庫(kù)侖定律點(diǎn)電荷之間的相互作用規(guī)律.ppt_第1頁(yè)
庫(kù)侖定律點(diǎn)電荷之間的相互作用規(guī)律.ppt_第2頁(yè)
庫(kù)侖定律點(diǎn)電荷之間的相互作用規(guī)律.ppt_第3頁(yè)
庫(kù)侖定律點(diǎn)電荷之間的相互作用規(guī)律.ppt_第4頁(yè)
庫(kù)侖定律點(diǎn)電荷之間的相互作用規(guī)律.ppt_第5頁(yè)
已閱讀5頁(yè),還剩27頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1. 庫(kù)侖定律-點(diǎn)電荷之間的相互作用規(guī)律,2. 庫(kù)侖力的疊加原理:即多個(gè)電荷同時(shí)作用力等于每個(gè)電荷=單獨(dú)作用力之矢量和。,3. 電場(chǎng)強(qiáng)度描述電場(chǎng)強(qiáng)弱的物理量,單位正電荷在電場(chǎng)中 某點(diǎn)所受到的電場(chǎng)力,(1)點(diǎn)電荷產(chǎn)生的電場(chǎng)強(qiáng)度,(2)點(diǎn)電荷系 產(chǎn)生的電場(chǎng)中的場(chǎng)強(qiáng),(3)任意帶電體(連續(xù)帶電體)電場(chǎng)中的場(chǎng)強(qiáng),4. 電場(chǎng)強(qiáng)度的計(jì)算 場(chǎng)強(qiáng)疊加原理,定義式,(1)無(wú)限長(zhǎng)均勻帶 電細(xì)棒的場(chǎng)強(qiáng),5. 幾個(gè)常用的電場(chǎng)公式,(2)圓環(huán)在其中軸線上 任意點(diǎn)產(chǎn)生的場(chǎng)強(qiáng),(3)無(wú)限大均勻帶電平面產(chǎn)生的場(chǎng)強(qiáng),(下一頁(yè)),內(nèi)容回顧,2、電場(chǎng)強(qiáng)度的定義,3、電場(chǎng)強(qiáng)度的計(jì)算,(1)點(diǎn)電荷產(chǎn)生的電場(chǎng)強(qiáng)度,1、 庫(kù)侖定律,(下一頁(yè)),(2)點(diǎn)電荷系 產(chǎn)生的電場(chǎng)中的場(chǎng)強(qiáng)計(jì)算,(3)任意帶電體電場(chǎng)中的場(chǎng)強(qiáng)計(jì)算,(下一頁(yè)),帶電體在電場(chǎng)中所受的電場(chǎng)力,電場(chǎng)強(qiáng)度的定義,1、點(diǎn)電荷所受的電場(chǎng)力,點(diǎn)電荷在電場(chǎng)中所受的力大小等于qE,方向取決與電量的正負(fù),2、帶電體所受的電場(chǎng)力,迭加原理,(下一頁(yè)),1. 電場(chǎng)線、電(E)通量、高斯定理,2. 利用高斯定理求靜電場(chǎng)的分布,教學(xué)要求:,理解電(E)通量的概念, 會(huì)計(jì)算均勻場(chǎng)及較簡(jiǎn)單電場(chǎng)中簡(jiǎn)單曲面的電(E)通量;,2. 理解高斯定理的物理意義, 能用高斯定理分析較簡(jiǎn) 單的有關(guān)的問(wèn)題;,3. 能用高斯定理計(jì)算球?qū)ΨQ分布的帶電體產(chǎn)生的電場(chǎng)。,本講內(nèi)容:,本講重點(diǎn):電通量概念及高斯定理的應(yīng)用。,(下一頁(yè)),8-4 電場(chǎng)強(qiáng)度通量 高斯定理,1 電場(chǎng)線的 定義:,一、 電場(chǎng)線(E 線),(1)方向: 電場(chǎng)線上各點(diǎn)的切線方向表 =表示電場(chǎng)中該點(diǎn)場(chǎng)強(qiáng)的方向。