




已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
XX大學畢業(yè)設計(論文)題 目: Kalman濾波在磁檢測信號分析中的應用 學 院: 測試與光電工程學院專業(yè)名稱: 測控技術與儀器班級學號: 學生姓名: 指導教師: 二Oxx 年 六月 Kalman 濾波在磁檢測信號分析中的應用摘要:隨著我國國民經濟的快速發(fā)展,在許多的工業(yè)、國防部門中,無損檢測技術因其低投入,高產出的特點正發(fā)揮著不可或缺的作用。近年來,計算機智能化的普及,也使得作為無損檢測的重要環(huán)節(jié)的缺陷檢測信號的處理分析向我們提出了更高的要求。實現檢測信號的智能化處理是對檢測信號進行分析的重要目的。本文簡要論述了磁檢測過程的基本原理、檢測過程的基本步驟、Kalman濾波的基本理論及其推導、Matlab軟件等在本課題中的具體應用、基于Matlab的Kalman濾波在磁檢測信號分析中的具體應用。對于相同的缺陷信號,采用不同的濾波方式會產生不同的濾波效果,各性能也會不同,本文分別采用Kalman濾波、RLS濾波和LMS濾波對同一缺陷信號進行濾波,并且將其所產生的濾波效果進行對比,同時對于濾波程序分別做出分析,簡要總結了個濾波程序的優(yōu)缺點和包括信噪比和程序運行時間在內的性能參數比較。關鍵字:磁檢測,Kalman濾波,RLS濾波,LMS濾波,信號分析The usage of Kalman filter in the signalof magnetic testingAbstract:With the rapid development of our nationals economic ,the technology of nondestructive testing is also standing at a period of fast development .when it comes to the safety of some large projectS ,the things involved the safety of people and the project and also in many industrial departments ,in the Departments of Defense NDT is playing an indispensable role ,owing to its small investment and large feedback .in recent year ,as the popularity of computer ,the process of signal as an important circle of NDT is setting us a more serious request . One of the most important purposes is to complete the intellectual of signal process.the article briefly introduced the basic theory of the magnetic process,the basic steps of the process ,the basic theory and the derivation of equation ,the practical usage of Matlab and the usage of Kalman filter in Matlab in the process of signal analysis and the development at home and abroad, At the same time ,we apply different analysis methods to the same signal process.when you adopt different ways will make a difference in filtering effect and performance.This paper uses the Kalman filter, RLS filter and LMS filter for filtering the same defect