




已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
unsuspectedrelationshipswhichareofinterestorvaluetothedatabasesowners,ordataminers9.Duetothelargenumberofdimensionalityandthehugevolumeofdata,traditionalstatisticalmethodshavetheirlimitationsindatamining.Tomeetthechallengeofdatamining,articialintelligencebasedhumancomputerinteractivetechniqueshavebeenwidelyusedindatamining3,16.*ConceptualconstructiononincompletesurveydataShouhongWanga,*,HaiWangbaDepartmentofMarketing/BusinessInformationSystems,CharltonCollegeofBusiness,UniversityofMassachusettsDartmouth,285OldWestportRoad,NorthDartmouth,MA02747-2300,USAbDepartmentofComputerScience,UniversityofToronto,Toronto,ON,CanadaM5S3G4Received22March2003;receivedinrevisedform9September2003;accepted20October2003Availableonline26November2003AbstractTherawsurveydatafordataminingareoftenincomplete.Theissuesofmissingdatainknowledgediscoveryareoftenignoredindatamining.Thisarticlepresentstheconceptualfoundationsofdataminingwithincompletesurveydata,andproposesqueryprocessingforknowledgediscoveryandasetofqueryfunctionsfortheconceptualconstructioninsurveydatamining.Throughacase,thispaperdemonstratesthatconceptualconstructiononincompletedatacanbeaccomplishedbyusingarticialintelligencetoolssuchasself-organizingmaps.C2112003ElsevierB.V.Allrightsreserved.Keywords:Incompletesurveydata;Surveydatamining;Conceptualconstruction;Self-organizingmaps;Clusteranalysis;Knowledgediscovery;Queryprocessing1.IntroductionDataminingistheprocessoftrawlingthroughdatainthehopeofidentifyinginterpretablepatterns.D/locate/datakData&KnowledgeEngineering49(2004)311323Correspondingauthor.E-mailaddresses:(S.Wang),(H.Wang).0169-023X/$-seefrontmatterC2112003ElsevierB.V.Allrightsreserved.doi:10.1016/j.datak.2003.10.007aneectivemethodindealingwithhigh-dimensionaldata6,12.Moreimportantly,theSOMmethodprovidesabaseforthevisibilityofclustersofhigh-dimensionaldata.Thisfeatureisnot312S.Wang,H.Wang/Data&KnowledgeEngineering49(2004)311323availableinanyotherdataanalysismethods.Itallowsthedataminertoanalyzeclustersbasedontheproblemdomain.Surveyisoneofthecommondataacquisitionmethodsfordatamining4.Indatamining,onecanrarelyndasurveydatasetthatcontainscompleteentriesofeachobservationforallofthevariables.Commonly,surveysandquestionnairesareoftenonlypartiallycompletedbyrespon-dents.Theextentofdamageofmissingdataisunknownwhenitisvirtuallyimpossibletoreturnthesurveyorquestionnairestothedatasourceforcompletion,butisoneofthemostimportantpartsofknowledgefordataminingtodiscover.Infact,missingdataisanimportantdebatableissueintheknowledgeengineeringeld15.Inminingasurveydatabasewithincompletedatathroughclusteranalysis,patternsofthemissingdataaswellasthepotentialimpactsofthesemissingdataontheminingresultsareknowledge.Forinstance,adatamineroftenwishestoknowhowreliableaclusteranalysisis;whenandwhycertaintypesofvaluesareoftenmissing;whatvariablesarecorrelatedintermsofhavingmissingvaluesatthesametime.Thesevaluablepiecesofknowledgecanbediscoveredonlyafterthemissingpartofthedatasetisfullyexplored.Thispaperdiscussestheissueofmissingdatainminingsurveydatabasesforknowledgedis-covery,presentstheconceptualfoundationsofconceptualconstruction,andproposesasetofqueryfunctionsforconceptualconstructioninSOM-baseddatamining.Therestofthepaperisorganizedasfollows.Section