已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
計(jì)量經(jīng)濟(jì)學(xué)(龐浩)第二版第七章練習(xí)題及參考解答7.1 表7.11中給出了1970-1987年期間美國的個(gè)人消費(fèi)支出(PCE)和個(gè)人可支配收入(PDI)數(shù)據(jù),所有數(shù)字的單位都是10億美元(1982年的美元價(jià))。表7.11 1970-1987年美國個(gè)人消費(fèi)支出(PCE)和個(gè)人可支配收入(PDI)數(shù)據(jù)年份 PCE PDI年份 PCE PDI年份 PCE PDI1970 1492.0 1668.1 1971 1538.8 1728.41972 1621.9 1797.41973 1689.6 1916.31974 1674.0 1896.61975 1711.9 1931.71976 1803.9 2001.0 1977 1883.8 2066.61978 1961.0 2167.41979 2004.4 2212.61980 2000.4 2214.31981 2042.2 2248.61982 2050.7 2261.51983 2146.0 2331.9 1984 2249.3 2469.81985 2354.8 2542.81986 2455.2 2640.91987 2521.0 2686.3估計(jì)下列模型: (1) 解釋這兩個(gè)回歸模型的結(jié)果。(2) 短期和長期邊際消費(fèi)傾向(MPC)是多少?練習(xí)題7.1參考解答:1)第一個(gè)模型回歸的估計(jì)結(jié)果如下,Dependent Variable: PCEMethod: Least SquaresDate: 07/27/05 Time: 21:41Sample: 1970 1987Included observations: 18VariableCoefficientStd. Errort-StatisticProb.C-216.426932.69425-6.6197230.0000PDI1.0081060.01503367.059200.0000R-squared0.996455Mean dependent var1955.606Adjusted R-squared0.996233S.D. dependent var307.7170S.E. of regression18.88628Akaike info criterion8.819188Sum squared resid5707.065Schwarz criterion8.918118Log likelihood-77.37269F-statistic4496.936Durbin-Watson stat1.366654Prob(F-statistic)0.000000回歸方程: (3269425) (0.015033) t =(-6.619723) (67.05920) =0.996455 F=4496.936第二個(gè)模型回歸的估計(jì)結(jié)果如下,Dependent Variable: PCEMethod: Least SquaresDate: 07/27/05 Time: 21:51Sample (adjusted): 1971 1987Included observations: 17 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.C-233.273645.55736-5.1204360.0002PDI0.9823820.1409286.9708170.0000PCE(-1)0.0371580.1440260.2579970.8002R-squared0.996542Mean dependent var1982.876Adjusted R-squared0.996048S.D. dependent var293.9125S.E. of regression18.47783Akaike info criterion8.829805Sum squared resid4780.022Schwarz criterion8.976843Log likelihood-72.05335F-statistic2017.064Durbin-Watson stat1.570195Prob(F-statistic)0.000000回歸方程: (45.557) (0.1409) (0.1440) t = (-5.120) (6.9708) (0.258) =0.9965 F=2017.0642)從模型一得到MPC=1.008;從模型二得到,短期MPC=0.9824,由于模型二為自回歸模型,要先轉(zhuǎn)換為分布滯后模型才能得到長期邊際消費(fèi)傾向,我們可以從庫伊克變換倒推得到長期MPC=0.9824/(1+0.0372)=0.9472。7.2 表7.12中給出了某地區(qū)1980-2001年固定資產(chǎn)投資Y與銷售額X的資料。表7.12 某地區(qū)1980-2001年固定資產(chǎn)投資Y與銷售額X的資料(單位:億元) 年份YX年份YX198036.9952.8051991128.68168.129198133.6055.9061992123.97163.351198235.4263.0271993117.35172.547198342.3572.9311994139.61190.682198452.4884.7901995152.88194.538198553.6686.5891996137.95194.657198658.5398.7971997141.06206.326198767.48113.2011998163.45223.541198878.13126.9051999183.80232.724198995.13143.9362000192.61239.4591990112.60154.3912001182.81235.142運(yùn)用局部調(diào)整假定或自適應(yīng)預(yù)期假定估計(jì)以下模型參數(shù),并解釋模型的經(jīng)濟(jì)意義,探測模型擾動(dòng)項(xiàng)的一階自相關(guān)性:1)設(shè)定模型 其中為預(yù)期最佳值。 