signals, the filtering effect is compared, and the filter program to make analysis respectively, summarizes the advantages and disadvantages of a filtering program and including SNR and program running time, the performance parameters of the comparison.Keywords: magnetic testing , Kalman filter,RLS filter,LMS filter, signal analysis目 錄1. 引言1.1 選題的背景及意義11.2 國內外研究概況及發(fā)展趨勢21.3 研究內容及實驗方案:42. 磁檢測2.1 磁檢測的發(fā)展簡史52.2 磁檢測的基本原理52.3 磁檢測技術的現狀及發(fā)展63. Kalman濾波的基本理論3.1 Kalman濾波理論73.2 Kalman濾波理論的發(fā)展及應用.73.3 Kalman 濾波模型的建立83.4自適應Kalman濾波104. 仿真分析4.1原始信號分析124.2 Kalman濾波仿真分析124.3其他濾波方法效果對比155. 結論參考文獻20致謝21Kalman 濾波在磁檢測信號分析中的應用1. 引言1.1 選題的背景及意義1.1.1 磁檢測技術的背景及意義石油、天然氣是能源存在的主要形式之一,他們的遠距離運輸大部分是通過長輸管道實現的1。管道運輸作為石油、化工行業(yè)中輸送原料與介質的重要途徑,在長期使用的過程中,由于受到腐蝕,會出現局部的麻坑,甚至發(fā)生泄漏事故、造成環(huán)境污染,因此管道缺陷的無損檢測技術對保證工業(yè)生產的安全有著十分重要的意義。目前在管道缺陷檢測領域,最主要的檢測對象是管道焊縫檢測,檢測手段主要包括,主要檢測表面缺陷的漏磁檢測和渦流檢測,以及檢測內部缺陷的超聲檢測。而在目前的檢測手段中,磁檢測是最有效和最可靠的檢測手段。漏磁無損檢測方法是建立在如鋼管、鋼棒等鐵磁性材料的高磁導率這一特性上的。它通過拾取被磁化的鋼管其缺陷處引起泄漏到外部的磁通信號,再經信號處理裝置得到與缺陷的形狀有關的電信號的一種方法2。通過測量或觀測所獲得信號通常包含兩個部分其一是與所檢測的對象存在直接或間接關系的有用部分,稱為信息;另外一部分就是所謂的干擾部分即噪聲。信號過濾主要用于信號除躁、頻帶劃分、頻譜成形等3。在信號處理中,對于信號盡心處理的目的就是提取有用信號,消除或減弱無關干擾。隨著信息技術和計算機技術的發(fā)展,以軟件為主的基于現代控制理論和信號處理技術的方法逐漸發(fā)展起來4。1.1.2 Kalman濾波技術的背景及意義1960年,Kalman率先提出了一種克服了Wiener濾波的缺點的方法,后來被稱之為Kalman濾波。從1960年到現在,Kalman濾波的內容和應用范圍都在不斷的發(fā)展和豐富。今天,Kalman濾波在工程上的應用越來越廣泛,其功能也俞漸強大。Kalman濾波是一種數值估計優(yōu)化的方法,關于最優(yōu)估計,最早出現的是最小二乘法,但是由于最小二乘法本身的局限性,故而不是最優(yōu)的估計方法。在最小二乘法出現的基礎上,經過幾代人的不斷努力,終于在1940年美國學者Wiener提出了一種在頻域中設計統(tǒng)計最優(yōu)濾波的Wiener濾波。這種設計最優(yōu)濾波器的方法是Wiener根據當時的火力系統(tǒng)的需要提出的。但Wiener濾波本身的局限性,故而其適用范圍極其有限。與此同時,以上兩種濾波方法的局限性,使得人們開始尋求在時域內直接設計最優(yōu)濾波器的方法。在Kalman最先提出的離散系統(tǒng)的Kalman濾波之后,次年他與Bucy合作推廣了Kalman濾波的應用范圍,將其應用直接推廣至了連續(xù)的時間系統(tǒng)中。從而形成了較為完整的Kalman濾波理論體系。在Kalman濾波理論中采用了狀態(tài)空間的描述方法,減少了數據的存儲量,使得Kalman濾波不僅能夠處理平穩(wěn)的隨機過程,而且對于非平穩(wěn)的過程一額可以進行處理。Kalman濾波是一套由計算機實現的針對隨機信號的的遞推算法。