




免費(fèi)預(yù)覽已結(jié)束,剩余33頁(yè)可下載查看
下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
新課標(biāo)人教A版高中數(shù)學(xué)選修2-3全套教案 高中數(shù)學(xué)教案選修全套【選修2-3教案|全套】目 錄目 錄I第一章 計(jì)數(shù)原理11.1分類加法計(jì)數(shù)原理和分步乘法計(jì)數(shù)原理11.2.1排列91.2.2組合231.3.1二項(xiàng)式定理341.3.2“楊輝三角”與二項(xiàng)式系數(shù)的性質(zhì)41第二章 隨機(jī)變量及其分布532.1.1離散型隨機(jī)變量532.?1.2離散型隨機(jī)變量的分布列552.?2.1條件概率592.2.2事件的相互獨(dú)立性632.2.3獨(dú)立重復(fù)實(shí)驗(yàn)與二項(xiàng)分布692.3離散型隨機(jī)變量的均值與方差752.3.1離散型隨機(jī)變量的均值752.3.2離散型隨機(jī)變量的方差842.4正態(tài)分布91第三章 統(tǒng)計(jì)案例993.1 獨(dú)立性檢驗(yàn)(1)993.1 獨(dú)立性檢驗(yàn)(2)1023.2 回歸分析11043.2 回歸分析2108第一章 計(jì)數(shù)原理1.1分類加法計(jì)數(shù)原理和分步乘法計(jì)數(shù)原理教學(xué)目標(biāo):知識(shí)與技能:理解分類加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理; 會(huì)利用兩個(gè)原理分析和解決一些簡(jiǎn)單的應(yīng)用問題;過程與方法:培養(yǎng)學(xué)生的歸納概括能力;情感、態(tài)度與價(jià)值觀:引導(dǎo)學(xué)生形成 “自主學(xué)習(xí)”與“合作學(xué)習(xí)”等良好的學(xué)習(xí)方式教學(xué)重點(diǎn):分類計(jì)數(shù)原理加法原理與分步計(jì)數(shù)原理乘法原理 教學(xué)難點(diǎn):分類計(jì)數(shù)原理加法原理與分步計(jì)數(shù)原理乘法原理的準(zhǔn)確理解授課類型:新授課 課時(shí)安排:2課時(shí) 教 具:多媒體、實(shí)物投影儀 第一課時(shí) 引入課題 先看下面的問題: 從我們班上推選出兩名同學(xué)擔(dān)任班長(zhǎng),有多少種不同的選法? 把我們的同學(xué)排成一排,共有多少種不同的排法? 要解決這些問題,就要運(yùn)用有關(guān)排列、組合知識(shí). 排列組合是一種重要的數(shù)學(xué)計(jì)數(shù)方法. 總的來(lái)說(shuō),就是研究按某一規(guī)則做某事時(shí),一共有多少種不同的做法在運(yùn)用排列、組合方法時(shí),經(jīng)常要用到分類加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理. 這節(jié)課,我們從具體例子出發(fā)來(lái)學(xué)習(xí)這兩個(gè)原理1分類加法計(jì)數(shù)原理(1)提出問題 問題1.1:用一個(gè)大寫的英文字母或一個(gè)阿拉伯?dāng)?shù)字給教室里的座位編號(hào),總共能夠編出多少種不同的號(hào)碼? 問題1.2:從甲地到乙地,可以乘火車,也可以乘汽車.如果一天中火車有3班,汽車有2班.那么一天中,乘坐這些交通工具從甲地到乙地共有多少種不同的走法? 探究:你能說(shuō)說(shuō)以上兩個(gè)問題的特征嗎?(2)發(fā)現(xiàn)新知 分類加法計(jì)數(shù)原理 完成一件事有兩類不同方案,在第1類方案中有種不同的方法,在第2類方案中有種不同的方法. 那么完成這件事共有 種不同的方法.(3)知識(shí)應(yīng)用 例1.在填寫高考志愿表時(shí),一名高中畢業(yè)生了解到,A,B兩所大學(xué)各有一些自己感興趣的強(qiáng)項(xiàng)專業(yè),具體情況如下: A大學(xué)B大學(xué) 生物學(xué) 數(shù)學(xué) 化學(xué)會(huì)計(jì)學(xué) 醫(yī)學(xué)信息技術(shù)學(xué) 物理學(xué) 法學(xué) 工程學(xué)如果這名同學(xué)只能選一個(gè)專業(yè),那么他共有多少種選擇呢? 分析:由于這名同學(xué)在 A , B 兩所大學(xué)中只能選擇一所,而且只能選擇一個(gè)專業(yè),又由于兩所大學(xué)沒有共同的強(qiáng)項(xiàng)專業(yè),因此符合分類加法計(jì)數(shù)原理的條件.解:這名同學(xué)可以選擇 A , B 兩所大學(xué)中的一所.在 A 大學(xué)中有 5 種專業(yè)選擇方法,在 B 大學(xué)中有 4 種專業(yè)選擇方法.又由于沒有一個(gè)強(qiáng)項(xiàng)專業(yè)是兩所大學(xué)共有的,因此根據(jù)分類加法計(jì)數(shù)原理,這名同學(xué)可能的專業(yè)選擇共有 5+49(種). 變式:若還有C大學(xué),其中強(qiáng)項(xiàng)專業(yè)為:新聞學(xué)、金融學(xué)、人力資源學(xué).那么,這名同學(xué)可能的專業(yè)選擇共有多少種? 探究:如果完成一件事有三類不同方案,在第1類方案中有種不同的方法,在第2類方案中有種不同的方法,在第3類方案中有種不同的方法,那么完成這件事共有多少種不同的方法? 如果完成一件事情有類不同方案,在每一類中都有若干種不同方法,那么應(yīng)當(dāng)如何計(jì)數(shù)呢?一般歸納: 完成一件事情,有n類辦法,在第1類辦法中有種不同的方法,在第2類辦法中有種不同的方法在第n類辦法中有種不同的方法.那么完成這件事共有 種不同的方法.理解分類加法計(jì)數(shù)原理: 分類加法計(jì)數(shù)原理針對(duì)的是“分類”問題,完成一件事要分為若干類,各類的方法相互獨(dú)立,各類中的各種方法也相對(duì)獨(dú)立,用任何一類中的任何一種方法都可以單獨(dú)完成這件事. 例2.