




已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
附錄1翻譯原文及譯文DocNo:P0193-GP-01-1DocName:AnalysisofManufacturingProcessDataUsingQUICKTechnologyTMIssue:1Data:20April,2006Name(Print)SignatureAuthor:D.CliftonReviewer:S.TurnerTableofContents1ExecutiveSummary.41.1Introdution.41.2TechniquesEmployed.41.3SummaryofResults.41.4Observations.52Introdution.62.1OxfordBioSignalsLimited.63ExternalReferences.74Glossary.75DataDescription.75.1Datatypes.75.2PriorExperimentKnowledge.75.3TestDescription.86Pre-processing.96.1RemovalofStart/StopTransients.96.2RemovalofPowerSupplySignal.96.3FrequencyTransformation.97AnalysisI-Visualisation.127.1VisualisationofHigh-DimensionalData.127.2Visualising5-DManufacturingProcessData.錯誤!未定義書簽。7.3AutomaticNoveltyDetection.錯誤!未定義書簽。7.4ConclusionofAnalysisI-Visualisation.錯誤!未定義書簽。8AnalysisII-SignatureAnalysis.錯誤!未定義書簽。8.1ConstructingSignatures.錯誤!未定義書簽。8.2VisualisingSignatures.錯誤!未定義書簽。8.3ConclusionofAnalysisII-SignatureAnalysis.錯誤!未定義書簽。9AnalysisIII-TemplateAnalysis.錯誤!未定義書簽。9.1ConstructingaTemplateofNormality.錯誤!未定義書簽。9.2ResultsofNoveltyDetectionUsingTemplateAnalysis.錯誤!未定義書簽。9.3ConclusionofAnalysisIII-TemplateAnalysis.錯誤!未定義書簽。10AnalysisIV-None-linearPrediction.錯誤!未定義書簽。10.1NeuralNetworksforOn-LinePrediction.錯誤!未定義書簽。10.2ResultsofNoveltyDetectionusingNon-linearPrediction.錯誤!未定義書簽。10.3ConclusionofAnalysisIV-Non-linearPrediction.錯誤!未定義書簽。11OverallConclusion.錯誤!未定義書簽。11.1Methodology.錯誤!未定義書簽。11.2SummaryofTesults.錯誤!未定義書簽。11.3FutureWork.錯誤!未定義書簽。12AppendixA-NeuroScaleVisualisations.錯誤!未定義書簽。TableofFiguresFigure1-Test90.Fromtoptobottom:Ax,Ay,Az,AE,SPagainsttimet(s)Figure2-PowerspectraforTest19afterremovalof50Hzpowersupplycontribution.Thetopplotshowsa3-D“l(fā)andspace”plotofeachspectrum.Thebottomplotshowsa“contour”plotofthesameinformation,withincreasingsignalpowershownasincreasingcolourfromblacktoredFigure3-PowerspectraforTest19afterremovalofallspectralcomponentsbeneathpowerthresholdFigure4-Azagainsttime(inseconds)forTest19,beforeremovaloflow-powerfrequencycomponentsFigure5-Azagainsttime(inseconds)forTest19,afterremovaloflow-powerfrequencycomponentsFigure6-SPforanexampletest,showingthreeautomatically-detecrminedstates:S1-drillingin(showningreen);S2-drill-bitbreak-throughandremoval(showninred);S3-retraction(showninblue)Figure7-Examplesignatureofvariableyplottedagainstoperating-pointFigure8-Powerspectrafortest51,frequency(Hz)onthex-axisbetween0fs/2Figure9-AveragesignificantfrequencyfuFigure10-VisualisationofAEsignaturesforalltestsFigure11-VisualisationofAxbroadbandsignaturesforalltestsFigure12-VisualisationofAxaverage-frequencysignaturesforalltestsFigure13-NoveltydetectionusingatemplatesignatureFigure14-1ExecutiveSummary1.1IntroductionThepurposeofthisinvestigationconductedbyOxfordBioSignalswastoexamineanddeterminethesuitabilityofitstechniquesinanalyzingdatafromanexamplemanufacturingprocess.ThisreporthasbeensubmittedtoRolls-RoycefortheexpressedofassessingOxfordBioSignalstechniqueswithrespecttomonitoringtheexampleprocess.TheanalysisconductedbyOxfordBioSignals(OBS)waslimitedtoafixedtimescale,afixedsetofchallengedataforasingleprocess(asprovidedbyRolls-RoyceandAachenuniversityofTechnology),withnopriordomainknowledge,norinformationofsystemfailure.1.2TechniquesEmployedOBSusedanumberofanalysistechniquesgiventhelimitedtimescales:I-Visualisation,andClusterAnalysisThispowerfulmethodallowedtheevolutionofthesystemstate(fusingallavailabledatatypes)tobevisualisedthroughouttheseriesoftests.Thisshowedseveraldistinctmodesofoperationduringtheseries,highlightingmajoreventsobservedwithinthedata,latercorrelatedwithactualchangestothesystemsoperationbydomainexperts.Clusteranalysisautomaticallydetectswhichoftheseeventsmaybeconsideredtobe“abnormal”,withrespecttopreviouslyobservedsystembehavior.II-Signaturerepresentseachtestasasinglepointonaplot,allowingchangesbetweenteststobeeasilyidentified.Abnormaltestsareshownasoutlyingpoints,withnormaltestsformingacluster.Modelingthenormalbehaviorofseveralfeaturesselectedfromtheprovideddata,thismethodshowedthatadvancewarningofsystemfailurecouldbeautomaticallydetectedusingthesefeatures,aswellashighlightingsignificanteventswithinthelifeofthesystem.III-TemplateAnalysisThismethodallowsinstantaneoussample-bysamplenoveltydetection,suitableforon-lineimplementation.UsingacomplementaryapproachtoSignatureAnalysis,thismethodalsomodelsnormalsystembehavior.Resultsconfirmedtheobservationmadeusingpreviousmethods.IV-NeuralnetworkPredictorSimilarlyusefulforon-lineanalysis,thismethodusesanautomatedpredictorofsystembehaviour(aneuralnetworkpredictor),inwhichpreviouslyidentified
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 合作辦園協(xié)議書合同
- 設(shè)計(jì)思維在紡織中的試題及答案
- 云南合同協(xié)議書
- 農(nóng)村公路養(yǎng)護(hù)合同協(xié)議書
- 協(xié)議書 合同 區(qū)別
- 購機(jī)合同協(xié)議書
- 更名合同協(xié)議書
- 保姆雇傭住家合同協(xié)議書
- 規(guī)范合同協(xié)議書
- 授課合同協(xié)議書
- 屋頂分布式光伏電站建設(shè)
- 鎮(zhèn)痛藥物在糖尿病足疼痛治療中的效果評估
- 北京南站流線分析報(bào)告
- SL176-2007 水利水電工程施工質(zhì)量檢驗(yàn)與評定規(guī)程
- 咖啡品鑒大全
- 醫(yī)用耗材配送服務(wù)方案
- 狂犬病暴露預(yù)防處置工作規(guī)范(2023年版)課件
- 成品可靠性測試計(jì)劃
- 反腐倡廉廉潔行醫(yī)
- 2022年許昌職業(yè)技術(shù)學(xué)院教師招聘考試真題
- 醫(yī)療業(yè)務(wù)知識培訓(xùn)血透患者水分控制的管理健康宣教教學(xué)課件
評論
0/150
提交評論