2019年高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 方法、思想解讀 第2講 函數(shù)與方程思想、數(shù)形結(jié)合思想課件 文.ppt_第1頁
2019年高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 方法、思想解讀 第2講 函數(shù)與方程思想、數(shù)形結(jié)合思想課件 文.ppt_第2頁
2019年高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 方法、思想解讀 第2講 函數(shù)與方程思想、數(shù)形結(jié)合思想課件 文.ppt_第3頁
2019年高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 方法、思想解讀 第2講 函數(shù)與方程思想、數(shù)形結(jié)合思想課件 文.ppt_第4頁
2019年高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 方法、思想解讀 第2講 函數(shù)與方程思想、數(shù)形結(jié)合思想課件 文.ppt_第5頁
已閱讀5頁,還剩36頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第2講函數(shù)與方程思想、數(shù)形結(jié)合思想,思想方法詮釋,思想分類應(yīng)用,應(yīng)用方法歸納,高考對(duì)函數(shù)與方程思想的考查頻率較高,在高考的各題型中都有體現(xiàn),特別在解答題中,從知識(shí)網(wǎng)絡(luò)的交匯處,從思想方法與相關(guān)能力相結(jié)合的角度進(jìn)行深入考查.,思想方法詮釋,思想分類應(yīng)用,應(yīng)用方法歸納,應(yīng)用一函數(shù)與方程思想在解三角形中的應(yīng)用例1為了豎一塊廣告牌,要制造三角形支架,如圖,要求ACB=60,BC的長度大于1m,且AC比AB長0.5m,為了穩(wěn)固廣告牌,要求AC越短越好,則AC最短為(),答案D,思想方法詮釋,思想分類應(yīng)用,應(yīng)用方法歸納,思想方法詮釋,思想分類應(yīng)用,應(yīng)用方法歸納,思維升華函數(shù)思想的實(shí)質(zhì)是使用函數(shù)方法解決數(shù)學(xué)問題(不一定只是函數(shù)問題),構(gòu)造函數(shù)解題是函數(shù)思想的一種主要體現(xiàn);方程思想的本質(zhì)是根據(jù)已知得出方程(組),通過解方程(組)解決問題.,思想方法詮釋,思想分類應(yīng)用,應(yīng)用方法歸納,答案(1)C(2)C,思想方法詮釋,思想分類應(yīng)用,應(yīng)用方法歸納,解析(1)由于ABC的三個(gè)內(nèi)角A,B,C成等差數(shù)列,且內(nèi)角和等于180,B=60.在ABD中,由余弦定理可得AD2=AB2+BD2-2ABBDcosB,即7=4+BD2-2BD,BD=3或-1(舍去),可得BC=6,思想方法詮釋,思想分類應(yīng)用,應(yīng)用方法歸納,思想方法詮釋,思想分類應(yīng)用,應(yīng)用方法歸納,應(yīng)用二函數(shù)與方程思想在不等式中的應(yīng)用例2當(dāng)x-2,1時(shí),不等式ax3-x2+4x+30恒成立,則實(shí)數(shù)a的取值范圍是.,答案-6,-2,思想方法詮釋,思想分類應(yīng)用,應(yīng)用方法歸納,思想方法詮釋,思想分類應(yīng)用,應(yīng)用方法歸納,思維升華1.在解決不等式問題時(shí),一種最重要的思想方法就是構(gòu)造適當(dāng)?shù)暮瘮?shù),利用函數(shù)的圖象和性質(zhì)解決問題.2.函數(shù)f(x)0或f(x)0或f(x)max0;已知恒成立求參數(shù)范圍可先分離參數(shù),再利用函數(shù)最值求解.,思想方法詮釋,思想分類應(yīng)用,應(yīng)用方法歸納,突破訓(xùn)練2設(shè)f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)x0,且g(-3)=0,則不等式f(x)g(x)0;當(dāng)-1x0,所以-2x-12,解得-10)的焦點(diǎn)F的直線依次交拋物線及準(zhǔn)線于點(diǎn)A,B,C,若|BC|=2|BF|,且|AF|=3,則拋物線的方程為(),答案D,思想方法詮釋,思想分類應(yīng)用,應(yīng)用方法歸納,解析由題意,過點(diǎn)A,B分別作準(zhǔn)線的垂線,垂足為A,B,如圖所示.,思想方法詮釋,思想分類應(yīng)用,應(yīng)用方法歸納,方程思想在解題中的應(yīng)用主要表現(xiàn)在四個(gè)方面:(1)解方程或解不等式;(2)含參數(shù)的方程或不等式的討論,常涉及一元二次方程的判別式、根與系數(shù)的關(guān)系、區(qū)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論