一螞蟻沿著長(zhǎng)方體的棱,從的一個(gè)頂點(diǎn)爬到相對(duì)的另一個(gè)頂點(diǎn)的最近路線共有多少條? 解:從總體上看,如,螞蟻從頂點(diǎn)A爬到頂點(diǎn)C1有三類方法,從局部上看每類又需兩步完成,所以, 第一類, m1 12 2條 第二類, m2 12 2條 第三類, m3 12 2條 所以, 根據(jù)加法原理, 從頂點(diǎn)A到頂點(diǎn)C1最近路線共有 N 2 + 2 + 2 6 條 練習(xí) 1.填空: 1 )一件工作可以用 2 種方法完成,有 5 人只會(huì)用第 1 種方法完成,另有 4 人只會(huì)用第 2 種方法完成,從中選出 l 人來(lái)完成這件工作,不同選法的種數(shù)是_ ; 2 )從 A 村去 B 村的道路有 3 條,從 B 村去 C 村的道路有 2 條,從 A 村經(jīng) B 的路線有_條.第二課時(shí)2分步乘法計(jì)數(shù)原理(1)提出問題 問題2.1:用前6個(gè)大寫英文字母和1?9九個(gè)阿拉伯?dāng)?shù)字,以,的方式給教室里的座位編號(hào),總共能編出多少個(gè)不同的號(hào)碼? 用列舉法可以列出所有可能的號(hào)碼: 我們還可以這樣來(lái)思考:由于前 6 個(gè)英文字母中的任意一個(gè)都能與 9 個(gè)數(shù)字中的任何一個(gè)組成一個(gè)號(hào)碼,而且它們各不相同,因此共有 69 54 個(gè)不同的號(hào)碼.探究:你能說(shuō)說(shuō)這個(gè)問題的特征嗎?(2)發(fā)現(xiàn)新知 分步乘法計(jì)數(shù)原理 完成一件事有兩類不同方案,在第1類方案中有種不同的方法,在第2類方案中有種不同的方法. 那么完成這件事共有 種不同的方法.(3)知識(shí)應(yīng)用 例1.設(shè)某班有男生30名,女生24名. 現(xiàn)要從中選出男、女生各一名代表班級(jí)參加比賽,共有多少種不同的選法? 分析:選出一組參賽代表,可以分兩個(gè)步驟.第 l 步選男生.第2步選女生. 解:第 1 步,從 30 名男生中選出1人,有30種不同選擇; 第 2 步,從24 名女生中選出1人,有 24 種不同選擇. 根據(jù)分步乘法計(jì)數(shù)原理,共有 3024 720 種不同的選法. 探究:如果完成一件事需要三個(gè)步驟,做第1步有種不同的方法,做第2步有種不同的方法,做第3步有種不同的方法,那么完成這件事共有多少種不同的方法? 如果完成一件事情需要個(gè)步驟,做每一步中都有若干種不同方法,那么應(yīng)當(dāng)如何計(jì)數(shù)呢? 一般歸納: 完成一件事情,需要分成n個(gè)步驟,做第1步有種不同的方法,做第2步有種不同的方法做第n步有種不同的方法.那么完成這件事共有 種不同的方法.理解分步乘法計(jì)數(shù)原理: 分步計(jì)數(shù)原理針對(duì)的是“分步”問題,完成一件事要分為若干步,各個(gè)步驟相互依存,完成任何其中的一步都不能完成該件事,只有當(dāng)各個(gè)步驟都完成后,才算完成這件事.3.理解分類加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理異同點(diǎn)相同點(diǎn):都是完成一件事的不同方法種數(shù)的問題不同點(diǎn):分類加法計(jì)數(shù)原理針對(duì)的是“分類”問題,完成一件事要分為若干類,各類的方法相互獨(dú)立,各類中的各種方法也相對(duì)獨(dú)立,用任何一類中的任何一種方法都可以單獨(dú)完成這件事,是獨(dú)立完成;而分步乘法計(jì)數(shù)原理針對(duì)的是“分步”問題,完成一件事要分為若干步,各個(gè)步驟相互依存,完成任何其中的一步都不能完成該件事,只有當(dāng)各個(gè)步驟都完成后,才算完成這件事,是合作完成. 例2 .如圖,要給地圖A、B、C、D四個(gè)區(qū)域分別涂上3種不同顏色中的某一種,允許同一種顏色使用多次,但相鄰區(qū)域必須涂不同的顏色,不同的涂色方案有多少種? 解: 按地圖A、B、C、D四個(gè)區(qū)域依次分四步完成, 第一步, m1 3 種, 第二步, m2 2 種, 第三步, m3 1 種, 第四步, m4 1 種, 所以根據(jù)乘法原理, 得到不同的涂色方案種數(shù)共有N 3 2 11 6 變式 1,如圖,要給地圖A、B、C、D四個(gè)區(qū)域分別涂上3種不同顏色中的某一種,允許同一種顏色使用多次,但相鄰區(qū)域必須涂不同的顏色,不同的涂色方案有多少種? 2若顏色是2種,4種,5種又會(huì)什么樣的結(jié)果呢? 練習(xí) 2.現(xiàn)有高一年級(jí)的學(xué)生 3 名,高二年級(jí)的學(xué)生 5 名,高三年級(jí)的學(xué)生 4 名. 1 )從中任選1 人參加接待外賓的活動(dòng),有多少種不同的選法?村去 C 村,不同 2 )從 3 個(gè)年級(jí)的學(xué)生中各選 1 人參加接待外賓的活動(dòng),有多少種不同的選法? 第三課時(shí)3 綜合應(yīng)用 例1. 書架的第1層放有4本不同的計(jì)算機(jī)書,第2層放有3本不同的文藝書,第3層放2本不同的體育書. 從書架上任取1本書,有多少種不同的取法? 從書架的第1、2、3層各取1本書,有多少種不同的取法? 從書架上任取兩本不同學(xué)科的書,有多少種不同的取法? 【分析】 要完成的事是“取一本書”,由于不論取書架的哪一層的書都可以完成了這件事,因此是分類問題,應(yīng)用分類計(jì)數(shù)原理. 要完成的事是“從書架的第1、2、3層中各取一本書”,由于取一層中的一本書都只完成了這件事的一部分,只有第1、2、3層都取后,才能完成這件事,因此是分步問題,應(yīng)用分步計(jì)數(shù)原理. 要完成的事是“取2本不同學(xué)科的書”,先要考慮的是取哪兩個(gè)學(xué)科的書,如取計(jì)算機(jī)和文藝書各1本,再要考慮取1本計(jì)算機(jī)書或取1本文藝書都只完成了這件事的一部分,應(yīng)用分步計(jì)數(shù)原理,上述每一種選法都完成后,這件事才能完成,因此這些選法的種數(shù)之間還應(yīng)運(yùn)用分類計(jì)數(shù)原理. 