2discussestheissuesofmissingdatarelatedtodatamining.Section3introducesSOMforconceptualconstructiononincompletedata.Section4suggestsfourconceptsasknowledgediscoveryindataminingwithincompletedata.ItprovidesaschemeofconceptualconstructiononincompletedatausingSOM.Section5proposesaquerytoolthatisusedtomanipulateSOMforconceptualconstruction.Section6presentsacasestudythatappliesthequerytooltomanipulatetheSOMfortheconceptualconstructiononastudentopinionsurveydataset.Finally,Section7oersconcludingremarks.2.IssuesofmissingdataIncompletedatasetsareubiquitousindatamining.Therehavebeenmanytreatmentsofmissingdata.Oneoftheconvenientsolutionstoincompletedataistoeliminatefromthedatasetthoserecordsthataremissingvalues.This,however,ignorespotentiallyusefulinformationinthoserecords.Incaseswheretheproportionofmissingdataislarge,theconclusionsdrawnfromthescreeneddatasetaremorelikelybiasedormisleading.Therehavebeenmanynon-statisticaltechniquesfordatamining.Theself-organizingmaps(SOM)methodbasedonKohonenneuralnetwork12isoneofthepromisingtechniques.SOM-basedclustertechniqueshaveadvantagesoverothermethodsfordatamining.Dataminingtypicallydealswithveryhigh-dimensionaldata.Thatis,anobservationinthedatabasefordataminingistypicallydescribedbyalargenumberofvariables.Thecurseofdimensionalityturnsstatisticalcorrelationsofdatainsignicant,andthusmakesstatisticalmethodspowerless.TheSOMmethod,however,doesnotrelyonanyassumptionsofstatisticaltests,andisconsideredasS.Wang,H.Wang/Data&KnowledgeEngineering49(2004)311323313Anothersimpleapproachofdealingwithmissingdataistousegenericunknownforallmissingdataitems.Indatamining,unspeciedunknownforallmissingdataitemsoftencausesconfusionandmisinterpretation.Thethirdsolutiontodealingwithmissingdataistoestimatethemissingvalueinthedataeld.Inthecaseoftimeseriesdata,interpolationbasedontwoadjacentdatapointsthatareobservedispossible.Ingeneralcases,onemayusesomeexpectedvalueinthedataeldbasedonstatisticalmeasures7.However,indatamining,surveydataarecommonlyofthetypesofranking,cat-egory,multiplechoices,andbinary.Interpolationanduseofanexpectedvalueforaparticularmissingdatavariableinthesecasesaregenerallyinadequate.Moreimportantly,research2indicatesthatameaningfultreatmentofmissingdatashallalwaysbeindependentoftheproblembeinginvestigated.Morerecently,therehavebeenmathematicalmethodsforndingtheaggregateconceptualdirectionsofadatasetwithmissingdata(e.g.,1,10).Thesemethodsmakethemselvesdistinctfromthetraditionalapproachesoftreatingmissingdatabyfocusingonthecollectiveeectsofthemissingdatainsteadofindividualmissingvalues.Thissuperiorfeatureofthesemethodscanbebestbuiltupfordataminingonincompletedata.However,thesestatisticalmethodshavelimi-tations.First,itisassumedthatmissingvaluesoccurinarandomfashionorfollowacertaindistributionfunctions.Theirstrongassumptionsaboutthedistributionsofdataareofteninvalidespeciallyforcasesofsurveywithincompletedata.Second,thesemathematicalmodelsaredata-driven,insteadofproblem-domain-driven.Infact,asinglegenericconceptualconstructionalgorithmisinsucienttohandleavarietyofgoalsofdataminingsinceagoalofdataminingisoftenrelatedtoitsspecicproblemdomain.Knowledgediscoveryindatabasesisthenon-trivialprocessofidentifyingvalid,novel,potentiallyuseful,andultimatelyunderstandablepatternsofdata8.Followingthisdenition,thisresearchemphasizestwoaspectsofconceptconstructionindataminingwithincompletedata.First,thecriteriaofvalidity,novelty,usefulnessoftheconceptstobeconstructedindataminingwithincompletedatacouldbeproblem-dependent.Thatis,theinterestofadatapatterndependsonthedatamineranddoesnotsolelydependontheestimatedstatisticalstrengthofthepattern14.Second,theconceptualconstructionbasedontheincompletedataisaccomplishedthroughheuristicsearchincombinatorialspacesbuiltoncomputerandhumancognitivetheories13.Humancomputercollaborationconceptconstructionistheinteractiveprocessbetweenthedataminerandcomputertoextractnovel,plausible,useful,relevant,andinterestingknowledgeassociatedwiththemissingdata.Inourview,dataminingdiersfromtraditionalstatisticsindealingmissingdatainmanyways.(1)Dataminingattemptstoextractunsuspectedandpotentiallyusefulpatternsfromthedataforthedataminerswithnovelgoalsrelatedtothemissingdata,ratherthantoestimatetheindi-vidualvaluesofthemissingdata.(2)Dataminingisahumancenteredprocessimplementedthroughknowledgediscoveryloopscoupledwithhumancomputerinteractiontoperceivetheimpactofthemissingdataatanaggregatelevel,ratherthanaone-waymathematicalderivationbasedonunveriedassump-tions.3.Toolforconceptualconstruction:self-organizingmaps(SOM)Givenalargesetofhigh-dimensionalsurveysamples,thereusuallybeasignicantnumberofobservationshavemissingvalues;however,notallmissingdataarerelevanttothedataminerC213sinterest.Hence,anysimplebrute-forcesearchmethodformissingdataisnotonlyinfeasibleforahugeamountofdata,butalsohelplesswhenthedatamineristoidentifyproblems,ordevelopconcepts,throughdatamining.Toidentifyproblemsordevelopconcepts,thedataminerneedsatooltoobserveunsuspectedpatternsoftheavailabledataandthemissingparts.Self-organizingmaps(SOM)12havebeenwidelyusedforclustering,sinceSOMaremorecomputationallyecientthanthepopulark-meansclusteringalgorithm.Moreimportantly,SOMprovidedatavisualizationforthedataminertoviewhigh-dimensionaldata11.Research14,16314S.Wang,H.Wang/Data&KnowledgeEngineering49(2004)311323indicatesthatSOMareeectiveindataminingfortheidenticationofunsuspectedpatternofthedata.Specically,SOMcanbeusedforclusteranalysisonmultivariatesurveydata.ThisstudytakesonestepfurtherandusesSOMasatoolforconceptconstructionrelatedtomissingdata.Conceptualconstructiononincompletedataistoinvestigatethepatternsofthemissingdataaswellasthepotentialimpactsofthesemissingdataontheminingresultsbasedonlyonthecompletedata.Asseenlaterinourillustrativeexamples,SOMprovideamechanismforhumancomputercollaborationtoconstructconceptsfromthedatawithmissingvalues.SOMcanlearncertainusefulfeaturesfo
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 產(chǎn)品開發(fā)進度跟蹤表-新產(chǎn)品開發(fā)流程
- 薪資詳情與獎金補助證明書(6篇)
- 移民招聘考試試題及答案
- 醫(yī)院中級考試試題及答案
- 六一創(chuàng)意集體活動方案
- 六一夾珠子活動方案
- 醫(yī)學(xué)考試試題及答案詳解
- 六一扶貧活動方案
- 六一校園集體活動方案
- 六一活動小食品活動方案
- 盤扣式落地卸料平臺施工施工方法及工藝要求
- 對賭協(xié)議書合同范本模板2024年
- 寧波浙江寧波市北侖區(qū)人民醫(yī)院招聘編外工作人員30人(護理)筆試歷年典型考題及考點附答案解析
- JT-T-1202-2018城市公共汽電車場站配置規(guī)范
- 診所傳染病防治自查報告總結(jié)
- 廣東省惠州博羅縣2024年五年級數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析
- 銷售業(yè)務(wù)員培訓(xùn)方案
- 2024年春季學(xué)期中國文學(xué)基礎(chǔ)#期末綜合試卷-國開(XJ)-參考資料
- 四川省宜賓市翠屏區(qū)2024屆八下物理期末聯(lián)考試題及答案解析
- 離散數(shù)學(xué)智慧樹知到期末考試答案章節(jié)答案2024年山東理工大學(xué)
- 文藝復(fù)興經(jīng)典名著選讀智慧樹知到期末考試答案章節(jié)答案2024年北京大學(xué)
評論
0/150
提交評論