,2. 電場(chǎng)線示例(看P17圖8-16),場(chǎng)強(qiáng)就等于電場(chǎng)線的面密度,顯然,電場(chǎng)線密集處場(chǎng)強(qiáng)大。,(2) 密度: 穿過(guò)垂直于該點(diǎn)場(chǎng)強(qiáng)方向的單=位面積上的電場(chǎng)線的條數(shù)(電場(chǎng)線的=面密度)等于該點(diǎn)的場(chǎng)強(qiáng)的大小。,均勻電場(chǎng)的電場(chǎng)線是平行直線.,(下一頁(yè)),3. 電場(chǎng)線的性質(zhì):,2)電場(chǎng)線不會(huì)在無(wú)電荷的地方中斷;,3)電場(chǎng)線不會(huì)在無(wú)電荷的地方相交;,4)靜電場(chǎng)的電場(chǎng)線不會(huì)形成閉合曲線 (感應(yīng)電場(chǎng)的電場(chǎng)線都是閉合曲線)。,1 、電(E)通量的定義,二、 電(E)通量,1)靜電場(chǎng)的電場(chǎng)線起于正電荷,=終止于負(fù)電 荷;電荷是電場(chǎng)線=的“源”和“尾”,通過(guò)任一曲面的電場(chǎng)線 的條數(shù)稱為通過(guò)這一曲 面的電通量。用 表示,類比: 場(chǎng)強(qiáng)E 相當(dāng)于水流密度, 電通量 相當(dāng)于通過(guò)某 一截面的水流量.,(下一頁(yè)),2. 電(E)通量的計(jì)算,(1)均勻電場(chǎng)中電通量的計(jì)算,即:場(chǎng)強(qiáng)與曲面在垂直于電場(chǎng)線方向的投影面積之乘積,(2)非均勻電場(chǎng)中電通量的計(jì)算,難點(diǎn):曲面上各點(diǎn)的場(chǎng)強(qiáng)大小與方向均是變化的。,對(duì)策:將曲面分割成若干小面元,先求每一面元的電通量,再利用積分求得整個(gè)曲面的電通量。,(下一頁(yè)),要點(diǎn):小面元可視為小平面,其上的場(chǎng)強(qiáng)可視為均勻場(chǎng)。,面元在垂直于場(chǎng)強(qiáng)方向的投影是 ,,通過(guò)它的電通量等于面元 的電通量, 又,定義:矢量面元:,大小等于面元的面積,方向取其法線方向。,因此通過(guò)面元的電通量可表示為:,(下一頁(yè)),小面元上的電通量的正與負(fù),通過(guò)任一曲面S 的電通量:,(下一頁(yè)),通過(guò)任一閉合曲面S的電通量:,閉合曲面法線方向的規(guī)定: 外法線方向(自內(nèi)向外) 為正。,注意:電通量是一個(gè)代數(shù)量,可正可負(fù); 取決于對(duì)曲面法線正方向的規(guī)定。,對(duì)于上面的規(guī)定,電力線穿出閉合曲面電通量為正;=電力線穿入閉合曲面電通量為負(fù)。,(下一頁(yè)),電通量的計(jì)算示例:計(jì)算通過(guò)以點(diǎn)電荷 q 為球心,以 r 為半徑的閉合球面的電通量。,解:先按“水流量”的類比來(lái)計(jì)算。由于球面上各點(diǎn)的= “水流密度” E 大小相等,方向均與曲面垂直,=故通過(guò)球面的“水流量” 為:,(下一頁(yè)),再按電通量的定義來(lái)計(jì)算:,兩種方法求得的結(jié)果相同。,討論:,1)在此情況下,通過(guò)球面的=電通量與球面的半徑無(wú)關(guān);,2)通過(guò)球面的電通量的正負(fù)由球面內(nèi)的電=荷的正負(fù)決定;正電荷是電場(chǎng)線的“源”,=負(fù)電荷是電場(chǎng)線的“尾閭”。