解: 1 從書架上任取1本書,有3類方法:第1類方法是從第1層取1本計(jì)算機(jī)書,有4 種方法;第2 類方法是從第2 層取1本文藝書,有3 種方法;第3類方法是從第 3 層取 1 本體育書,有 2 種方法.根據(jù)分類加法計(jì)數(shù)原理,不同取法的種數(shù)是 4+3+29; 2 )從書架的第 1 , 2 , 3 層各取 1 本書,可以分成3個(gè)步驟完成:第 1 步從第 1 層取 1 本計(jì)算機(jī)書,有 4 種方法;第 2 步從第 2 層取1本文藝書,有 3 種方法;第 3 步從第3層取1 本體育書,有 2 種方法.根據(jù)分步乘法計(jì)數(shù)原理,不同取法的種數(shù)是 43224 (3)。 例2. 要從甲、乙、丙3幅不同的畫中選出2幅,分別掛在左、右兩邊墻上的指定位置,問共有多少種不同的掛法? 解:從 3 幅畫中選出 2 幅分別掛在左、右兩邊墻上,可以分兩個(gè)步驟完成:第 1 步,從 3 幅畫中選 1 幅掛在左邊墻上,有 3 種選法;第 2 步,從剩下的 2 幅畫中選 1 幅掛在右邊墻上,有 2 種選法.根據(jù)分步乘法計(jì)數(shù)原理,不同掛法的種數(shù)是 N326 6 種掛法可以表示如下: 分類加法計(jì)數(shù)原理和分步乘法計(jì)數(shù)原理,回答的都是有關(guān)做一件事的不同方法的種數(shù)問題.區(qū)別在于:分類加法計(jì)數(shù)原理針對(duì)的是“分類”問題,其中各種方法相互獨(dú)立,用其中任何一種方法都可以做完這件事,分步乘法計(jì)數(shù)原理針對(duì)的是“分步”問題,各個(gè)步驟中的方法互相依存,只有各個(gè)步驟都完成才算做完這件事. 例3.隨著人們生活水平的提高,某城市家庭汽車擁有量迅速增長(zhǎng),汽車牌照號(hào)碼需交通管理部門出臺(tái)了一種汽車牌照組成辦法,每一個(gè)汽車牌照都必須有3個(gè)不重復(fù)的英文字母和 3 個(gè)不重復(fù)的阿拉伯?dāng)?shù)字,并且 3 個(gè)字母必須合成一組出現(xiàn),3個(gè)數(shù)字也必須合成一組出現(xiàn).那么這種辦法共能給多少輛汽車上牌照? 分析:按照新規(guī)定,牌照可以分為 2類,即字母組合在左和字母組合在右.確定一個(gè)牌照的字母和數(shù)字可以分6個(gè)步驟. 解:將汽車牌照分為 2 類,一類的字母組合在左,另一類的字母組合在右.字母組合在左時(shí),分6個(gè)步驟確定一個(gè)牌照的字母和數(shù)字: 第1步,從26個(gè)字母中選1個(gè),放在首位,有26種選法; 第2步,從剩下的25個(gè)字母中選 1個(gè),放在第2位,有25種選法; 第3步,從剩下的24個(gè)字母中選 1個(gè),放在第3位,有24種選法; 第4步,從10個(gè)數(shù)字中選1個(gè),放在第 4 位,有10種選法; 第5步,從剩下的 9個(gè)數(shù)字中選1個(gè),放在第5位,有9種選法; 第6步,從剩下的 8個(gè)字母中選1個(gè),放在第6位,有8種選法. 根據(jù)分步乘法計(jì)數(shù)原理,字母組合在左的牌照共有 26 2524109811 232 000(個(gè)) 同理,字母組合在右的牌照也有11232 000 個(gè). 所以,共能給 11232 000 + 11232 000 22464 000(個(gè))輛汽車上牌照. 用兩個(gè)計(jì)數(shù)原理解決計(jì)數(shù)問題時(shí),最重要的是在開始計(jì)算之前要進(jìn)行仔細(xì)分析 需要分類還是需要分步.分類要做到“不重不漏”.分類后再分別對(duì)每一類進(jìn)行計(jì)數(shù),最后用分類加法計(jì)數(shù)原理求和,得到總數(shù).分步要做到“步驟完整” 完成了所有步驟,恰好完成任務(wù),當(dāng)然步與步之間要相互獨(dú)立.分步后再計(jì)算每一步的方法數(shù),最后根據(jù)分步乘法計(jì)數(shù)原理,把完成每一步的方法數(shù)相乘,得到總數(shù). 練習(xí) 1.乘積展開后共有多少項(xiàng)? 2.某電話局管轄范圍內(nèi)的電話號(hào)碼由八位數(shù)字組成,其中前四位的數(shù)字是不變的,后四位數(shù)字都是。到 9 之間的一個(gè)數(shù)字,那么這個(gè)電話局不同的電話號(hào)碼最多有多少個(gè)? 3.從 5 名同學(xué)中選出正、副組長(zhǎng)各 1 名,有多少種不同的選法? 4.某商場(chǎng)有 6 個(gè)門,如果某人從其中的任意一個(gè)門進(jìn)人商場(chǎng),并且要求從其他的門出去,共有多少種不同的進(jìn)出商場(chǎng)的方式? 第四課時(shí) 例1.給程序模塊命名,需要用3個(gè)字符,其中首字符要求用字母 AG 或 UZ , 后兩個(gè)要求用數(shù)字19.問最多可以給多少個(gè)程序命名? 分析:要給一個(gè)程序模塊命名,可以分三個(gè)步驟:第 1 步,選首字符;第2步,選中間字符;第3步,選最后一個(gè)字符.而首字符又可以分為兩類. 解:先計(jì)算首字符的選法.由分類加法計(jì)數(shù)原理,首字符共有 7 + 6 13種選法. 再計(jì)算可能的不同程序名稱.由分步乘法計(jì)數(shù)原理,最多可以有 1399 1053 個(gè)不同的名稱,即最多可以給1053個(gè)程序命名. 例2. 核糖核酸(RNA)分子是在生物細(xì)胞中發(fā)現(xiàn)的化學(xué)成分一個(gè) RNA 分子是一個(gè)有著數(shù)百個(gè)甚至數(shù)千個(gè)位置的長(zhǎng)鏈,長(zhǎng)鏈中每一個(gè)位置上都由一種稱為堿基的化學(xué)成分所占據(jù).總共有 4 種不同的堿基,分別用A,C,G,U表示.在一個(gè) RNA 分子中,各種堿基能夠以任意次序出現(xiàn),所以在任意一個(gè)位置上的堿基與其他位置上的堿基無(wú)關(guān).假設(shè)有一類 RNA 分子由 100 個(gè)堿基組成,那么能有多少種不同的 RNA 分子? 分析:用圖1. 1一2 來(lái)表示由100個(gè)堿基組成的長(zhǎng)鏈,這時(shí)我們共有100個(gè)位置,每個(gè)位置都可以從A , C , G , U 中任選一個(gè)來(lái)占據(jù). 