平方差公式(第一課時)教學(xué)設(shè)計.doc_第1頁
平方差公式(第一課時)教學(xué)設(shè)計.doc_第2頁
平方差公式(第一課時)教學(xué)設(shè)計.doc_第3頁
平方差公式(第一課時)教學(xué)設(shè)計.doc_第4頁
平方差公式(第一課時)教學(xué)設(shè)計.doc_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

人教版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書八年級上冊乘法公式15.2.1平方差公式執(zhí)教人:贛縣石芫中學(xué) 黃新杰2012年12月乘法公式(第1課時)15.2.1平方差公式教學(xué)任務(wù)分析教學(xué)目標(biāo)知識技能1.學(xué)會推導(dǎo)平方差公式.2.理解平方差公式的結(jié)構(gòu)特征,并能運(yùn)用公式進(jìn)行相關(guān)的運(yùn)算.數(shù)學(xué)思考1.經(jīng)歷探索平方差公式的過程,體驗(yàn)知識的產(chǎn)生與發(fā)展,感覺利用歸納、數(shù)形結(jié)合等數(shù)學(xué)思想方法解決數(shù)學(xué)問題的策略.2. 培養(yǎng)學(xué)生觀察、歸納、概括的能力,發(fā)展語言表達(dá)能力.解決問題通過平方差公式的推導(dǎo)過程,體會數(shù)形結(jié)合法在問題解決中的作用,同時讓學(xué)生學(xué)會發(fā)現(xiàn)問題,提出問題,然后解決問題,體會在解決問題的過程中與他人合作的重要性.情感態(tài)度1.在探索平方差公式的過程中,敢于發(fā)表自己的觀點(diǎn),并尊重和理解他人的見解,鍛煉克服困難的意志,建立自信心.2. 在公式的學(xué)習(xí)及運(yùn)用中積累解題的經(jīng)驗(yàn),體驗(yàn)成功的喜悅,提高學(xué)習(xí)數(shù)學(xué)的積極性.重點(diǎn)平方差公式的推導(dǎo)和應(yīng)用.難點(diǎn)理解平方差公式的結(jié)構(gòu)特征,并能靈活運(yùn)用平方差公式.教學(xué)流程安排活動流程圖內(nèi)容和目的活動一:創(chuàng)設(shè)情境,快樂起航從生活中的實(shí)例引入,既能激發(fā)學(xué)生的學(xué)習(xí)興趣,又能為說明平方差公式的幾何意義做好鋪墊.活動二:自主探索,獲取新知通過多項式的乘法法則踐行猜想,讓感知得到理性的檢驗(yàn),初步感知平方差公式的特征.活動三:剖析公式,提示本質(zhì)引導(dǎo)學(xué)生分析公式的結(jié)構(gòu)特征,是學(xué)生理解公式,并能靈活運(yùn)用公式解決問題.活動四:數(shù)形結(jié)合,幾何說理通過“自制拼圖板”驗(yàn)證平方差公式,從數(shù)形結(jié)合的角度加深對公式理解.活動五:鞏固運(yùn)用,內(nèi)化新知通過學(xué)生對平方差公式由易到難的運(yùn)用,能靈活運(yùn)用平方差公式解決實(shí)際問題.活動六:回味無窮,反思提升在回顧知識中,借助作業(yè)和閱讀材料來拓展學(xué)生對平方差公式的理解運(yùn)用.教學(xué)過程設(shè)計問題情境師生行為設(shè)計意圖一、創(chuàng)設(shè)情境,快樂起航從前,有一個狡猾的莊園主,把一塊邊長為a米的正方形土地租給張老漢種植.第二年,他對張老漢說:“我把這塊地的一邊減少5米,相鄰的另一邊增加5米,繼續(xù)租給你,租金不變,你也沒有吃虧,你看如何?”張老漢一聽,覺得好像沒有吃虧,就答應(yīng)道:“好吧.”回到家中,他把這事和鄰居們一講,大家都說:“張老漢,你吃虧了!”張老漢非常吃驚,你知道張老漢是否吃虧了嗎?教師展示動畫,提出問題,引出課題,學(xué)生觀看.本次活動應(yīng)重點(diǎn)關(guān)注:(1)學(xué)生是否從實(shí)際問題中抽象出幾何圖形.(2)學(xué)生以否感覺到參與數(shù)學(xué)活動的趣味性.從生活中的實(shí)例引入,既能激發(fā)學(xué)生的學(xué)習(xí)興趣,又能為說明平方差公式的幾何意義做好鋪墊.二、自主探索,獲取新知問題1:做題比賽??凑l做得又對、又快!