,按照面元矢量的定義,如圖所示任取面元矢量 ,由于 與 E方向相同,故夾角為零。而在球面上E為常數(shù),可提到積分號(hào)外。因此有:,(下一頁(yè)),3)從閉合曲面內(nèi)穿出的一條電場(chǎng)線產(chǎn)生正一單位的= 電通量; 從外面穿入閉合曲面的一條電場(chǎng)線產(chǎn)= 生負(fù)一單位的電通量。,問(wèn)題: 通過(guò)靜電場(chǎng)中任意閉合曲面的電通量應(yīng)如何計(jì)算?有什么意義?,下一頁(yè)看,三、靜電場(chǎng)的高斯定理,靜電場(chǎng)中任何一閉合曲面 S 的電通量 ,等于 該曲面所包圍的電荷的代數(shù)和的 分之一倍。,數(shù)學(xué)表達(dá)式:,證明:可用庫(kù)侖定律和疊加原理分步證明之。,通過(guò) 以點(diǎn)電荷q為球心的任意閉合球面的電通量均為 ;,2. 通過(guò)包圍點(diǎn)電荷q在內(nèi)的任意閉合曲面的電通量均為 ;,(下一頁(yè)),由電場(chǎng)線的連續(xù)性可知, 一根電場(chǎng)線穿入必穿出,產(chǎn)生的電通量恰好抵消。 所以當(dāng)閉合曲面內(nèi)無(wú)電荷時(shí),電通量必為零。,3 .閉合曲面外的點(diǎn)電荷對(duì)閉合曲面 電通量的貢獻(xiàn)等于零。,4. 多個(gè)點(diǎn)電荷的電通量等于它們單獨(dú)存在時(shí)的電通量的代數(shù)和。,(下一頁(yè)),1) 高斯定理中的場(chǎng)強(qiáng) 是由全部電荷產(chǎn)生的;,2) 閉合曲面的電通量只決定于它所包含的 電荷。,5. 靜電場(chǎng)中任意閉合曲面 =的電通量, 等于該閉曲=面內(nèi)包圍的電荷的代數(shù)=和除以 ; 與閉合曲=面外的電荷無(wú)關(guān).,兩點(diǎn)說(shuō)明,(下一頁(yè)),附 對(duì)于靜止電荷的電場(chǎng),庫(kù)侖定律和高斯定律=等價(jià)。,高斯定理的用途:,當(dāng)電荷分布具有某種對(duì)稱性時(shí),可用高斯定理求 出該電荷系統(tǒng)的電場(chǎng)的分布。比其他方法簡(jiǎn)便。,當(dāng)已知場(chǎng)強(qiáng)分布時(shí),可用高斯定理求出任一區(qū)域 的電荷、電位分布。,對(duì)于運(yùn)動(dòng)電荷的電場(chǎng),庫(kù)侖定律不再正確, =而高斯定理仍然有效。,(下一頁(yè)),四、高斯定理的應(yīng)用計(jì)算電場(chǎng)強(qiáng)度分布,注意:這樣求得的是高斯面處的場(chǎng)強(qiáng)!,當(dāng)場(chǎng)源電荷分布具有某種對(duì)稱性時(shí),選取一個(gè)適當(dāng)?shù)那娓咚姑?,使該曲面上的?chǎng)強(qiáng)大小處處 相等,則面積分 中的E為常量,故有:,(下一頁(yè)),例一、 用高斯定理求點(diǎn)電荷的場(chǎng)強(qiáng)分布,再考慮到場(chǎng)強(qiáng)的方向,則有:,點(diǎn)電荷的場(chǎng)具有以點(diǎn)電荷為中心的球?qū)ΨQ性,即在以點(diǎn)電荷為球心的任意球面上,場(chǎng)強(qiáng)的大小相等,方向應(yīng)沿半徑方向指向外。故選以點(diǎn)電荷為球心, 任一長(zhǎng)度 r 為半徑的球面為高斯面。則有:,(下一頁(yè)),例二、試求均勻帶電的球面內(nèi)外的場(chǎng)強(qiáng)分布。 