解:100個(gè)堿基組成的長(zhǎng)鏈共有 100個(gè)位置,如圖11一2所示.從左到右依次在每一個(gè)位置中,從 A , C , G , U 中任選一個(gè)填人,每個(gè)位置有 4 種填充方法.根據(jù)分步乘法計(jì)數(shù)原理,長(zhǎng)度為 100 的所有可能的不同 RNA 分子數(shù)目有 (個(gè)) 例3.電子元件很容易實(shí)現(xiàn)電路的通與斷、電位的高與低等兩種狀態(tài),而這也是最容易控制的兩種狀態(tài).因此計(jì)算機(jī)內(nèi)部就采用了每一位只有 O 或 1 兩種數(shù)字的記數(shù)法,即二進(jìn)制.為了使計(jì)算機(jī)能夠識(shí)別字符,需要對(duì)字符進(jìn)行編碼,每個(gè)字符可以用一個(gè)或多個(gè)字節(jié)來(lái)表示,其中字節(jié)是計(jì)算機(jī)中數(shù)據(jù)存儲(chǔ)的最小計(jì)量單位,每個(gè)字節(jié)由 8 個(gè)二進(jìn)制位構(gòu)成.問: 1)一個(gè)字節(jié)( 8 位)最多可以表示多少個(gè)不同的字符? 2)計(jì)算機(jī)漢字國(guó)標(biāo)碼(GB 碼)包含了6 763 個(gè)漢字,一個(gè)漢字為一個(gè)字符,要對(duì)這些漢字進(jìn)行編碼,每個(gè)漢字至少要用多少個(gè)字節(jié)表示? 分析:由于每個(gè)字節(jié)有 8 個(gè)二進(jìn)制位,每一位上的值都有 0,1兩種選擇,而且不同的順序代表不同的字符,因此可以用分步乘法計(jì)數(shù)原理求解本題. 解:1)用圖1.1一3 來(lái)表示一個(gè)字節(jié). 圖 11 一 3 一個(gè)字節(jié)共有 8 位,每位上有 2 種選擇.根據(jù)分步乘法計(jì)數(shù)原理,一個(gè)字節(jié)最多可以表示 22222222 28 256 個(gè)不同的字符; 2)由( 1 )知,用一個(gè)字節(jié)所能表示的不同字符不夠 6 763 個(gè),我們就考慮用2 個(gè)字節(jié)能夠表示多少個(gè)字符.前一個(gè)字節(jié)有 256 種不同的表示方法,后一個(gè)字節(jié)也有 256 種表示方法.根據(jù)分步乘法計(jì)數(shù)原理,2個(gè)字節(jié)可以表示 256256 65536 個(gè)不同的字符,這已經(jīng)大于漢字國(guó)標(biāo)碼包含的漢字個(gè)數(shù) 6 763.所以要表示這些漢字,每個(gè)漢字至少要用 2 個(gè)字節(jié)表示. 例4.計(jì)算機(jī)編程人員在編寫好程序以后需要對(duì)程序進(jìn)行測(cè)試.程序員需要知道到底有多少條執(zhí)行路徑(即程序從開始到結(jié)束的路線),以便知道需要提供多少個(gè)測(cè)試數(shù)據(jù).一般地,一個(gè)程序模塊由許多子模塊組成.如圖1.1一4,它是一個(gè)具有許多執(zhí)行路徑的程序模塊.問:這個(gè)程序模塊有多少條執(zhí)行路徑? 另外,為了減少測(cè)試時(shí)間,程序員需要設(shè)法減少測(cè)試次數(shù)你能幫助程序員設(shè)計(jì)一個(gè)測(cè)試方法,以減少測(cè)試次數(shù)嗎? 圖1.1一4 分析:整個(gè)模塊的任意一條執(zhí)行路徑都分兩步完成:第 1 步是從開始執(zhí)行到 A 點(diǎn);第 2 步是從 A 點(diǎn)執(zhí)行到結(jié)束.而第 1 步可由子模塊 1 或子模塊 2 或子模塊 3 來(lái)完成;第 2 步可由子模塊 4 或子模塊 5 來(lái)完成.因此,分析一條指令在整個(gè)模塊的執(zhí)行路徑需要用到兩個(gè)計(jì)數(shù)原理. 解:由分類加法計(jì)數(shù)原理,子模塊 1 或子模塊 2 或子模塊 3 中的子路徑共有 18 + 45 + 28 91 (條) ; 子模塊 4 或子模塊 5 中的子路徑共有 38 + 43 81 (條) 又由分步乘法計(jì)數(shù)原理,整個(gè)模塊的執(zhí)行路徑共有 9181 7 371(條) 在實(shí)際測(cè)試中,程序員總是把每一個(gè)子模塊看成一個(gè)黑箱,即通過只考察是否執(zhí)行了正確的子模塊的方式來(lái)測(cè)試整個(gè)模塊.這樣,他可以先分別單獨(dú)測(cè)試 5 個(gè)模塊,以考察每個(gè)子模塊的工作是否正常.總共需要的測(cè)試次數(shù)為 18 + 45 + 28 + 38 + 43 172 再測(cè)試各個(gè)模塊之間的信息交流是否正常,只需要測(cè)試程序第1 步中的各個(gè)子模塊和第 2 步中的各個(gè)子模塊之間的信息交流是否正常,需要的測(cè)試次數(shù)為 326 如果每個(gè)子模塊都工作正常,并且各個(gè)子模塊之間的信息交流也正常,那么整個(gè)程序模塊就工作正常.這樣,測(cè)試整個(gè)模塊的次數(shù)就變?yōu)?172 + 6178(次) 顯然,178 與7371 的差距是非常大的. 你看出了程序員是如何實(shí)現(xiàn)減少測(cè)試次數(shù)的嗎? 鞏固練習(xí): 1.如圖,從甲地到乙地有2條路可通,從乙地到丙地有3條路可通;從甲地到丁地有4條路可通, 從丁地到丙地有2條路可通。從甲地到丙地共有多少種不同的走法? 2.書架上放有3本不同的數(shù)學(xué)書,5本不同的語(yǔ)文書,6本不同的英語(yǔ)書.(1)若從這些書中任取一本,有多少種不同的取法?(2)若從這些書中,取數(shù)學(xué)書、語(yǔ)文書、英語(yǔ)書各一本,有多少種不同的取法?(3)若從這些書中取不同的科目的書兩本,有多少種不同的取法? 3.如圖一,要給,四塊區(qū)域分別涂上五種顏色中的某一種,允許同一種顏色使用多次,但相鄰區(qū)域必須涂不同顏色,則不同涂色方法種數(shù)為A. 180 B. 160 C. 96 D. 60 若變?yōu)閳D二,圖三呢? 5.五名學(xué)生報(bào)名參加四項(xiàng)體育比賽,每人限報(bào)一項(xiàng),報(bào)名方法的種數(shù)為多少?