2)設(shè)定模型 其中為預(yù)期最佳值。3)設(shè)定模型 其中為預(yù)期最佳值。練習(xí)題7.2參考解答:1)在局部調(diào)整假定下,先估計(jì)一階自回歸模型:回歸的估計(jì)結(jié)果如下,Dependent Variable: YMethod: Least SquaresDate: 25/02/10 Time: 22:42Sample (adjusted): 1981 2001Included observations: 21 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.C-15.104034.729450-3.1936130.0050X0.6292730.0978196.4330310.0000Y(-1)0.2716760.1148582.3653150.0294R-squared0.987125Mean dependent var109.2167Adjusted R-squared0.985695S.D. dependent var51.78550S.E. of regression6.193728Akaike info criterion6.616515Sum squared resid690.5208Schwarz criterion6.765733Log likelihood-66.47341F-statistic690.0561Durbin-Watson stat1.518595Prob(F-statistic)0.000000回歸方程: (4.729450) (0.097819) (0.114858) t = (-3.193613) (6.433031) (2.365315) =0.987125 F=690.0561 DW=1.518595根據(jù)局部調(diào)整模型的參數(shù)關(guān)系,有將上述估計(jì)結(jié)果代入得到: 故局部調(diào)整模型估計(jì)結(jié)果為:經(jīng)濟(jì)意義:該地區(qū)銷售額每增加1億元,未來預(yù)期最佳新增固定資產(chǎn)投資為0.864001億元。運(yùn)用德賓h檢驗(yàn)一階自相關(guān):在顯著性水平上,查標(biāo)準(zhǔn)正態(tài)分布表得臨界值,由于,則接收原假設(shè),說明自回歸模型不存在一階自相關(guān)問題。 2)先對數(shù)變換模型,有在局部調(diào)整假定下,先估計(jì)一階自回歸模型:回歸的估計(jì)結(jié)果如下,Dependent Variable: LNYMethod: Least SquaresDate: 25/02/10 Time: 22:55Sample (adjusted): 1981 2001Included observations: 21 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.C-1.0780460.184144-5.8543660.0000LNX0.9045220.1112438.1310390.0000LNY(-1)0.2600330.0877992.9616840.0084R-squared0.993725Mean dependent var4.559823Adjusted R-squared0.993028S.D. dependent var0.562953S.E. of regression0.047007Akaike info criterion-3.145469Sum squared resid0.039774Schwarz criterion-2.996251Log likelihood36.02742F-statistic1425.219Durbin-Watson stat1.479333Prob(F-statistic)0.000000回歸方程: (0.184144) (0.111243) (0.087799) t = (-5.854366) (8.131039) (2.961684) =0.993725 F=1425.219 DW1=1.479333根據(jù)局部調(diào)整模型的參數(shù)關(guān)系,有,將上述估計(jì)結(jié)果代入得到: 故局部調(diào)整模型估計(jì)結(jié)果為:,也即經(jīng)濟(jì)意義:該地區(qū)銷售額每增加1%,未來預(yù)期最佳新增固定資產(chǎn)投資為1.22238%。運(yùn)用德賓h檢驗(yàn)一階自相關(guān):在顯著性水平上,查標(biāo)準(zhǔn)正態(tài)分布表得臨界值,由于,則接收原假設(shè),說明自回歸模型不存在一階自相關(guān)。3)在自適應(yīng)預(yù)期假定下,先估計(jì)一階自回歸模型:回歸的估計(jì)結(jié)果如下,Dependent Variable: YMethod: Least SquaresDate: 25/02/10 Time: 22:42Sample (adjusted): 1981 2001Included observations: 21 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.C-15.104034.729450-3.1936130.0050X0.6292730.0978196.4330310.0000Y(-1)0.2716760.1148582.3653150.0294R-squared0.987125Mean dependent var109.2167Adjusted