他利用的是系統(tǒng)噪聲和觀測噪聲的統(tǒng)計特性,將系統(tǒng)的觀測量作為是濾波器的輸入,將濾波值作為濾波器的輸出。在該濾波器中,系統(tǒng)的輸入與輸出之間的數據更新,通常是通過時間更新和算法更新來實現的。作為一種動態(tài)數據處理方法,Kalman濾波能在即使并不知道模型的確切性質的條件下,估計信號的過去和當前狀態(tài)。甚至能估計將來的狀態(tài)5。他的基本思想是,最小方差估計準則。1.1.3 Matlab軟件的背景及意義Matlab是一款MathWorks公司針對不同的領域的應用推出的數學軟件,針對不同的領域的工程應用,相應的也推出了信號處理、控制系統(tǒng)、神經網絡、圖像處理、小波分析、魯棒控制、非線性系統(tǒng)控制設計、系統(tǒng)辨識、優(yōu)化設計、統(tǒng)計分析、財政金融、樣條及通信等30多個具有專門功能的工具箱6。Matlab軟件用于數字信號的處理具有靈活程度高、精度和穩(wěn)定性較好、便于開發(fā)和升級、功能強大等優(yōu)點,在解決相同問題的時候,Matlab的性能要遠遠超過用其他的變成語言所編制的計算機程序7。從最早的1984年推出的Matlab 1.0至今,依然過去了將近31個年頭,在這31年之間,MathWorks公司經過幾代人的不斷努力相繼推出了Matlab 2、Matlab 3、Matlab 3.5Matlab 7系列等將近37個的升級版本。1.2 國內外研究概況及發(fā)展趨勢1.2.1 磁檢測技術的現狀及發(fā)展國外對漏磁探傷的理論研究比較早:1933年zuschlug初次提出用磁粉顯示磁化剛體上由缺陷產生的漏磁場這種測定方法。 1965年,日本株式會社和住友金屬株式會社設計出一記錄式磁探傷機械裝置。1966年,Sheherb一inin和Zatsepin提出了磁偶極子法。20世紀70年代,前蘇聯(lián)發(fā)布了定量分析缺陷漏磁場的方法1975年,Hwang和Lord分析了矩形槽深度、寬度、角度對漏磁場的影響。1986年,Edwards和Palae:在漏磁場的計算方面,把解析法向前推進了一步,對無限長表面開口裂紋進行了分析,得出了二維表達式。在國外,對于檢測設備的開發(fā)十分注重,因為只有在檢測設備的發(fā)展的基礎上,才會有磁檢測在各個領域的成功應用,目前在國外,磁檢測設備的研制已經有了長足的發(fā)展,許多的檢測設備已經從固定式到移動式,從半自動到實現全自動檢測,從單向磁化發(fā)展到了多向磁化,部分的設備還實現了系列化和商品化。同時,由于晶閘管的發(fā)展,許多的使得許多設備的小型化成為可能,由于計算機的編程的應用,使得檢測設備的智能化逐漸成為發(fā)展趨勢。在我國,工程應用中還是主要依靠進口國外的儀器設備和技術,在漏磁場的研究方面目前還處于探索階段。從這個方面來說,我們與國外的技術之間還是存在一定的距離。而在進行管道磁檢測的過程中目前存在一定的技術難點,比如說:由于管道缺陷識別是一個逆問題,輸出和輸入之間存在非唯一性,而且漏磁信號與缺陷尺寸之間是非常復雜的非線性關系,所以缺陷識別技術是當前管道無損檢測中的一大技術難點和研究重點。利用神經網絡法識別缺陷工作量龐大、容易出現局部極值、過擬合現象等。1.2.2國內外Kalman濾波的研究概況和發(fā)展二十世紀50年代,維納提出了Wiener濾波。10年后,Kalman發(fā)表了a new approach to linear Filtering and Prediction Problem一文,文章中Kalman提出了一種能克服Wiener濾波的缺點的方法。1961年,隨著Kalman濾波在連續(xù)時間系統(tǒng)的應用,完整的Kalman濾波理論形成。從誕生之初,Kalman理論處于并不成熟的階段,故而,對于系統(tǒng)的要求比較苛刻,要求必須是線性系統(tǒng),所謂線性系統(tǒng),是指由線性元件組成的,并且系統(tǒng)的狀態(tài)向量相對于所有的可能的輸入和初始狀態(tài)都能夠滿足疊加定理。此后的10年間,經過Bucy和 Sunahara等學者的不懈努力,Kalman濾波逐漸被擴展至非線性系統(tǒng)中。Kalman濾波從實現形式上來說是一種必須在計算機上執(zhí)行的濾波方法,隨著計算機技術的不斷發(fā)展,對于Kalman濾波,工程上也逐漸提出了更高的要求,但是由于當前計算機的發(fā)展水平和技術制約等原因,使得計算機能處理的字長有限,并且在計算中舍入誤差和階段誤差不斷積累傳遞,因而造成數值不穩(wěn)定。