又他們爭(zhēng)奪這四項(xiàng)比賽的冠軍,獲得冠軍的可能性有多少種? 6.(2007年重慶卷)若三個(gè)平面兩兩相交,且三條交線互相平行,則這三個(gè)平面把空間分成( C ) A.5部分 B.6部分 C.7部分D.8部分 課外作業(yè):第10頁(yè) 習(xí)題 1. 1 6 , 7 , 8教學(xué)反思: 課堂小結(jié) 1.分類加法計(jì)數(shù)原理和分步乘法計(jì)數(shù)原理是排列組合問題的最基本的原理,是推導(dǎo)排列數(shù)、組合數(shù)公式的理論依據(jù),也是求解排列、組合問題的基本思想. 2.理解分類加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理,并加區(qū)別 分類加法計(jì)數(shù)原理針對(duì)的是“分類”問題,其中各種方法相對(duì)獨(dú)立,用其中任何一種方法都可以完成這件事;而分步乘法計(jì)數(shù)原理針對(duì)的是“分步”問題,各個(gè)步驟中的方法相互依存,只有各個(gè)步驟都完成后才算做完這件事. 3.運(yùn)用分類加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理的注意點(diǎn):分類加法計(jì)數(shù)原理:首先確定分類標(biāo)準(zhǔn),其次滿足:完成這件事的任何一種方法必屬于某一類,并且分別屬于不同的兩類的方法都是不同的方法,即不重不漏分步乘法計(jì)數(shù)原理:首先確定分步標(biāo)準(zhǔn),其次滿足:必須并且只需連續(xù)完成這n個(gè)步驟,這件事才算完成.分配問題 把一些元素分給另一些元素來(lái)接受.這是排列組合應(yīng)用問題中難度較大的一類問題.因?yàn)檫@涉及到兩類元素:被分配元素和接受單位.而我們所學(xué)的排列組合是對(duì)一類元素做排列或進(jìn)行組合的,于是遇到這類問題便手足無(wú)措了. 事實(shí)上,任何排列問題都可以看作面對(duì)兩類元素.例如,把10個(gè)全排列,可以理解為在10個(gè)人旁邊,有序號(hào)為1,2,10的10把椅子,每把椅子坐一個(gè)人,那么有多少種坐法?這樣就出現(xiàn)了兩類元素,一類是人,一類是椅子。于是對(duì)眼花繚亂的常見分配問題,可歸結(jié)為以下小的“方法結(jié)構(gòu)”: .每個(gè)“接受單位”至多接受一個(gè)被分配元素的問題方法是,這里.其中是“接受單位”的個(gè)數(shù)。至于誰(shuí)是“接受單位”,不要管它在生活中原來(lái)的意義,只要.個(gè)數(shù)為的一個(gè)元素就是“接受單位”,于是,方法還可以簡(jiǎn)化為.這里的“多”只要“少”. .被分配元素和接受單位的每個(gè)成員都有“歸宿”,并且不限制一對(duì)一的分配問題,方法是分組問題的計(jì)算公式乘以.1.2.1排列教學(xué)目標(biāo):知識(shí)與技能:了解排列數(shù)的意義,掌握排列數(shù)公式及推導(dǎo)方法,從中體會(huì)“化歸”的數(shù)學(xué)思想,并能運(yùn)用排列數(shù)公式進(jìn)行計(jì)算。過程與方法:能運(yùn)用所學(xué)的排列知識(shí),正確地解決的實(shí)際問題情感、態(tài)度與價(jià)值觀:能運(yùn)用所學(xué)的排列知識(shí),正確地解決的實(shí)際問題.教學(xué)重點(diǎn):排列、排列數(shù)的概念教學(xué)難點(diǎn):排列數(shù)公式的推導(dǎo) 授課類型:新授課 教 具:多媒體、實(shí)物投影儀 第一課時(shí)一、復(fù)習(xí)引入:1分類加法計(jì)數(shù)原理:做一件事情,完成它可以有n類辦法,在第一類辦法中有種不同的方法,在第二類辦法中有種不同的方法,在第n類辦法中有種不同的方法那么完成這件事共有 種不同的方法 2.分步乘法計(jì)數(shù)原理:做一件事情,完成它需要分成n個(gè)步驟,做第一步有種不同的方法,做第二步有種不同的方法,做第n步有種不同的方法,那么完成這件事有 種不同的方法 分類加法計(jì)數(shù)原理和分步乘法計(jì)數(shù)原理,回答的都是有關(guān)做一件事的不同方法種數(shù)的問題,區(qū)別在于:分類加法計(jì)數(shù)原理針對(duì)的是“分類”問題,其中各種方法相互獨(dú)立,每一種方法只屬于某一類,用其中任何一種方法都可以做完這件事;分步乘法計(jì)數(shù)原理針對(duì)的是“分步”問題,各個(gè)步驟中的方法相互依存,某一步驟中的每一種方法都只能做完這件事的一個(gè)步驟,只有各個(gè)步驟都完成才算做完這件事 應(yīng)用兩種原理解題:1.分清要完成的事情是什么;2.是分類完成還是分步完成,“類”間互相獨(dú)立,“步”間互相聯(lián)系;3.有無(wú)特殊條件的限制二、講解新課:1問題: 問題1.從甲、乙、丙3名同學(xué)中選取2名同學(xué)參加某一天的一項(xiàng)活動(dòng),其中一名同學(xué)參加上午的活動(dòng),一名同學(xué)參加下午的活動(dòng),有多少種不同的方法? 分析:這個(gè)問題就是從甲、乙、丙3名同學(xué)中每次選取2名同學(xué),按照參加上午的活動(dòng)在前,參加下午活動(dòng)在后的順序排列,一共有多少種不同的排法的問題,共有6種不同的排法:甲乙甲丙乙甲 乙丙 丙甲 丙乙,其中被取的對(duì)象叫做元素 解決這一問題可分兩個(gè)步驟:第 1 步,確定參加上午活動(dòng)的同學(xué),從 3 人中任選 1 人,有 3 種方法;第 2 步,確定參加下午活動(dòng)的同學(xué),當(dāng)參加上午活動(dòng)的同學(xué)確定后,參加下午活動(dòng)的同學(xué)只能從余下的 2 人中去選,于是有 2 種方法.根據(jù)分步乘法計(jì)數(shù)原理,在 3 名同學(xué)中選出 2 名,按照參加上午活動(dòng)在前,參加下午活動(dòng)在后的順序排列的不同方法共有 326 種,如圖 1.2一1 所示. 圖 1.2一1 把上面問題中被取的對(duì)象叫做元素,于是問題可敘述為:從3個(gè)不同的元素 a , b ,。