(1)(x+3)(y+4) = (2)(x+3)(x-2) =(3)(m+2)(m-2) =(4)(2x+y)(2x-y)=問題2:同樣是兩個二項式相乘(3)(4)兩小題的積卻只有兩項,這是為什么呢?你發(fā)現(xiàn)了什么?追問1:觀察、分析第(3)(4)兩小題左邊的算式和右邊的結(jié)果,你能從中發(fā)現(xiàn)什么規(guī)律?觀察:(3)(m+2)(m-2) =m2-4=m2-22(4)(2x+y)(2x-y)= 4x2-y2=(2x)2-y2發(fā)現(xiàn):左邊的兩個因式中有兩項相同,另外兩項符號相反;右邊是相同項的平方減去相反項的平方.問題3:如果相同項用a,相反項分別用b和-b表示,那么這兩個等式就可以寫成:(a+b)(a-b)=a2-b2如果把a(bǔ),b分別看作兩個數(shù),用文字語言怎樣表述呢?(兩個數(shù)的和與這兩個數(shù)的差的積等于這兩個數(shù)的平方差.)這就是乘法中的“平方差公式” .教師出示題目,學(xué)生嘗試用整式乘法的法則進(jìn)行計算。在做題過程中教師觀察學(xué)生的做題情況,適當(dāng)?shù)倪M(jìn)行鼓勵.教師提出問題,鼓勵學(xué)生發(fā)表自己的見解,其他學(xué)生傾聽并互相交流.引導(dǎo)學(xué)生觀察、發(fā)現(xiàn)、分析后兩個小題的特征.教師提出問題,引導(dǎo)學(xué)生通過猜想得出平方差公式的字母表達(dá)式.并能用自己的文字語言進(jìn)行表述.教師引導(dǎo)學(xué)生交流歸納出平方差公式.本次活動中,教師應(yīng)重點(diǎn)關(guān)注:(1)讓學(xué)生充分經(jīng)歷探究平方差的過程,讓學(xué)生感受到某些特殊形式的多項式相乘,可以利用公式幫助簡化運(yùn)算.(2)從特殊到一般的數(shù)學(xué)思想方法及歸納的能力的培養(yǎng).以一組相關(guān)聯(lián)但又有區(qū)別的問題為載體,讓學(xué)生通過計算,觀察每個算式的特點(diǎn)和結(jié)果的特點(diǎn),挖掘題目之間的共性,發(fā)現(xiàn)規(guī)律,猜想公式,從而經(jīng)歷從一般到特殊、從具體到抽象的過程,體會歸納這一數(shù)學(xué)思想方法.通過多項式的乘法法則踐行猜想,讓感知得到理性的檢驗(yàn),體現(xiàn)數(shù)學(xué)學(xué)科思維的嚴(yán)謹(jǐn)性,讓合情推理與演繹推理并進(jìn),進(jìn)而準(zhǔn)確地運(yùn)用數(shù)學(xué)語言表達(dá)公式.發(fā)展學(xué)生有條理地思考的能力.三、剖析公式,提示本質(zhì)這個公式是乘法運(yùn)算中一個重要的公式,用它直接運(yùn)算很方便,但只有符合公式的結(jié)構(gòu)特征才能運(yùn)用.問題4:你能說出公式的結(jié)構(gòu)特征嗎?結(jié)構(gòu)特征: 左邊 右邊(a+b)(a-b)= a2 - b2相同項 相反項 相同項2 相反項2(學(xué)生先自主辨析,再交流互補(bǔ),不斷完善 .)教師給予評價,歸納.本次活動中教師應(yīng)重點(diǎn)關(guān)注:(1)讓學(xué)生充分經(jīng)歷探索平方差公式的結(jié)構(gòu)特征的過程.(2)學(xué)生在觀察(a+b)(a-b)= a2 - b2時應(yīng)讓學(xué)生有一個自主交流探索的時間和空間.分析公式的結(jié)構(gòu)特征,是學(xué)生理解公式,并能靈活運(yùn)用公式解決問題的前提條件,讓學(xué)生自主辨析、合作交流、共同總結(jié)得以明晰,既體現(xiàn)了學(xué)生學(xué)習(xí)的主動性,又為學(xué)生學(xué)習(xí)公式進(jìn)行了學(xué)法指導(dǎo),可謂“一箭雙雕”.四、數(shù)形結(jié)合,幾何說理問題5:現(xiàn)在,你知道張老漢是否吃虧了嗎?為什么?追問:如果將張老漢所租的邊長為a米的正方形土地的一邊減少b米(ba),另一邊增加b米,那樣土地面積變?yōu)槎嗌??你能通過拼圖來驗(yàn)證變化后的土地面積為a2-b2嗎?五、鞏固運(yùn)用,內(nèi)化新知1.代一代你能用和分別代替a和b表示平方差公式嗎?( + )( - )= 2 - 2教師出示問題,引導(dǎo)學(xué)生分析、思考,并結(jié)合模型進(jìn)行演示.學(xué)生嘗試將圖1重新拼圖得到如圖2所示,驗(yàn)證結(jié)論的正確性.