為了能夠改善Kalman濾波的這個缺點,后期科學家逐漸的研究出了更能夠適應工程上使用的平方根濾波,奇異值分解濾波等系列的濾波方法。在工程上,采集到的隨機控制系統(tǒng)的信號中,通常會存在一定的干擾,嚴重時,干擾信號的存在會淹沒有用信號,使得采集到的數據不能使用或者造成更為嚴重的后果。通過對一系列帶有觀測噪聲和干擾信號的實際觀測數據的處理,從中得到所需要的各種參量的估計值,這就是估計問題10。 而卡爾曼濾波作為一種數值估計優(yōu)化方法,其高效的實時處理功能,使得當信號中含有噪聲時,Kalman濾波能在以最小均方差條件下給出信號的最佳估計而且是在時域中采用遞推的方式進行10。 因而速度更快,也便于實現實時處理。1.3研究內容及實驗方案:1.3.1 研究內容(1)研究標準Kalman濾波的使用范圍及特性(2)研究在檢測過程中所產生的磁檢測信號的特點(3)研究在控制過程中Kalman濾波的應用即自適應濾波(4)分析磁檢測過程中所采集的磁檢測信號的特點(5)建立適當的模型,采用適當的算法,對采集信號進行濾波1.3.2實驗方案:漏磁信號采集分析采集到的信號的特點 數學建模 Matlab 數據處理程序編寫與修改實現濾波實驗發(fā)現問題設計成功問題分析圖1.1實驗流程框圖(1)磁信號采集(2)建立準確的管道漏磁檢測數學模型(3)從模型出發(fā),應用Matlab軟件設計濾波器(4)檢驗所設計的濾波器對于所采集的漏磁檢測信號的處理是否正確(5)調整濾波器,進一步細化、完善濾波過程2. 磁檢測2.1磁檢測的發(fā)展簡史磁檢測技術屬于無損檢測五大常規(guī)檢測方法之一,主要是適用于鐵磁性工件的表面缺陷檢測,在磁化后的工件表面,噴灑磁懸液或磁粉,在有缺陷的表面會出現吸附磁粉的現象,最終在工件表面顯示出磁痕,根據磁痕的大小,位置,得出缺陷的大小,嚴重程度。實際上,磁現象的發(fā)現遠比電現象的發(fā)現要早,早在18世紀,人們就已經開始從事磁通檢測實驗。 19世紀70年代,英國首先應用羅盤儀和磁鐵進行缺陷磁檢測。1976年,美國的Hering 利用羅盤儀和磁鐵來檢查鋼軌的缺陷,獲得了美國專利。1928年de Forest 研制出周向磁化法。1935年,油磁懸液在美國開始使用。1936年,法國人申請了在水磁懸液中添加潤濕劑和防銹劑的專利。1941年,熒光磁粉投入使用,磁粉檢測已初步形成一種無損檢測方法。1949年以前,我國僅有幾臺美國進口的蓄電池式直流探傷機,用于航空工件的維修檢查。20世紀50年代開始,我國先后引進前蘇聯(lián)、歐美等國家的磁粉檢測技術,制定出了我國的標準規(guī)范,研發(fā)了新工藝和新設備材料,是我國的磁粉檢測從無到有,得到了很快的發(fā)展,并廣泛應用于航空、航天、機械工業(yè)、兵器、船舶、電力、火車、汽車、石油、化工等。2.2磁檢測的基本原理漏磁法檢測鐵磁性工件表面的缺陷是無損檢測的一種重要檢測手段。漏磁檢測的基礎是材料的高磁導率特性。因其對于鐵磁性材料的表面具有較高的檢測靈敏度、可靠性和較高的檢測效率,故而在工程中,鐵磁性材料的表面檢測方面被廣泛采用。對于鐵磁性材料,當外界加載磁場時,若材料的表面是連續(xù)均勻的,則磁感應線將會被約束在材料中,在檢測表面幾乎檢測不到磁溢出的磁感應線。若在材料的表面存在不連續(xù)性,則在外加磁場的作用下,材料表面的不連續(xù)處的磁感應線方向會發(fā)生變化,當材料的磁導率和空氣的磁導率相差懸殊時,磁感應線在進入空氣后近似垂直于界面,因此使得該處的磁場路徑改變形成了漏磁場。 圖2.1 缺陷漏磁場形成示意圖而磁檢測正是利用磁敏元件(傳感器)檢測鐵磁性工件表面是否存在漏磁場,根據磁敏元件接收到的信號,從而可判斷缺陷存在與否,以及缺陷的嚴重程度,基本可以確定缺陷的類型、數量。2.3磁檢測技術的現狀及發(fā)展隨著新材料、新工藝的出現和數字技術、電子技術、計算機的應用,進一步擴大了測量信息系統(tǒng)的功能。磁檢測技術也必將向以下幾方面發(fā)展。(1)利用現代物理的最新成就,建立電磁測量的自然基準,如約瑟夫森電壓基準、量子霍耳效應電阻基準。(2)利用磁場對光的偏轉效應,制成測大電流的電流互感器和利用泡克耳斯效應或克爾效應測高電壓。(3)利用微型計算機、單片機制成各種智能化儀表,構成自動測試系統(tǒng)?,F代電力系統(tǒng)的測量已與控制融為一體,形成有機的調控系統(tǒng),其測量功能遠超過簡單的測量裝置。