAlignments)isasimpleyetversatileprogramthatcalculatesandplotsresiduevariabilityinagivensetofalignedsequencesbasedonknownconservationgroupsspecificfordifferentfunctionallyimportantregionsofaprotein,andalsoallowsuser-definedgroupsfornewdiscoveries.VAMAisavailableat84/VAMA/Overview.htmlKeywords-MultipleSequenceAlignment,VariabilityAnalysis,ResidueConservationGroupsI.INTRODUCTIONAlignmentofaminoacidsequencesiswidelyappliedtoidentifyconservationofresidues1.Variabilityisameasureoftheextentofvariationofaminoacidsatapositioninmultiplesequencealignment.Functionallyimportantresiduesareknowntoexhibithigherconservation,orlowervariability.Multiplesequencealignment(MSA)toolsalignsequencesbasedonsomepredeterminedclassificationofaminoacids,dependingontheirphysicochemicalproperties2.Recentstudieshaveshownthatthesamegroupofaminoacidsmaynotalwaysbeuseful,assequenceconservationclassificationsvarywiththestructureandfunctionaloftheprotein.Forexample,differentclassificationshavebeenshowntoexistforresiduesinvolvedinligandbinding3,inprotein-proteininteractioninterfaces4,inmaintainingstructure5,andindeterminingproteinfunctionalspecificity6-8.ClassificationbyMirnyandShakhnovich(MS)wasintendedforproteinstructurecores6;Williamsons(W)wastailoredtodealwithtransporterproteins8,whileGuharoyandChakrabarti(GC)classificationwasmeantforthestudyofinterfacialaminoacids4.ThissuggeststhatdifferentsubstitutionclassificationsshouldbeappliedinMSAbaseduponstructure/functionoftheproteins.Programmesavailableforstudyingconservationorvariabilityinmultiplealignmentsbasedondifferentscoringmethodsarerathercomplex9,andnoneofthemconsideralltheabove-mentionedposition-specificfeaturesinproteins10-15.Atoolforscoringvariabilityinmultiply-alignedaminoacidsequences,thatissimplebutaddressthisspecificfeatureofallowingdifferentconservationgroups,ishighlydesirable.Wehavedevelopedaweb-basedprogram(VAMA)thatquantifiesthevariabilityoftheresiduesateachalignedpositioninMSAusingasimplesymboldiversityscore16.Here,alldifferentaminoacidresiduespresentinaparticularcolumnofthealignedsequencesareconsidered,andthescore,v,iscalculatedusingthesumofthefrequencyofeachresidueas()1211iinNvN=(1)where,niisthefrequencyofeachresidue,andNthetotalnumberofresiduesatthisposition.Thesumisoverallthedifferenttypesofaminoacidspresentinthecolumn.ForcompleteconservationofaminoacidsataparticularcolumnintheMSA(i.e.,n=N),thescore,v=0,indicatingnovariability;whereas,fornoconservationortotaldiversity,thescoreisv=1.Since,vvariesbetween0and1,anormalizedscoreisobtained,whichisusefulforcomparisonofdifferentMSAs.BecauseofthegenericnatureofscoringinVAMA,whichisnotbasedonanystereochemicalpropertyoftheaminoacids,vcanbeusedtocalculatetherelativefrequenciesofaminoacidsforanygivenclassification.Here,alongwiththebasicscoringmethodologyadoptedbycommonlyusedMSAprogrammeCLUSTAL17,severaloptionsareprovidedforfunction-specificclassificationsasmentionedearlier.Thus,VAMAprovidestheuserwithflexibilitytoquantifyvariabilityusingthesedifferentclassificationsasrequired.II.FEATURESOFVAMAFig.1showstheVAMAinterface.TherearethreewaysinwhichvariabilityanalysisisdoneinVAMA:Basic,GroupBasedandReferenceSequenceBased.TheinputforVAMAcanbemultiplealignmentfilesinCLUSTALandFASTA978-1-4244-4713-8/10/$25.002010IEEEFigure1.VAMAinterface.formats.ThesefilescanbepastedontotheVAMAworkwindow,ormaybeuploadedusingthe“Browse”button.VAMAalsoaddressesthecommonproblemofexistenceof“gaps”inthealignment.TheusercandefineaGapcutoffforincludingresiduepositionshavinggapsinthealignment.Forcolumns,havingmoregapsthanGapcutoff,variabilityisnotcalculatedandablankspaceisdisplayedintheoutput.ForcolumnshavinggapslessthanorequaltothedefinedGapcutoff,thevalueofNisadjustedbysubtractingfromN,thenumberofgapsatthatposition.Thesepositionsareindicatedbya#intheoutput.VAMAcalculatesthevariabilityscoreforeachcolumninthealignmentbasedontheconservationgroupschosenbytheuser,andtheoutputfileconsistsofthefollowingparts-(i)thevariabilityscoreateachalignedposition;(ii)statisticsofthevariabilitydatadisplayingthemean,standarddeviationandrangeforthesame;and(iii)theplotofvariabilityvaluesversusalignmentpositions.ThedatacanbesavedbothintextandEXCELformatforfurtheranalysis.ThevariabilityanalysisinVAMAcanbedoneinthefollowingthreewaysA.BasicVariabilityAnalysisHereallaminoacidsareconsideredtobeinseparateclasses.Hence,itdoesnottakeintoaccountanysubstitutions,andanynon-identitycontributestothevariability.B.GroupBasedVariabilityAnalysisConservativesubstitutionscanbeaccountedforbyclassifyingaminoacidsaccordingtotheirphysicochemicalpropertiesandpositionalattributes.Variabilityisassigned0foraparticularpositioniftheaminoacidsbelongtoagroupinthespecificclassification.VAMAprovidesthefollowinggroupbasedanalysisoptions:i.DefaultClassification:ThisclassificationissameastheoneusedinCLUSTAL17.AminoacidsareclassifiedintostrongandweakgroupsbasedonthephysicochemicalpropertiesandtheGonnetPam250matrix18.ii.MS,GC,andWClassifications:Severaldifferentclassificationsareproposeddependinguponthefunctionalconstraintsapplicable.MSclassificationisapplicabletoproteinstructurecores6,Wclassificationisapplicabletotransporterproteins8,andGCclassificationisapplicabletotheinterfaceaminoacids4.TheclassificationsaredescribedintheUserGuide.iii.UserDefinedClassification:Variousotherclassificationschemeshavebeenproposed7.VAMAoffersuserstheoptiontouseanyortheirownclassification.C.ReferenceSequenceBasedVariabilityAnalysisReferencesequenceisthesequencewithrespecttowhichtheresiduesarenumbered.Herex=0inthevariabilityplotcorrespondstofirstresidueofthereferencesequence.Thisisusefulwhenthe3-dimensionalstructureofthereferencesequenceisavailabletohelpanalyzetheresultsforposition-specificchangesinotheraminoacidsequencesinthealignment.Thecalculationisfirstdonebasedupondifferentclassifications,andthentheresiduesarenumberedaccordingtotheReferenceSequencegivenbytheuser.BythismethodtheusercanaccessthealignmentagainsttheReferenceSequence.AnExampleofanalysis,usingVAMA,isshowninFig.2.Asetof25aminoacidsequencesrepresentingtheRosmannfold19wereextractedfromProteinDataBank20.CLUSTAL-alignedsequenceswerepastedasinputtoVAMA.WeusedMSclassificationtocalculatethevariability,andcompareditwiththeDefault(CLUSTAL)classification.Fig.2AisthevariabilityplotforMSandDefaultclassifications,showinglowerscoreforMSclassificationthanthatoftheDefaultclassification.InFig.2A,Gapcutoffof0isusedtocalculatethescores.Thus,forpositionswith1ormoregaps,variabilityisnotcalculated.Rosmannfoldbeinganexampleofproteinstructurecore,theresultswithMSaremorereliable.Fig.2BalsoshowsthattheMSclassificationgivestheloweststatisticswhencomparedtoothers.Hereweshowonlythefirstsubsetofpositions(92-100)forwhichthevariabilityscoreswerecalculated.Clearly,theminimumvariabilityscoregivenbyMSclassificationadvocatestheapplicabilityofthistool.Importantly,incaseofaproteinlackingwell-definedfunction,VAMAallowscalculationofthevariabilityscoreusingthegivenclassificationstoidentifyfunctionallyandstructurallyimportantresiduesbasedontheircomparativescore.Thisfeature,whereseveraldifferentclassificationscanbeusedtocalculatethevariabilityinMSA,isuniquetoVAMA.Figure2.AnalysisofVAMAoutputfor25aminoacidsequencesoftheRossmanFold.