教師巡視,學(xué)生展示.學(xué)生口答后,師生共同小結(jié):其中的和可以表示數(shù)、式.本次活動中教師應(yīng)重點(diǎn)關(guān)注:(1)學(xué)生在活動中的參與意識及回答問題的勇氣.(2)讓學(xué)生進(jìn)一步熟悉平方差公式的結(jié)構(gòu)特征.使學(xué)生直觀地經(jīng)歷圖形變化的過程,從數(shù)形結(jié)合的角度加深對公式理解.這道開放題的設(shè)計,以剖析a、b的廣泛含義為目的,對于幫助學(xué)生認(rèn)清式公式的結(jié)構(gòu)特征起到事半功倍的作用,在接下來的公式運(yùn)用中,相信學(xué)生會更加得心應(yīng)手.2.填一填(a+b)(a-b)aba2-b2結(jié) 果(x+2)(x-2)(-x+2y)(-x-2y)(m+2n)(2n -m)學(xué)生嘗試填空,教師對結(jié)果進(jìn)行適時評價.在此基礎(chǔ)上讓學(xué)生明白:(1)在運(yùn)用平方差公式時必須先弄清a、b,再依公式進(jìn)行運(yùn)算.(2)a、b為分?jǐn)?shù),負(fù)數(shù),或整體時,一定要括號.(3)可以利用加法的交換律進(jìn)行變形轉(zhuǎn)化.本次活動中教師應(yīng)重點(diǎn)關(guān)注:(1)學(xué)生能否準(zhǔn)確,熟練地找到a、b.(2)計算結(jié)果的規(guī)范性.此題旨在將式子中的各項與公式中的a、b進(jìn)行對照,進(jìn)一步體會字母a、b的含義,讓學(xué)生舉一反三,加深對字母廣泛性的理解.3.辨一辨判斷對錯,如果有錯,如何改正?(1)(x-2)(x+2)=x2-2 ( ); (2)(+4xy)(-4xy)=-16x2y2 ( );(3)(-3a-2)(3a-2)=9a2-4 ( ); (4)(4x+3b)(4x-3b)=16x2-9 ( ).學(xué)生獨(dú)立思考,自主完成練習(xí),教師給予評講. 本次活動中教師應(yīng)重點(diǎn)關(guān)注:(1)讓學(xué)生注意觀察計算的結(jié)果.(2)讓學(xué)生養(yǎng)成認(rèn)真,細(xì)致的解題習(xí)慣.對學(xué)生經(jīng)常出現(xiàn)的錯誤進(jìn)行預(yù)設(shè),防微杜漸.有助于培養(yǎng)學(xué)生良好的解題習(xí)慣,獲得成功的體驗(yàn).4.算一算計算:(1)(y+2)(y-2)-(y-1)(y+5) ;(2)10298 部分學(xué)生演板,其他學(xué)生在紙上獨(dú)立完成;教師巡視,了解學(xué)生對知識的掌握情況.本次活動中教師應(yīng)重點(diǎn)關(guān)注:(1)學(xué)生在練習(xí)中的反映出的問題有針對性地講解.(2)學(xué)生能靈活地運(yùn)用平方差公式去分析和解決問題.通過轉(zhuǎn)化,利用公式計算,體會平方差公式的便捷以及局限性.初步發(fā)展學(xué)生綜合運(yùn)用的能力.5. 用一用(1)填空:(5x+2y )( )=25x2-4y2寫出與(-a+b)相乘能利用平方差公式進(jìn)行計算的因式_.6.試一試計算:(a+1)(a-1)(a2+1)(a4+1)(a1024+1) 學(xué)生討論并展示自己的成果,教師引導(dǎo)學(xué)生靈活運(yùn)用平方差公式進(jìn)行解題.本次活動中教師應(yīng)重點(diǎn)關(guān)注:(1)學(xué)生能否用逆向思維和發(fā)散思維去解決問題.(2)計算的準(zhǔn)確性、熟練性、靈活性.通過變式訓(xùn)練,讓學(xué)生學(xué)會逆向思維和發(fā)散思維,從而加強(qiáng)學(xué)生對公式結(jié)構(gòu)特征的理解.六、回味無窮,反思提升1(1)本節(jié)課你學(xué)到了哪些數(shù)學(xué)知識?(2)本節(jié)課你感悟到了哪些數(shù)學(xué)思想方法?2.作業(yè)(1)必做題:第156頁習(xí)題15.2的第1題;先化簡,再求值:x(x+2)-(x+1)(x-1),其中x=.(2)選做題:如圖3所示,從邊長為a的大正方形紙板中,挖去一個邊長為b的小正方形后,將其截成4個相同的等腰梯形,再拼成一個平行四邊形.那么通過計算平行四邊形的面積,可以驗(yàn)證公式_. 3.閱讀材料:拼圖法驗(yàn)證平方差公式(見學(xué)案).