3. Kalman濾波的基本理論3.1 Kalman濾波理論1960年在Kalman發(fā)表的a new approach to linear Filtering and Prediction Problem一文中Kalman提出了一中克服了維納濾波的缺點的方法,這就是今天的Kalman濾波。從1960年Kalman濾波問世到現在,該濾波方法被廣泛的應用在工程上的各個領域,并取得了很大的成效,現在隨著其功能的不斷強大,Kalman濾波方法的使用范圍也必將俞漸廣闊。Kalman濾波作為一種利用軟件來進行數值估計的優(yōu)化濾波方法的同時,Kalman濾波器也是一種最優(yōu)化自回歸數據處理的算法。其應用一扼住建的深入到工程上,生活中的方方面面,例如在航空航天領域,在機器人控制領域,在經濟學領域等等。近幾年來,Kalman濾波在組合導航與動態(tài)定位、微觀經濟學等應用研究研究領域也開始發(fā)揮俞漸重要的作用。3.2 Kalman濾波理論的發(fā)展及應用.如果采用兩種的方式以及若干的估計規(guī)則則處理獲得的信息,則必須采用不同的估計算法來進行濾波。歷史上,濾波估計從最先的最小二乘法,到后期的維納濾波,和現在的Kalman濾波,濾波估計在隨著各項技術的發(fā)展而不斷的發(fā)展。 最早出現的估計方法是最小二乘法,但最小二乘法因其沒有很好的考慮估計參數和觀測參數的統(tǒng)計特性,因此在濾波效果等方面都不如其他的最優(yōu)估計,故而不屬于最優(yōu)估計方法的范疇。20世紀50年代,美國學者維納,提出了維納濾波,當時維納濾波僅使用于一維平穩(wěn)隨機過程。雖然維納濾波對于在頻域系統(tǒng)中設計最優(yōu)濾波器的問題方面做出了突破,但是由于其運算復雜,解析求解較為困難,故而他的應用范圍并不像后來的Kalman濾波那樣深入到各個領域。 在維納濾波面世之后的年間,人們開始尋求在時域內設計最優(yōu)濾波器。20世紀50年代誕生的Kalman濾波很好地解決了這個問題,一年后在Kalman與Bucy的努力下,離散系統(tǒng)的Kalman濾波被擴展到了連續(xù)時間系統(tǒng),從而,完整的Kalman濾波理論基本形成。Kalman濾波理論迅速發(fā)展的原因之一,就是他采用了狀態(tài)空間愛你的描述方法,這在一定程度上減小了數據的存儲量。 作為一種必須要依靠計算機才能運行的濾波方法,隨著計算機技術的發(fā)展,Kalman濾波理論也逐漸的被拓展到更多的工程實踐領域中,特別是在航空航天領域。目前,作為一種重要的最優(yōu)估計理論,Kalman理論在慣性導航,目標定位、追蹤、通訊等領域獲得了長足的發(fā)展,在未來的日子里也必將繼續(xù)獲得更大的發(fā)展和進步。Kalman濾波理論最初對與系統(tǒng)的要求十分苛刻,要求系統(tǒng)必須是線性系統(tǒng),由于其存在的局限性,在此后的10多年間,經過Bucy和 Sunahara等的不懈努力,最終拓展了Kalman濾波理論的適用范圍。拓展后的Kalman濾波是一種應用廣泛的非線性系統(tǒng)濾波方法。同時由于Kalman濾波的設計方法簡單易行,故而其應用范圍十分廣泛。基于Kalman濾波方法的應用必須是在計算機這個載體上運行,所以Kalman濾波理論的發(fā)展一定程度上依賴于計算機技術的發(fā)展進步。20世紀以來,隨著計算機技術的不斷發(fā)展,用戶對與Kalman濾波方法也提出了更高的要求。但是前期,由于計算機能處理的字長有限發(fā)展水平的顯示,使得在計算沖的舍入誤差和階段誤差的積累使得誤差方差矩陣最終失去正定性,造成數值不穩(wěn)定。為了能夠滿足用戶的需求,也為了能讓Kalman濾波理論有更好的發(fā)展,經過幾代科學家的不斷努力,人們先后提出了UD分解濾波,奇異值分解濾波等一系列的濾波方法。對于Kalman理論,發(fā)展最初的標準Kalman濾波理論是建立在系統(tǒng)已知,模型已知,干擾已知的基礎上的,但是在實際的應用中,對于一個系統(tǒng),往往是不能知道以上的信息或者不能全部獲取以上的信息的。由于日常應用中對與模型的不確切已知和干擾信號的不確定性,在濾波的過程中,就容易造成濾波最優(yōu)性不能完全體現,最終導致估計精度下降,不能達到最先設想的值。