(A)VariabilityplotcomparingMSandDefaultclassificationscores,(B)Variabilityvaluesofresidues92to100,usingdifferentclassifications,alongwithmeanandstandarddeviation(SD).VAMAincludesseveralusefulfeaturesfortheuser.The“UserGuide”explainsallfeaturesclearlywithexample.The“RelatedLinks”provideslinkstootherMSAtools(e.g.CLUSTALW,T-Coffee,CINEMA,etc.),andusefulwebsitessuchas,NCBI,PDB,Swiss-Prot,andKEGG.A“Search”buttonallowssearchwithinVAMAandtheWorldWideWeb.III.DISCUSSIONVAMAisasimple,user-friendly,yetversatile,toolforcalculatingthevariabilityinmultiplyalignedproteinsequences.VAMAsupportsbothbasicandgroupbasedanalysis,byconsideringthephysicochemicalpropertiesofaminoacids,aswellastheirdifferentialusagefordifferenttopologicaldeterminantsintheprotein.Itquantifiesvariabilityinthesequencesbasedonaminoacidclassificationgroupsdependingontheabovefactors.Gap-cutofffeatureactsasanadditionaltooltoscorethesequences.Statisticalanalysisperformedonthevariabilitydata,likemean,standarddeviationandrange,canalsobehelpfulinfurtheranalysis.VAMAis,thus,ausefulfunction-specificvariabilityanalysistoolthatallowsacomparativeanalysisafeaturelackinginothersimilartools.ACKNOWLEDGMENTSSthanksDepartmentofBiotechnology,Indiaforfinancialsupport.AGthankstheIndianAcademyofSciencesforasummerfellowshiptoworkattheCCMB.APthankstheCouncilofScientificandIndustrialResearch(CSIR)forfellowship.REFERENCES1T.F.Smith,andM.S.Waterman,“IdentificationofCommonMolecularSubsequences.”J.Mol.Biol.,vol.147,pp.195-197,1981.2D.J.Lipman,S.F.Altschul,andJ.D.Kececioglu,“Atoolformultiplesequencealignment.”P(pán)roc.Natl.Acad.Sci.USA,vol.86,pp.4412-4415,1989.3T.J.Magliery,andL.Regan,“Sequencevariationinligandbindingsitesinproteins.”BMCBioinformatics,vol.6,p.240,2005.4M.Guharoy,andP.Chakrabarti,“Conservationandrelativeimportanceofresiduesacrossprotein-proteininterfaces.”P(pán)roc.Natl.Acad.Sci.USA,vol.102,pp.15447-15452,2005.5O.Schueler-Furman,andD.Baker,“Conservedresidueclusteringandproteinstructureprediction.”P(pán)roteins:StructureFunctionandBioinformatics,vol.52,pp.225-235,2003.6L.A.Mirny,andE.I.Shakhnovich,“Evolutionaryconservationofthefoldingnucleus.”J.Mol.Biol.,vol.308,pp.123-129,2001.7W.R.Taylor,“Theclassificationofaminoacidconservation.”J.Theor.Biol.,vol.119,pp.205-218,1986.8R.M.Williamson,“Informationtheoryanalysisoftherelationshipbetweenprimarysequencestructureandligandrecognitionamongaclassoffacilitatedtransporters.”J.Theor.Biol.,vol.174,pp.179-188,1995.9W.S.J.Valdar,“Scoringresidueconservation.”P(pán)roteins:Structure,FunctionandBioinformatics,vol.48,pp.227-241,2002.10J.A.Capra,andM.Singh,“Predictingfunctionallyimportantresiduesfromsequenceconservation.”Bioinformatics,vol.23,pp.1875-1882,2007.11M.Clamp,J.Cuff,S.M.Searle,andG.J.Barton,“TheJalviewJavaAlig
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 工匠精神與團(tuán)隊(duì)協(xié)作效率的提升
- 安全教育交流體系構(gòu)建
- 網(wǎng)絡(luò)金融銷(xiāo)售培訓(xùn)
- PICC臨床應(yīng)用及護(hù)理
- 兒童消費(fèi)文化分析-洞察及研究
- 腫瘤患者安寧療護(hù)個(gè)案管理實(shí)踐
- 化妝品周工作總結(jié)
- 石家莊理工職業(yè)學(xué)院《食品免疫學(xué)與技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 靶向藥物開(kāi)發(fā)策略-洞察及研究
- 空氣質(zhì)量生態(tài)改善方案-洞察及研究
- 心腦血管疾病-高血壓-課件
- 血清CK-MB活力假性增高原因分析及臨床意義課件
- 最新國(guó)家開(kāi)放大學(xué)電大《調(diào)劑學(xué)》形考任務(wù)4試題及答案
- 五制配套的基層管理模式
- 有機(jī)磷農(nóng)藥中毒(新)課件
- 室性早搏的定位診斷與鑒別共26張課件
- 人防卷材防水層工程檢驗(yàn)批質(zhì)量驗(yàn)收記錄表
- DB11T 716-2019 穿越既有道路設(shè)施工程技術(shù)要求
- 濕式氧化技術(shù)
- T∕CACM 1316-2019 中醫(yī)內(nèi)科臨床診療指南 中風(fēng)后吞咽困難
- 于新華中考專(zhuān)題2018
評(píng)論
0/150
提交評(píng)論