設(shè)球面半徑為 R,所帶總電量為 Q。,解:,它具有與場(chǎng)源同心的球面對(duì)稱性。故選同心球面為高斯面。場(chǎng)強(qiáng)的方向沿徑向,且在球面上場(chǎng)強(qiáng)處處相等。,當(dāng) 時(shí)高斯面1內(nèi)電荷為Q,所以,當(dāng) 時(shí)高斯面2內(nèi)電荷為 0,場(chǎng)源的對(duì)稱性決定著場(chǎng)強(qiáng)分布的對(duì)稱性。,首先考慮球面外任意點(diǎn)P 的場(chǎng)強(qiáng)。,再考慮球面內(nèi)任意點(diǎn)P 的場(chǎng)強(qiáng)。,(下一頁(yè)),結(jié)果表明:,均勻帶電球殼外的場(chǎng)強(qiáng)分布正象球面上的電荷都集中在球心時(shí)所形成的點(diǎn)電荷在該區(qū)的場(chǎng)強(qiáng)分布一樣。在球面內(nèi)場(chǎng)強(qiáng)均為零??捎糜颐娴膱D表示。,均勻帶電的球面內(nèi)外的場(chǎng)強(qiáng)分布,(下一頁(yè)),例三、求均勻帶電的球體內(nèi)外的場(chǎng)強(qiáng)分布。設(shè)球體= 半徑為R,所帶總帶電為Q,解:場(chǎng)源分布的具有球面對(duì)稱性。其產(chǎn)生的電場(chǎng)分布= 也同樣具有球面對(duì)稱性。故選取與帶電球體同心= 的球面為高斯面。,(下一頁(yè)),該電場(chǎng)分布具有柱面對(duì)稱性。即在以帶電直線為軸線的任一柱面上,場(chǎng)強(qiáng)的大小相等,方向均沿半徑方向。,以帶電直導(dǎo)線為軸,作一個(gè)通過(guò)P點(diǎn), 高為 的圓筒形封閉面為高斯面 S,,例四、求無(wú)限長(zhǎng)均勻帶電直線的場(chǎng)強(qiáng)分布。 = 設(shè)電荷線密度為,通過(guò)S面的電通量為圓柱側(cè)面和上下底面三部分的通量。,(下一頁(yè)),因上、下底面的場(chǎng)強(qiáng)方向與面平行, 其電通量為零。即式中后兩項(xiàng)為零。,此閉合面包含的電荷總量,其方向沿場(chǎng)點(diǎn)到帶電直線的垂線 方向,由電荷的正負(fù)決定。,(下一頁(yè)),由于電荷分布是平面對(duì)稱的,所以場(chǎng)強(qiáng)分布也是平面對(duì)稱的,即離平面等遠(yuǎn)處的場(chǎng)強(qiáng)大小都相等、方向都垂直于帶電平面。電場(chǎng)線如圖所示。,例五、求無(wú)限大均勻帶電平板的場(chǎng)強(qiáng)分布。設(shè)面電荷 密度為,解:,對(duì)稱性分析,(下一頁(yè)),選一其軸垂直于帶電平面的圓筒式封閉面作為高斯面 S,帶電平面平分此圓筒,場(chǎng)點(diǎn) p位于它的一個(gè)底面上。由于圓筒側(cè)面上各點(diǎn)的場(chǎng)強(qiáng)方向垂直于側(cè)面的法線方向,所以電通量為零;又兩個(gè)底面上場(chǎng)強(qiáng)相等、電通量相等,均為穿出。,(下一頁(yè)),場(chǎng)強(qiáng)方向指離平面;,場(chǎng)強(qiáng)方向指向平面。,例六、求兩個(gè)平行無(wú)限大均勻帶電平面的場(chǎng)強(qiáng)分布。 設(shè)面電荷密度分別為 和,解:該系統(tǒng)不再具有簡(jiǎn)單的對(duì)稱性,不能直接應(yīng)用 高斯定律。然

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論