R-squared0.985695S.D. dependent var51.78550S.E. of regression6.193728Akaike info criterion6.616515Sum squared resid690.5208Schwarz criterion6.765733Log likelihood-66.47341F-statistic690.0561Durbin-Watson stat1.518595Prob(F-statistic)0.000000回歸方程: (4.729450) (0.097819) (0.114858) t = (-3.193613) (6.433031) (2.365315) =0.987125 F=690.0561 DW=1.518595根據(jù)局部調(diào)整模型的參數(shù)關(guān)系,有將上述估計(jì)結(jié)果代入得到: 故局部調(diào)整模型估計(jì)結(jié)果為:經(jīng)濟(jì)意義:該地區(qū)銷售額每增加1億元,未來預(yù)期最佳新增固定資產(chǎn)投資為0.864001億元。運(yùn)用德賓h檢驗(yàn)一階自相關(guān):在顯著性水平上,查標(biāo)準(zhǔn)正態(tài)分布表得臨界值,由于,則接收原假設(shè),說明自回歸模型不存在一階自相關(guān)。7.3 利用表7.12的數(shù)據(jù),取阿爾蒙多項(xiàng)式的次數(shù)m=2,運(yùn)用阿爾蒙多項(xiàng)式變換法估計(jì)分布滯后模型: 練習(xí)題7.3參考解答:分布滯后模型: s=4,取m=2。假設(shè), (*)則模型可變?yōu)椋海渲校汗烙?jì)的回歸結(jié)果如下,Dependent Variable: YMethod: Least SquaresDate: 25/02/10 Time: 23:19Sample (adjusted): 1984 2001Included observations: 18 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.C-35.492348.192884-4.3320930.0007Z00.8910120.1745635.1042480.0002Z1-0.6699040.254447-2.6327830.0197Z20.1043920.0623111.6753380.1160R-squared0.984670Mean dependent var121.2322Adjusted R-squared0.981385S.D. dependent var45.63348S.E. of regression6.226131Akaike info criterion6.688517Sum squared resid542.7059Schwarz criterion6.886378Log likelihood-56.19666F-statistic299.7429Durbin-Watson stat1.130400Prob(F-statistic)0.000000回歸方程:由(*)式可得,由阿爾蒙多項(xiàng)式變換可得如下估計(jì)結(jié)果:7.4 表7.13中給出了1962-1995年某地區(qū)基本建設(shè)新增固定資產(chǎn)Y和全省工業(yè)總產(chǎn)值X按當(dāng)年價(jià)格計(jì)算的歷史資料。表7.13 1962-1995年某地區(qū)基本建設(shè)新增固定資產(chǎn)Y和全省工業(yè)總產(chǎn)值X(單位:億元)年份YX年份YX 19620.944.9519792.0642.6919631.696.6319807.9351.6119641.788.5119818.0161.519651.849.3719826.6460.7319664.3611.2319831664.6419677.0211.3419848.8166.6719685.5519.9198510.3873.7819696.9329.4919866.269.5219707.1736.8319877.9779.6419712.3321.19198827.3392.4519722.1818.14198912.58102.9419732.3919.69199012.47105.6219743.323.88199110.88104.8819755.2429.65199217.7113.319765.3940.94199314.72127.1319771.7833.08199413.76141.4419780.7320.3199514.42173.75(1) 設(shè)定模型 作局部調(diào)整假定,估計(jì)參數(shù),并作解釋。 (2) 設(shè)定模型 作自適應(yīng)預(yù)期假定,估計(jì)參數(shù),并作解釋。 (3) 比較上述兩種模型的設(shè)定及擬合情況,你覺得哪一個(gè)模型較好,為什么?練習(xí)題7.4參考解答:1)在局部調(diào)整假定下,先估計(jì)一階自回歸模型,回歸的估計(jì)結(jié)果如下,Dependent Variable: YMethod: Least SquaresDate: 07/27/05 Time: 22:31Sample (adjusted): 1963 1995Included observations: 33 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.C1.8966451.1671271.6250550.1146X0.1021990.0247824.1239610.0003Y(-1)0.0147000.1828650.0803890.9365R-squared0.584750Mean dependent var7.804242Adjusted R-squared0.557066S.D. dependent var5.889686S.E. of regression3.919779Akaike info criterion5.656455Sum squared resid460.9399Schwarz criterion5.792502Log likelihood-90.33151F-statistic21.12278Durbin-Watson stat1.901308Prob(F-statistic)0.000002回歸方程: (1.167)(0.0248) (0.182865) t =(1.625)(4.1239) (0.080389) =0.584750 F=21.12278可以看出,的回歸系數(shù)顯著,而的回歸系數(shù)不顯著,不是很高,模型整體上對樣本數(shù)據(jù)擬合一般。