中任取 2 個(gè),然后按照一定的順序排成一列,一共有多少種不同的排列方法?所有不同的排列是 ab,ac,ba,bc,ca, cb, 共有 326 種. 問題2.從1,2,3,4這 4 個(gè)數(shù)字中,每次取出3個(gè)排成一個(gè)三位數(shù),共可得到多少個(gè)不同的三位數(shù)? 分析:解決這個(gè)問題分三個(gè)步驟:第一步先確定左邊的數(shù),在4個(gè)字母中任取1個(gè),有4種方法;第二步確定中間的數(shù),從余下的3個(gè)數(shù)中取,有3種方法;第三步確定右邊的數(shù),從余下的2個(gè)數(shù)中取,有2種方法 由分步計(jì)數(shù)原理共有:43224種不同的方法,用樹型圖排出,并寫出所有的排列由此可寫出所有的排法 顯然,從 4 個(gè)數(shù)字中,每次取出 3 個(gè),按“百”“十”“個(gè)”位的順序排成一列,就得到一個(gè)三位數(shù).因此有多少種不同的排列方法就有多少個(gè)不同的三位數(shù).可以分三個(gè)步驟來(lái)解決這個(gè)問題: 第 1 步,確定百位上的數(shù)字,在 1 , 2 , 3 , 4 這 4 個(gè)數(shù)字中任取 1 個(gè),有 4 種方法; 第 2 步,確定十位上的數(shù)字,當(dāng)百位上的數(shù)字確定后,十位上的數(shù)字只能從余下的 3 個(gè)數(shù)字中去取,有 3 種方法; 第 3 步,確定個(gè)位上的數(shù)字,當(dāng)百位、十位上的數(shù)字確定后,個(gè)位的數(shù)字只能從余下的 2 個(gè)數(shù)字中去取,有 2 種方法. 根據(jù)分步乘法計(jì)數(shù)原理,從 1 , 2 , 3 , 4 這 4 個(gè)不同的數(shù)字中,每次取出 3 個(gè)數(shù)字,按“百”“十”“個(gè)”位的順序排成一列,共有 43224種不同的排法, 因而共可得到24個(gè)不同的三位數(shù),如圖1. 2一2 所示. 由此可寫出所有的三位數(shù): 123,124, 132, 134, 142, 143, 213,214, 231, 234, 241, 243, 312,314, 321, 324, 341, 342, 412,413, 421, 423, 431, 432 。 同樣,問題 2 可以歸結(jié)為: 從4個(gè)不同的元素a, b, c,d中任取 3 個(gè),然后按照一定的順序排成一列,共有多少種不同的排列方法? 所有不同排列是 abc, abd, acb, acd, adb, adc, bac, bad, bca, bcd, bda, bdc, cab, cad, cba, cbd, cda, cdb, dab, dac, dba, dbc, dca, dcb. 共有43224種. 樹形圖如下 a b c d b c d a c d a b d a b c 2.排列的概念: 從個(gè)不同元素中,任取()個(gè)元素(這里的被取元素各不相同)按照一定的順序排成一列,叫做從個(gè)不同元素中取出個(gè)元素的一個(gè)排列說(shuō)明:(1)排列的定義包括兩個(gè)方面:取出元素,按一定的順序排列;(2)兩個(gè)排列相同的條件:元素完全相同,元素的排列順序也相同3.排列數(shù)的定義: 從個(gè)不同元素中,任取()個(gè)元素的所有排列的個(gè)數(shù)叫做從個(gè)元素中取出元素的排列數(shù),用符號(hào)表示 注意區(qū)別排列和排列數(shù)的不同:“一個(gè)排列”是指:從個(gè)不同元素中,任取個(gè)元素按照一定的順序排成一列,不是數(shù);“排列數(shù)”是指從個(gè)不同元素中,任取()個(gè)元素的所有排列的個(gè)數(shù),是一個(gè)數(shù)所以符號(hào)只表示排列數(shù),而不表示具體的排列4.排列數(shù)公式及其推導(dǎo): 由的意義:假定有排好順序的2個(gè)空位,從個(gè)元素中任取2個(gè)元素去填空,一個(gè)空位填一個(gè)元素,每一種填法就得到一個(gè)排列,反過來(lái),任一個(gè)排列總可以由這樣的一種填法得到,因此,所有不同的填法的種數(shù)就是排列數(shù).由分步計(jì)數(shù)原理完成上述填空共有種填法, 由此,求可以按依次填3個(gè)空位來(lái)考慮,求以按依次填個(gè)空位來(lái)考慮,排列數(shù)公式: () 說(shuō)明:(1)公式特征:第一個(gè)因數(shù)是,后面每一個(gè)因數(shù)比它前面一個(gè)少1,最后一個(gè)因數(shù)是,共有個(gè)因數(shù); (2)全排列:當(dāng)時(shí)即個(gè)不同元素全部取出的一個(gè)排列 全排列數(shù):(叫做n的階乘) 另外,我們規(guī)定 0! 1 例1.用計(jì)算器計(jì)算: 1); 2); 3). 解:用計(jì)算器可得: 由( 2 3 )我們看到,.那么,這個(gè)結(jié)果有沒有一般性呢?即 . 排列數(shù)的另一個(gè)計(jì)算公式: .即 例2.解方程:3. 解:由排列數(shù)公式得:, , ,即, 解得 或,且,原方程的解為. 例3.解不等式:. 解:原不等式即, 也就是,化簡(jiǎn)得:, 解得或,又,且, 所以,原不等式的解集為. 例4.求證:(1);(2). 證明:(1),原式成立 (2) 右邊 原式成立 說(shuō)明:(1)解含排列數(shù)的方程和不等式時(shí)要注意排列數(shù)中,且這些限制條件,要注意含排列數(shù)的方程和不等式中未知數(shù)的取值范圍; (2)公式常用來(lái)求值,特別是均為已知時(shí),公式,常用來(lái)證明或化簡(jiǎn) 例5.化簡(jiǎn):; 解:原式 提示:由,得, 原式 說(shuō)明:. 第二課時(shí) 例1.課本例2.某年全國(guó)足球甲級(jí)(A組)聯(lián)賽共有14個(gè)隊(duì)參加,每隊(duì)要與其余各隊(duì)在主、客場(chǎng)分別比賽一次,共進(jìn)行多少場(chǎng)比賽? 解:任意兩隊(duì)間進(jìn)行1次主場(chǎng)比賽與 1 次客場(chǎng)比賽,對(duì)應(yīng)于從14個(gè)元素中任取2個(gè)元素的一個(gè)排列.