嚴重時甚至于達不到濾波的效果。隨著以上問題的出現,人們開始需求一種適用性更為廣泛的濾波方法,此時,基于魯棒控制的濾波方法逐漸進入人們的視野。非線性隨機動態(tài)系統(tǒng)實際應用中普遍存在的一種系統(tǒng),只有當非線性對與所研究的問題可以忽略時,才能夠利用線性系統(tǒng)來近似。而實際的工程應用中,非線性系統(tǒng)是隨處可見的,但是能夠轉化成線性系統(tǒng)來進行分析的系統(tǒng)又只占少數,所以需求一種能夠實時地估計和預測系統(tǒng)狀態(tài)的非線性濾波方法是迫在眉睫的事情。經過廣大科研工作者的不斷努力,近年來提出的貝葉斯濾波、無跡Kalman濾波、中心分布Kalman濾波和粒子濾波等濾波方法的提出為非線性濾波問題的解決提供了有效的途徑。3.3 Kalman 濾波模型的建立 3.3.1Kalman濾波算法不考慮控制作用,對于離散時間線性系統(tǒng)Kalman濾波,系統(tǒng)的數學模型由狀態(tài)方程和觀測方程組成,可以表示為 (3.1) (3.2)式中,是系統(tǒng)的n維狀態(tài)序列,是系統(tǒng)的m維觀測序列是p維系統(tǒng)過程噪聲序列;是m維觀測噪聲序列;是系統(tǒng)的nn維狀態(tài)轉移矩陣;是mn維觀測矩陣。假定噪聲為高斯白噪聲,是過程噪聲方差矩陣;是系統(tǒng)觀測噪聲的方差矩陣。 根據最小二乘法的最優(yōu)估計,則的估計可按照下述濾波方程求解:預測方程: (3.3)預測方差矩陣: (3.4)濾波方程: (3.5)濾波協(xié)方差矩陣: (3.6)Kalman增益: (3.7)以上便是隨機線性系統(tǒng)離散Kalman濾波的基本方程,只要給定初值和根據k時刻的觀測值就可以遞推計算得到k時刻的狀態(tài)估計。3.3.2 Kalman濾波器的結構框圖單位滯后 圖3.1 Kalman濾波器的結構框圖3.3.3 Kalman濾波算法框圖:,k=1預測方差矩陣增益矩陣濾波方差矩陣k+1k觀測更新時間更新增益計算回路,,k=1預測方程濾波方程濾波計算回路圖3.2 kalman濾波算法框圖3.4自適應Kalman濾波自適應濾波算法的研究在當今自適應信號處理中是最為活躍的研究討論課題之一15。該理論是現代信號處理技術的重要組成部分,他對復雜信號的處理具有獨特的功能16。自適應濾波的實際就是通過不斷調節(jié)自身的傳輸特性,進而達到最優(yōu)估計的濾波器。自適應濾波器不需要關于輸入信號的先驗知識,計算量小,特別適用于實時處理15。自適應濾波的首要目的是,利用觀測到的數據,遞推下一時刻可能出現的狀態(tài),再利用濾波本身不斷的判斷觀察對象是否有新的變化,當接收到的信號是觀察對象有變化時,進而進行修正,以獲得更加準確的下一時刻的狀態(tài)預估。自適應濾波的另外一個目的就是由濾波本身去估計他產生的模型噪聲方差矩陣。自適應過程的最終目的是尋求最佳權系數矢量14。自適應濾波是一種具有抑制濾波器發(fā)散作用的濾波方法。在濾波過程中,要不斷的通過觀測值修正預測值,進而獲得系統(tǒng)的最終濾波值。3.4.1自適應遞歸最小二乘算法(RLS)RLS(recursive lcast-squares )濾波器,是推廣了的最小二乘法,是一種自適應橫向濾波器的遞歸算法。RLS濾波器的一個重要特點是相比較其他的算法而言,他的收斂速率快。例如,RLS濾波器比一般的LMS濾波器的收斂速率要快一個數量級。但RLS濾波器的動態(tài)響應過慢21。一定程度上影響了濾波的實時性。濾波原理: (3.8) (3.9)= (3.10)其中:= (3.11)3.4.2最小均方(LMS)算法初始化設置獲取濾波器輸入計算濾波器輸出計算估計誤差更新N個濾波器權重系數濾波結束(1)在眾多的濾波算法中,LMS算法在自適應濾波理論中應用最為廣泛。最小均方算法,簡稱LMS算法,是Wirow和Hoff在1959年研究自適應線性元素的模式識別方案時提出的18.19。而LMS算法之所以在工程領域被廣泛應用,這是因為LMS算法具有低計算復雜度、平穩(wěn)環(huán)境下的收斂性、均值無偏地收斂到維納解以及利用有限精度實現算法時的穩(wěn)定性等特性17。