學(xué)生反思后充分發(fā)表自己的意見,教師傾聽.本次活動中教師應(yīng)重點(diǎn)關(guān)注:(1)積極評價不同層次的學(xué)生對本節(jié)課的不同認(rèn)識.(2)通過小結(jié)明確本節(jié)課的主要內(nèi)容,思想方法,培養(yǎng)學(xué)生善于反思的良好習(xí)慣.教師布置作業(yè),學(xué)生按要求獨(dú)立完成.本次活動中教師應(yīng)重點(diǎn)關(guān)注:(1)不同層次的學(xué)生對平方差公式所掌握程度,應(yīng)有針對性的分析與點(diǎn)評.(2)學(xué)生的動手能力和數(shù)形結(jié)合思想的培養(yǎng).通過課內(nèi)作業(yè),鞏固所學(xué)的知識,加深學(xué)生對平方差公式的理解;課外練習(xí),體現(xiàn)了數(shù)學(xué)作業(yè)的發(fā)展性,滿足了學(xué)生多樣化的學(xué)習(xí)需要,再次利用數(shù)形結(jié)合,進(jìn)一步從幾何意義上深化平方差公式.附:板書設(shè)計15.2.1平方差公式左邊 右邊(a+b)(a-b) = a2-b2兩個數(shù)的和與這兩個數(shù)的差的積等于這兩個數(shù)的平方差.學(xué)生板演例題教案設(shè)計說明一、教材分析1、教材的地位和作用平方差公式是在學(xué)習(xí)了有理數(shù)運(yùn)算、列簡單的代數(shù)式、一次方程及不等式、整式的加減及整式乘法等知識的基礎(chǔ)上,在學(xué)生已經(jīng)掌握了多項式乘法之后,自然過渡到具有特殊形式的多項式的乘法,是從一般到特殊的認(rèn)知規(guī)律的典型范例.對它的學(xué)習(xí)和研究,不僅給出了特殊的多項式乘法的簡便算法,而且為以后的因式分解、分式的化簡、二次根式中的分母有理化、解一元二次方程、函數(shù)等內(nèi)容奠定了基礎(chǔ),同時也為完全平方公式的學(xué)習(xí)提供了方法.因此,平方差公式在初中階段的教學(xué)中也具有很重要地位,是初中階段的第一個公式.二、學(xué)情分析學(xué)生已熟練掌握了冪的運(yùn)算和整式乘法,但在進(jìn)行多項式乘法運(yùn)算時常常會確定錯某些項符號及漏項等問題學(xué)生學(xué)習(xí)平方差公式的困難在于對公式的結(jié)構(gòu)特征以及公式中字母的廣泛含義學(xué)生的理解因此,教學(xué)中引導(dǎo)學(xué)生分析公式的結(jié)構(gòu)特征,并運(yùn)用變式訓(xùn)練揭示公式的本質(zhì)特征,以加深學(xué)生對公式的理解三、教學(xué)設(shè)計說明本節(jié)課的內(nèi)容是:乘法公式平方差公式。本章的學(xué)習(xí)目的主要是熟練掌握整式的運(yùn)算,并且這些知識是以后學(xué)習(xí)分式、根式運(yùn)算以及函數(shù)等知識的基礎(chǔ),同時也是學(xué)習(xí)物理、化學(xué)等學(xué)科及其他科學(xué)技術(shù)不可或缺的數(shù)學(xué)工具.而本節(jié)是整式乘法中乘法公式的首要內(nèi)容,學(xué)生只有熟練掌握了包括平方差公式在內(nèi)的乘法公式及它的推導(dǎo)過程,才能實(shí)現(xiàn)本節(jié)乃至本章作為數(shù)學(xué)工具的重要作用.因此,在教學(xué)安排上,我選擇從學(xué)生熟悉的求多邊形面積入手,遵循從感性認(rèn)識上升為理性思維的認(rèn)知規(guī)律,得出抽象的概念,并在多項式乘法的基礎(chǔ)上,再次推導(dǎo)公式,使原本枯燥的數(shù)學(xué)概念具有一定的實(shí)際意義和說理性;之后安排了一系列的例題和練習(xí)題,把新知運(yùn)用到實(shí)戰(zhàn)中去,解決簡單的實(shí)際問題,這樣既調(diào)動了學(xué)生學(xué)習(xí)的主動性,又鍛煉了思維,整個過程由淺入深,在對所得結(jié)論不斷觀察、討論、分析中,加深對概念的理解,增強(qiáng)學(xué)生應(yīng)用知識解決問題的能力,從而達(dá)到較好的授課效果.數(shù)學(xué)是一門抽象的學(xué)科,但數(shù)學(xué)是來源于實(shí)際生活的.因

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論