根據(jù)局部調(diào)整模型的參數(shù)關(guān)系,有,將上述估計(jì)結(jié)果代入得到:故局部調(diào)整模型為:經(jīng)濟(jì)意義:為了達(dá)到全省工業(yè)總產(chǎn)值的計(jì)劃值,尋求一個(gè)未來預(yù)期新增固定資產(chǎn)的最佳量。全省工業(yè)總產(chǎn)值每計(jì)劃增加1(億元),則未來預(yù)期最佳新增固定資產(chǎn)量為0.1037億元。2)在自適應(yīng)預(yù)期假定下,先估計(jì)一階自回歸模型,回歸的估計(jì)結(jié)果如下,Dependent Variable: YMethod: Least SquaresDate: 07/27/05 Time: 22:31Sample (adjusted): 1963 1995Included observations: 33 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.C1.8966451.1671271.6250550.1146X0.1021990.0247824.1239610.0003Y(-1)0.0147000.1828650.0803890.9365R-squared0.584750Mean dependent var7.804242Adjusted R-squared0.557066S.D. dependent var5.889686S.E. of regression3.919779Akaike info criterion5.656455Sum squared resid460.9399Schwarz criterion5.792502Log likelihood-90.33151F-statistic21.12278Durbin-Watson stat1.901308Prob(F-statistic)0.000002回歸方程: (1.167)(0.0248) (0.182865) t =(1.625)(4.1239) (0.080389) =0.584750 F=21.12278可以看出,的回歸系數(shù)顯著,而的回歸系數(shù)不顯著,不是很高,模型整體上對樣本數(shù)據(jù)擬合一般。根據(jù)自適應(yīng)模型的參數(shù)關(guān)系,有,代入得到:故局部調(diào)整模型為:經(jīng)濟(jì)意義:新增固定資產(chǎn)的變化取決于全省工業(yè)總產(chǎn)值的預(yù)期值。全省工業(yè)總產(chǎn)值每預(yù)期增加增加1(億元),當(dāng)期新增固定資產(chǎn)量為0.1037(億元)。3)局部調(diào)整模型和自適應(yīng)模型的區(qū)別在于:局部調(diào)整模型是對應(yīng)變量的局部調(diào)整而得到的;而自適應(yīng)模型是由解釋變量的自適應(yīng)過程而得到的。由回歸結(jié)果可見,Y滯后一期的回歸系數(shù)并不顯著,說明兩個(gè)模型的設(shè)定都不合理。7.5 表7.14給出某地區(qū)各年末貨幣流通量Y,社會商品零售額X1、城鄉(xiāng)居民儲蓄余額X 2的數(shù)據(jù)。表7.14 某地區(qū)年末貨幣流通量、社會商品零售額、城鄉(xiāng)居民儲蓄余額數(shù)據(jù)(單位:億元)年份年末貨幣流通量Y社會商品零售額X1城鄉(xiāng)居民儲蓄余額X2年份年末貨幣流通量Y社會商品零售額X1城鄉(xiāng)居民儲蓄余額X21953105187867641631970385002403322615619541408810143348881971471002745343094419551337510398956891972572002991973596119561835412452574061973600003140063966719571686712646791561974625003189544332019581851513444610193197564500336015461841959225581549611393919766800035292448311196029036170370154951977630003781155331319614147214918212553197866000415830612901962348261545641008019797600045203270033196330000142548116021980850005125439280019642430014341515031198190000547956109707196529300156998171081982101000591088133799196633900176387193011983100000646427164314196736100178162204851984160000733162201199196839600167074225721985192000919045277185利用表中數(shù)據(jù)設(shè)定模型: 其中,為長期(或所需求的)貨幣流通量。