(2)運算步驟框圖: 圖3.3 LMS算法運算步驟框圖(3)運算過程:首先一般由經驗值確定w(0)=0或者由先驗知識獲得w(0),通過系統(tǒng)的各項已知條件獲取濾波器的輸入函數x(n),期望輸出函數d(n),通過中間的濾波過程計算濾波器的輸出,得到濾波器的輸出之后,通過計算濾波器的估計誤差進而不斷的更新濾波器的權重系數,最后經由濾波器的權重系數不斷的對系統(tǒng)進行校正,最終獲得最后的濾波值。4. 仿真分析4.1原始信號分析 針對一塊平板焊縫的焊縫進行檢測,掃查長度為350cm,寬度為30cm,掃查結束后通過采集系統(tǒng)采集到掃查的數據。經過分析辨別后,初步判斷該平板存在缺陷。使用Matlab軟件進行圖像化處理,顯示缺陷信號的圖形如圖所示:圖4.1 原始缺陷信號 由圖可知,在400處存在缺陷。且該缺陷信號波形并非十分平緩,故而需要通過濾波技術使得波形更加平緩,以至于使得缺陷信號的位置幅值等更為明顯。4.2 Kalman濾波仿真分析由Kalman濾波的原理知,Kalman濾波可以在不確切已知系統(tǒng)的狀態(tài)方程的情況下,通過對前一時刻的觀測信號的分析處理,進而預測下一時刻的觀測信號的狀態(tài)等。故而,采用Kalman濾波器,在磁檢測信號分析中,會使得濾波的過程更加簡單,結果更加可信,提高了檢測結果的可信度,也提高了檢測的時效性。(1) 明確系統(tǒng)的狀態(tài)方程和量測方程。將觀測到的缺陷信號賦值給系統(tǒng)的狀態(tài)向量,因為系統(tǒng)的模型噪聲和過程噪聲并非是可控的和已知的,故而令系統(tǒng)的過程噪聲和模型噪聲為 randn(1,N);求得系統(tǒng)的模型噪聲和過程噪聲的均方差,分別令為Q和R;令系統(tǒng)的量測方程為系統(tǒng)的狀態(tài)方程加上過程噪聲。(2) 起始值確定。令初始濾波值等于狀態(tài)向量的初值,初始濾波協(xié)方差為0, (3) 其余各值均置為0。(3)根據Kalman濾波的方程確定各參數的計算公式。本次仿真中直接利用 Kalman標準濾波的方程進行計算,公式如下: K(n3)=1*P(n3)/(P(n3)+R); (4.1) P(n3+1)=P(n3)*(1-K(n3)+Q; (4.2) a(n3)=y(n3)-xe(n3); (4.3) xe(n3+1)=1*xe(n3)+K(n3)*a(n3) (4.4)利用循環(huán)結構給各參量賦值,n3的范圍是從1至N-1,式中,K為Kalman增益值,P 為濾波協(xié)方差,xe為濾波值,a為量測值與狀態(tài)向量的差值。(4)濾波結果顯示:圖4.2 原始信號和Kalman濾波后的信號(5)信噪比計算:信噪比(signal-to-noiseratio)是描述信號中有效成分與噪聲成分的比例關系參數。計算公式:y1=sum(xe.2);y2=sum(x-xe).2);y3=10*log10(y1/y2);disp(y3);結果顯示:圖4.3 Kalman濾波后的信噪比(6)程序運行時間:圖4.4 Kalman濾波程序運行時間4.3 其他濾波方法效果對比4.3.1LMS濾波(1) 確定初值。令初值w(0)=0。(2) 確定輸入、輸出函數。將檢測獲得的缺陷信號賦值給x,令噪聲信號為 randn(1,N),故而輸出函數即為x(n2)+v(n2),(3) 濾波器設計。 濾波: (4.5) 誤差估計:(4.6) 更新權向量:(4.7)(4) 濾波。 濾波結果如圖所示:圖4.5 原始信號和LMS濾波后的信號(5) 信噪比計算計算公式同Kalman濾波器圖4.6 LMS濾波后的信號信噪比(6) 運行時間:圖4.7 LMS 濾波程序運行時間4.3.2 RLS濾波濾波原理: (4.8) (4.9) (4.10) (4.11)濾波結果:圖4.8 原始信號和RLS濾波后的信號信噪比計算:圖4.9 RLS濾波后信號的信噪比 程序運行時間:圖4.10 RLS濾波程序運行時間總結:通過以上程序運行和實驗,我們容易得出如下結論:首先,在一般的磁檢測信號分析過程中,可以采用不同的濾波方式來達到濾波的目的。其次,采用不同的濾波方式可能導致濾波過程中各程序運行時間、效果等性能不同。最后,經過分析總結,特繪制如下圖表,通過對Kalman濾波程序、LMS濾波和RLS濾波程序在運行時間,運行效果方面的對比,使得各濾波方法的優(yōu)缺點一目了然,也方便使用者在使用過程中能夠更好的選擇所需要的濾波程序。