因此,比賽的總場(chǎng)次是1413182 例2.課本例3.1)從5本不同的書中選 3 本送給 3 名同學(xué),每人各 1 本,共有多少種不同的送法? 2)從5種不同的書中買3本送給3名同學(xué),每人各1本,共有多少種不同的送法? 解:1)從5本不同的書中選出3本分別送給3名同學(xué),對(duì)應(yīng)于從5個(gè)不同元素中任取 3 個(gè)元素的一個(gè)排列,因此不同送法的種數(shù)是 54360 2)由于有5種不同的書,送給每個(gè)同學(xué)的1本書都有 5 種不同的選購(gòu)方法,因此送給 3 名同學(xué)每人各 1 本書的不同方法種數(shù)是 555125 例 8 中兩個(gè)問題的區(qū)別在于: 1 )是從 5 本不同的書中選出 3 本分送 3 名同學(xué),各人得到的書不同,屬于求排列數(shù)問題;而( 2 )中,由于不同的人得到的書可能相同,因此不符合使用排列數(shù)公式的條件,只能用分步乘法計(jì)數(shù)原理進(jìn)行計(jì)算. 例3.課本例4.用0到9這10個(gè)數(shù)字,可以組成多少個(gè)沒有重復(fù)數(shù)字的三位數(shù)?分析:在本問題的。到 9 這 10 個(gè)數(shù)字中,因?yàn)椤2荒芘旁诎傥簧?而其他數(shù)可以排在任意位置上,因此。是一個(gè)特殊的元素.一般的,我們可以從特殊元素的排列位置人手來(lái)考慮問題 解法 1 :由于在沒有重復(fù)數(shù)字的三位數(shù)中,百位上的數(shù)字不能是O,因此可以分兩步完成排列.第1步,排百位上的數(shù)字,可以從1到9 這九個(gè)數(shù)字中任選 1 個(gè),有種選法;第2步,排十位和個(gè)位上的數(shù)字,可以從余下的9個(gè)數(shù)字中任選2個(gè),有種選法(圖1.2一 5 .根據(jù)分步乘法計(jì)數(shù)原理,所求的三位數(shù)有 998648(個(gè)) 解法 2 :如圖1.2 一6 所示,符合條件的三位數(shù)可分成 3 類.每一位數(shù)字都不是位數(shù)有 A 母?jìng)€(gè),個(gè)位數(shù)字是 O 的三位數(shù)有揭個(gè),十位數(shù)字是 0 的三位數(shù)有揭個(gè).根據(jù)分類加法計(jì)數(shù)原理,符合條件的三位數(shù)有 648個(gè). 解法 3 :從0到9這10個(gè)數(shù)字中任取3個(gè)數(shù)字的排列數(shù)為,其中 O 在百位上的排列數(shù)是,它們的差就是用這10個(gè)數(shù)字組成的沒有重復(fù)數(shù)字的三位數(shù)的個(gè)數(shù),即所求的三位數(shù)的個(gè)數(shù)是 -1098-98648. 對(duì)于例9 這類計(jì)數(shù)問題,可用適當(dāng)?shù)姆椒▽栴}分解,而且思考的角度不同,就可以有不同的解題方法.解法 1 根據(jù)百位數(shù)字不能是。的要求,分步完成選 3 個(gè)數(shù)組成沒有重復(fù)數(shù)字的三位數(shù)這件事,依據(jù)的是分步乘法計(jì)數(shù)原理;解法 2 以 O 是否出現(xiàn)以及出現(xiàn)的位置為標(biāo)準(zhǔn),分類完成這件事情,依據(jù)的是分類加法計(jì)數(shù)原理;解法 3 是一種逆向思考方法:先求出從10個(gè)不同數(shù)字中選3個(gè)不重復(fù)數(shù)字的排列數(shù),然后從中減去百位是。的排列數(shù)(即不是三位數(shù)的個(gè)數(shù)),就得到?jīng)]有重復(fù)數(shù)字的三位數(shù)的個(gè)數(shù).從上述問題的解答過程可以看到,引進(jìn)排列的概念,以及推導(dǎo)求排列數(shù)的公式,可以更加簡(jiǎn)便、快捷地求解“從n個(gè)不同元素中取出 m mn)個(gè)元素的所有排列的個(gè)數(shù)”這類特殊的計(jì)數(shù)問題. 1.1節(jié)中的例 9 是否也是這類計(jì)數(shù)問題?你能用排列的知識(shí)解決它嗎?四、課堂練習(xí):1.若,則( )2.與不等的是 ( )3.若,則的值為 ( ) 4.計(jì)算:; .5.若,則的解集是 .6.(1)已知,那么 ; (2)已知,那么 ; (3)已知,那么 ; (4)已知,那么 .7.一個(gè)火車站有8股岔道,停放4列不同的火車,有多少種不同的停放方法(假定每股岔道只能停放1列火車)?8.一部紀(jì)錄影片在4個(gè)單位輪映,每一單位放映1場(chǎng),有多少種輪映次序?答案:1B2. B3. A 4. 1,1 56. 1 6 2 181440 3 84 5 7. 16808. 24 鞏固練習(xí):書本20頁(yè)1,2,3,4,5,6課外作業(yè):第27頁(yè) 習(xí)題1.2 A組1 , 2 , 3,4,5教學(xué)反思: 排列的特征:一個(gè)是“取出元素”;二是“按照一定順序排列” ,“一定順序”就是與位置有關(guān),這也是判斷一個(gè)問題是不是排列問題的重要標(biāo)志。根據(jù)排列的定義,兩個(gè)排列相同,且僅當(dāng)兩個(gè)排列的元素完全相同,而且元素的排列順序也相同. 了解排列數(shù)的意義,掌握排列數(shù)公式及推導(dǎo)方法,從中體會(huì)“化歸”的數(shù)學(xué)思想,并能運(yùn)用排列數(shù)公式進(jìn)行計(jì)算。 對(duì)于較復(fù)雜的問題,一般都有兩個(gè)方向的列式途徑,一個(gè)是“正面湊”,一個(gè)是“反過來(lái)剔”.前者指,按照要求,一點(diǎn)點(diǎn)選出符合要求的方案;后者指,先按全局性的要求,選出方案,再把不符合其他要求的方案剔出去.了解排列數(shù)的意義,掌握排列數(shù)公式及推導(dǎo)方法,從中體會(huì)“化歸”的數(shù)學(xué)思想,并能運(yùn)用排列數(shù)公式進(jìn)行計(jì)算。 第三課時(shí) 例1.(1)有5本不同的書,從中選3本送給3名同學(xué),每人各1本,共有多少種不同的送法? (2)有5種不同的書,要買3本送給3名同學(xué),每人各1本,共有多少種不同的送法?