試根據(jù)局部調(diào)整假設(shè),作模型變換,估計(jì)并檢驗(yàn)參數(shù),對參數(shù)經(jīng)濟(jì)意義做出解釋。練習(xí)題7.5參考解答:1)在局部調(diào)整假定下,先估計(jì)一階自回歸模型:回歸的估計(jì)結(jié)果如下:Dependent Variable: YMethod: Least SquaresDate: 26/02/10 Time: 15:56Sample (adjusted): 1954 1985Included observations: 32 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.C6596.2284344.0781.5184420.1401X10.0474510.0396101.1979400.2410X20.2748380.0905343.0357360.0051Y(-1)0.4052750.1872202.1646990.0391R-squared0.967247Mean dependent var55355.97Adjusted R-squared0.963738S.D. dependent var40464.90S.E. of regression7705.604Akaike info criterion20.85375Sum squared resid1.66E+09Schwarz criterion21.03697Log likelihood-329.6600F-statistic275.6267Durbin-Watson stat2.109534Prob(F-statistic)0.000000回歸方程: (4344.078) (0.039610) (0.090534) (0.187220) t = (1.518442) (1.197940) (3.035736) (2.164699) =0.967247 F=275.6267 DW=2.109534根據(jù)局部調(diào)整模型的參數(shù)關(guān)系,有將上述估計(jì)結(jié)果代入得到: 故局部調(diào)整模型估計(jì)結(jié)果為:經(jīng)濟(jì)意義:在其他條件不變的情況下,該地區(qū)社會商品零售額每增加1億元,則預(yù)期年末貨幣流通量增加0.07978億元。同樣,在其他條件不變的情況下,該地區(qū)城鄉(xiāng)居民儲蓄余額每增加1億元,則預(yù)期年末貨幣流通量增加0.462126億元。2)先對數(shù)變換模型形式,在局部調(diào)整假定下,先估計(jì)一階自回歸模型:回歸的估計(jì)結(jié)果如下:Dependent Variable: LNYMethod: Least SquaresDate: 26/02/10 Time: 16:12Sample (adjusted): 1954 1985Included observations: 32 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.C0.6443331.6778880.3840140.7039LNX10.2062300.2555570.8069840.4265LNX20.1801680.1549131.1630310.2546LNY(-1)0.5314450.1092604.8640490.0000R-squared0.968959Mean dependent var10.70088Adjusted R-squared0.965633S.D. dependent var0.672279S.E. of regression0.124629Akaike info criterion-1.210486Sum squared resid0.434905Schwarz criterion-1.027269Log likelihood23.36778F-statistic291.3458Durbin-Watson stat1.914829Prob(F-statistic)0.000000回歸方程: (1.677888) (0.255557) (0.154913) (0.531445) t = (0.384014) (0.806984) (1.163013) (4.864049) =0.968959 F=291.3458 DW=1.914829根據(jù)局部調(diào)整模型的參數(shù)關(guān)系,有將上述估計(jì)結(jié)果代入得到: 故局部調(diào)整模型估計(jì)結(jié)果為:經(jīng)濟(jì)意義:貨幣需求對社會商品零售額的長期彈性為:0.44104;貨幣需求對城鄉(xiāng)居民儲蓄余額的長期彈性為0.384518。7.6 設(shè) 其中:M為實(shí)際貨幣流通量,為期望社會商品零售總額,為期望儲蓄總額,對于期望值作如下假定: 其中為期望系數(shù),均為小于1的正數(shù)。(1) 如何利用可觀測的量來表示?(2) 分析這樣變換存在什么問題?(3) 利用7.5題的數(shù)據(jù)進(jìn)行回歸,估計(jì)模型,并作檢驗(yàn)。練習(xí)題7.6參考解答:1)首先將M滯后一期并乘上得到 再將原始方程減去該方程,得到(1)(2) 于是可表示為: 2)從上面的變化中可看出,隨機(jī)擾動(dòng)項(xiàng)變?yōu)?這就可能導(dǎo)致出現(xiàn)隨機(jī)擾動(dòng)項(xiàng)的自相關(guān),進(jìn)而導(dǎo)致估計(jì)出來的結(jié)果是有偏的,而且不是一致估計(jì)。