表 4.1 各濾波方法性能總結性能指標濾波方法Kalman濾波 RLS濾波 LMS濾波濾波效果很好好好程序運行時間2.075s27.81s0.577s信噪比16.898624.994615.7007優(yōu)點實時性好收斂速率快低計算復雜度、均值無偏地收斂到維納解以及利用有限精度實現算法穩(wěn)定性缺點信噪比不夠高,易受模型噪聲和過程噪聲的影響動態(tài)響應慢收斂速度慢5. 結論通過以上的分析,我們可以得出結論在工程無損檢測領域應用Klaman濾波是可行的。相較于其他的濾波方式而言,Kalman濾波程序簡單易行、實時性強的特點使得他在眾多的濾波程序中能夠脫穎而出,成為日常生活中,工程領域中實用的濾波方法之一。Kalman濾波方法,算法簡單易行,只需首先確認系統(tǒng)的狀態(tài)向量和量測方程,其次通過對于預測值、預測協(xié)方差矩陣、濾波值、濾波協(xié)方差矩陣進行分析計算,即可得到最終的濾波程序。與Kalman濾波相比較,LMS濾波在濾波后的信號信噪比方面,不能夠做到優(yōu)于klaman濾波的效果,且LMS濾波算法的主要缺點是收斂速度慢,這嚴重地影響了它在某些對收斂速度要求較高的系統(tǒng)中的應用20。而RLS濾波雖然在收斂速度方面有所提升,且濾波后的信噪比高于Kalman濾波但是RLS 算法動態(tài)響應慢,使得濾波程序的運行需要更多的時間,故而一定程度上也使得濾波結果滯后,不能實現實時地濾波。參考文獻1 王玉梅. 小波變換在管道漏磁檢測信號分析技術中的應用D. 沈陽: 沈陽工業(yè)大學, 2002.2 崔益銘. 管道漏磁檢測技術的研究D. 沈陽: 沈陽工業(yè)大學, 2009.3 陳漢友. Matlab在數字信號處理中的應用J. 計算機與現代化, 200, 21(1): 2122.4 朱愛華. 卡爾曼濾波和序貫概率比檢驗在管道泄漏監(jiān)測中的應用D. 天津: 天津大學, 2006.5 彭丁聰. 卡爾曼濾波的基本原理及應用J. 軟件導刊, 2009, 11(8): 1819.6 鄧巍. Matlab在圖像處理和分析中的應用J. 農機化研究, 2006, 11(2): 2122.7 于洋. 基于Matlab的信號處理系統(tǒng)與分析J. 電子世界, 2009, 10(9): 2526.8 韓亮. 鐵磁構建表層裂紋漏磁分析D. 重慶: 重慶大學, 2012.9 孫岳江. 油管底板腐蝕缺陷漏磁檢測
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030中國城市規(guī)劃建設行業(yè)市場現狀供需分析及投資評估規(guī)劃分析研究報告
- 2025-2030中國前列腺疾病用藥行業(yè)市場現狀分析及競爭格局與投資發(fā)展研究報告
- 2025-2030中國農村電商行業(yè)市場深度調研及發(fā)展趨勢與投資前景預測研究報告
- 2025-2030中國信用評級服務行業(yè)發(fā)展分析及發(fā)展前景與投資研究報告
- 2025-2030水果雞尾酒罐頭行業(yè)市場現狀供需分析及重點企業(yè)投資評估規(guī)劃分析研究報告
- 2025-2030年新型絕緣材料行業(yè)市場深度調研及前景趨勢與投資研究報告
- 2025-2030年中國麥芽成分行業(yè)市場現狀供需分析及投資評估規(guī)劃分析研究報告
- 2025-2030年中國阿拉雷林行業(yè)市場現狀供需分析及投資評估規(guī)劃分析研究報告
- 2025-2030年中國鐵路旅客運輸行業(yè)市場深度發(fā)展趨勢與前景展望戰(zhàn)略研究報告
- 2025-2030年中國老年用品行業(yè)市場深度調研及前景趨勢與投資研究報告
- Z20名校聯(lián)盟(浙江省名校新高考研究聯(lián)盟)2025屆高三第一次聯(lián)考數學試題卷
- 就業(yè)協(xié)議書范本(完整版)
- 《大數據導論(第2版)》全套教學課件
- 英語漫談中國故事智慧樹知到答案2024年上海立達學院
- 2024年湖北省宜昌市中考物理試卷
- 小學英語語法專題訓練:名詞所有格(含答案)
- 公司食堂外包項目投標方案(技術方案)
- 2024新蘇教版一年級數學上冊第二單元第1課《認識6~9》教案
- GB/T 35170-2024水泥窯協(xié)同處置的生活垃圾預處理可燃物
- DL∕T 5161.5-2018 電氣裝置安裝工程質量檢驗及評定規(guī)程 第5部分:電纜線路施工質量檢驗
- 不信謠不傳謠不造謠謠言止于智者
評論
0/150
提交評論