解:(1)從5本不同的書中選出3本分別送給3名同學(xué),對(duì)應(yīng)于從5個(gè)元素中任取3個(gè)元素的一個(gè)排列,因此不同送法的種數(shù)是:,所以,共有60種不同的送法 (2)由于有5種不同的書,送給每個(gè)同學(xué)的1本書都有5種不同的選購(gòu)方法,因此送給3名同學(xué),每人各1本書的不同方法種數(shù)是:,所以,共有125種不同的送法說(shuō)明:本題兩小題的區(qū)別在于:第(1)小題是從5本不同的書中選出3本分送給3位同學(xué),各人得到的書不同,屬于求排列數(shù)問題;而第(2)小題中,給每人的書均可以從5種不同的書中任選1種,各人得到那種書相互之間沒有聯(lián)系,要用分步計(jì)數(shù)原理進(jìn)行計(jì)算 例2.某信號(hào)兵用紅、黃、藍(lán)3面旗從上到下掛在豎直的旗桿上表示信號(hào),每次可以任意掛1面、2面或3面,并且不同的順序表示不同的信號(hào),一共可以表示多少種不同的信號(hào)? 解:分3類:第一類用1面旗表示的信號(hào)有種;第二類用2面旗表示的信號(hào)有種;第三類用3面旗表示的信號(hào)有種,由分類計(jì)數(shù)原理,所求的信號(hào)種數(shù)是:,答:一共可以表示15種不同的信號(hào) 例3.將位司機(jī)、位售票員分配到四輛不同班次的公共汽車上,每一輛汽車分別有一位司機(jī)和一位售票員,共有多少種不同的分配方案? 分析:解決這個(gè)問題可以分為兩步,第一步:把位司機(jī)分配到四輛不同班次的公共汽車上,即從個(gè)不同元素中取出個(gè)元素排成一列,有種方法;第二步:把位售票員分配到四輛不同班次的公共汽車上,也有種方法,利用分步計(jì)數(shù)原理即得分配方案的種數(shù)解:由分步計(jì)數(shù)原理,分配方案共有(種)答:共有576種不同的分配方案 例4.用0到9這10個(gè)數(shù)字,可以組成多少個(gè)沒有重復(fù)數(shù)字的三位數(shù)? 解法1:用分步計(jì)數(shù)原理: 所求的三位數(shù)的個(gè)數(shù)是: 解法2:符合條件的三位數(shù)可以分成三類:每一位數(shù)字都不是0的三位數(shù)有個(gè),個(gè)位數(shù)字是0的三位數(shù)有個(gè),十位數(shù)字是0的三位數(shù)有個(gè),由分類計(jì)數(shù)原理,符合條件的三位數(shù)的個(gè)數(shù)是:. 解法3:從0到9這10個(gè)數(shù)字中任取3個(gè)數(shù)字的排列數(shù)為,其中以0為排頭的排列數(shù)為,因此符合條件的三位數(shù)的個(gè)數(shù)是-. 說(shuō)明:解決排列應(yīng)用題,常用的思考方法有直接法和間接法直接法:通過對(duì)問題進(jìn)行恰當(dāng)?shù)姆诸惡头植?直接計(jì)算符合條件的排列數(shù)如解法1,2;間接法:對(duì)于有限制條件的排列應(yīng)用題,可先不考慮限制條件,把所有情況的種數(shù)求出來(lái),然后再減去不符合限制條件的情況種數(shù)如解法3.對(duì)于有限制條件的排列應(yīng)用題,要恰當(dāng)?shù)卮_定分類與分步的標(biāo)準(zhǔn),防止重復(fù)與遺漏 第四課時(shí) 例5.(1)7位同學(xué)站成一排,共有多少種不同的排法? 解:問題可以看作:7個(gè)元素的全排列=5040. (2)7位同學(xué)站成兩排(前3后4),共有多少種不同的排法? 解:根據(jù)分步計(jì)數(shù)原理:7654321=7!=5040. (3)7位同學(xué)站成一排,其中甲站在中間的位置,共有多少種不同的排法? 解:問題可以看作:余下的6個(gè)元素的全排列?720. (4)7位同學(xué)站成一排,甲、乙只能站在兩端的排法共有多少種? 解:根據(jù)分步計(jì)數(shù)原理:第一步 甲、乙站在兩端有種; 第二步 余下的5名同學(xué)進(jìn)行全排列有種,所以,共有240種排列方法 (5)7
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 中糧倉(cāng)儲(chǔ)面試題庫(kù)及答案
- DB13T 5390-2021 梨貨架期品質(zhì)維持技術(shù)規(guī)范
- 安全消防環(huán)保試題及答案
- 《2025合同管理規(guī)程》
- 1例急性喉炎個(gè)案護(hù)理
- 江西應(yīng)用技術(shù)職業(yè)學(xué)院《中國(guó)文化英文》2023-2024學(xué)年第二學(xué)期期末試卷
- 吉林大學(xué)《美術(shù)概論》2023-2024學(xué)年第二學(xué)期期末試卷
- 武漢工程職業(yè)技術(shù)學(xué)院《臨床醫(yī)學(xué)概述》2023-2024學(xué)年第二學(xué)期期末試卷
- 衡陽(yáng)師范學(xué)院南岳學(xué)院《古代文學(xué)(二)》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025【管理】OAZ-CN商品房買賣合同糾紛中的幾個(gè)問題
- 阿米巴模式的合同協(xié)議書
- 技術(shù)員獎(jiǎng)勵(lì)協(xié)議書
- 北京市先農(nóng)壇體育運(yùn)動(dòng)技術(shù)學(xué)校招聘筆試真題2024
- GB 35181-2025重大火災(zāi)隱患判定規(guī)則
- 打破傳統(tǒng)藩籬:小學(xué)高段先寫后教習(xí)作教學(xué)模式的創(chuàng)新與實(shí)踐
- 2025年道德與法治課程考試試卷及答案
- 中國(guó)科學(xué)院大學(xué)《高級(jí)人工智能》2023-2024學(xué)年第一學(xué)期期末試卷
- 華南理工大學(xué)自主招生綜合素質(zhì)評(píng)價(jià)面試及試題指導(dǎo)
- 急性上消化道出血課件
- 不飽和聚酯樹脂化學(xué)品安全技術(shù)說(shuō)明書MSDS
- 《白內(nèi)障》PPT課件.ppt
評(píng)論
0/150
提交評(píng)論