3)對()回歸的估計(jì)結(jié)果如下,Dependent Variable: MTMethod: Least SquaresDate: 07/26/05 Time: 00:18Sample(adjusted): 1955 1985Included observations: 31 after adjusting endpointsVariableCoefficientStd. Errort-StatisticProb. C9266.49084918.13741.88410.0717Y0.13230.10961.20680.2392Y(-1)-0.12840.1236-1.03890.3091R-0.39570.4883-0.81040.4256R(-1)0.95330.66121.44160.1623MT(-1)0.47290.23612.00280.0566MT(-2)-0.05500.2883-0.19080.8502R-squared0.9691 Mean dependent var56687.1935Adjusted R-squared0.9614 S.D. dependent var40415.2055S.E. of regression7932.428 Akaike info criterion20.9909Sum squared resid1510162034 Schwarz criterion21.3147Log likelihood-318.3602 F-statistic125.7918Durbin-Watson stat2.1446 Prob(F-statistic)0回歸方程:可以看到,只有的回歸系數(shù)在10% 的顯著性水平下是顯著的,其他回歸系數(shù)均不顯著;F統(tǒng)計(jì)量較大,方程整體顯著;較高,模型整體上對樣本數(shù)據(jù)擬合較好。7.7 考慮如下回歸模型:其中,y為通貨膨脹率,x為生產(chǎn)設(shè)備使用率。1) 生產(chǎn)設(shè)備使用率對通貨膨脹率的短期影響和總的影響分別是多大?2) 如果庫伊克模型為,你怎樣得到生產(chǎn)設(shè)備使用率對通貨膨脹率的短期影響和長期影響?練習(xí)題7.7參考解答:1)該模型為有限分布滯后模型,故生產(chǎn)設(shè)備使用率對通貨膨脹的短期影響為0.1408,總的影響為0.1408+0.2306=0.3714。2)利用工具變量法,用來代替 進(jìn)行估計(jì),則庫伊克模型變換為。若原先有,則需估計(jì)的模型為,所以生產(chǎn)設(shè)備使用率對通貨膨脹的短期影響為,總的影響為。7.8 表7.15中給出了某地區(qū)消費(fèi)總額Y和貨幣收入總額X的年度資料。表7.15 某地區(qū)消費(fèi)總額Y(億元)和貨幣收入總額X(億元)的年度資料(單位:億元)年份XY年份XY1975103.16991.1581990215.539204.751976115.07109.11991220.391218.6661977132.21119.1871992235.483227.4251978156.574143.9081993280.975229.861979166.091155.1921994292.339244.231980155.099148.6731995278.116258.3631981138.175151.2881996292.654275.2481982146.936148.11997341.442299.2771983157.7156.7771998401.141345.471984179.797168.4751999458.567406.1191985195.779174.7372000500.915462.2231986194.858182.8022001450.939492.6621987189.179180.132002626.709539.0461988199.963190.4442003783.953617.5681989205.717196.92004890.637727.397分析該地區(qū)消費(fèi)同收入的關(guān)系 1) 做關(guān)于的回歸,對回歸結(jié)果進(jìn)行分析判斷; 2) 建立適當(dāng)?shù)姆植紲竽P停脦煲量俗儞Q轉(zhuǎn)換為庫伊克模型后進(jìn)行估計(jì),并對估計(jì)結(jié)果進(jìn)行分析判斷。練習(xí)題7.8參考解答:1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2021年廣東省廣州市公開招聘警務(wù)輔助人員輔警筆試自考題1卷含答案
- 淮北市和淮南市2025屆高三第一次質(zhì)量檢測(一模)地理試卷(含答案)
- 甘肅省隴南市(2024年-2025年小學(xué)六年級語文)部編版期末考試(上學(xué)期)試卷及答案
- 2024年組織毒活苗項(xiàng)目資金申請報(bào)告代可行性研究報(bào)告
- 2025年疾病預(yù)防控制及防疫服務(wù)項(xiàng)目申請報(bào)告模式
- 2025年電纜網(wǎng)設(shè)備項(xiàng)目規(guī)劃申請報(bào)告模范
- 廣東省肇慶市(2024年-2025年小學(xué)六年級語文)統(tǒng)編版質(zhì)量測試((上下)學(xué)期)試卷及答案
- 廣東省湛江市(2024年-2025年小學(xué)六年級語文)部編版隨堂測試(下學(xué)期)試卷及答案
- 學(xué)校工作失職檢討書(5篇)
- 2025年皮棉清理機(jī)項(xiàng)目申請報(bào)告
- 校本課程《典籍里的中國》教案
- CNAS-CV03-2022 溫室氣體 第三部分 溫室氣體聲明審定與核查規(guī)范和指南
- 四年級上冊信息技術(shù)教案-9演示文稿巧編輯 |人教版
- 2022年人力資源管理各專業(yè)領(lǐng)域必備知識技能
- 租賃(出租)物品清單表
- 提高聚氯乙烯卷材地面一次驗(yàn)收合格率
- 【部編版】2022年語文七年級上:作文能力提升—謀篇布局(含答案)
- 甲型H1N1流感防治應(yīng)急演練方案(1)
- 稀土高鐵鋁合金電力電纜應(yīng)用參數(shù).
- LU和QR分解法解線性方程組
- 漏油器外殼的落料、拉深、沖孔級進(jìn)模的設(shè)計(jì)【畢業(yè)論文絕對精品】
評論
0/150
提交評論