外文翻譯--對(duì)有限元仿真數(shù)據(jù)的知識(shí)挖掘.doc_第1頁(yè)
外文翻譯--對(duì)有限元仿真數(shù)據(jù)的知識(shí)挖掘.doc_第2頁(yè)
外文翻譯--對(duì)有限元仿真數(shù)據(jù)的知識(shí)挖掘.doc_第3頁(yè)
外文翻譯--對(duì)有限元仿真數(shù)據(jù)的知識(shí)挖掘.doc_第4頁(yè)
外文翻譯--對(duì)有限元仿真數(shù)據(jù)的知識(shí)挖掘.doc_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

翻譯部分英文原文:KNOWLEDGEDISCOVERYFROMFINITEELEMENTSIMULATIONDATAJI-LONGYIN,DA-YONGLI,YING-CIftTNWANG,YING-HONGPENGInstituteofKnowledge-basedEngineering,SchoolofMechanical,ShanghaiJiaotongUniversity,Shanghai,200030,ChinaE-MAIL:yinjilongsjtu,,,Abstract:Knowledge-basedengineering(KBE)andfiniteelementanalysis(FEA)havebeenusedwidelyinsheetmetalformingarea.However,theacquisitionofknowledgekeepsbottleneckwhenbuildingknowledgebaseinKBE.Also,toproperlyunderstandtheresultsoftheFEAandconsequentlychoosetheappropriatedesign,alotofknowledgeandexperienceareneeded.FEAcangeneratemassivedata,inwhichlargeamountsofusefullyimplicitknowledgeishidden.Thus,knowledgeacquisitionfromthemisprospectivetoeasetheabovedifficultiesbyapplyingKnowledgeDiscoveryinDatabases(KDD)technology.Inthisstudy,thecharacteristicsoftheFEAdataarediscussedfirstly.ThenaframeworkofknowledgediscoveryfromFEAdataisproposed.Correspondingly,adata-miningalgorithmnamedfuzzy-roughalgorithmisdevelopedtodealwiththeFEAsimulationdata.Finally,thestampingprocessofasquare-cuppartwasstudiedasanexample.Theproposedknowledgediscoveryprocessisappliedtoobtainsomeuseful,implicitproductionruleswithefficiencymeasure.TheresultshowsthatknowledgediscoveryfromFEAsimulationdataisvaluable.Keywords:Knowledgediscovery;NumericalSimulation;Fuzzyset;Roughset;Ruleinduction1.IntroductionNowadays,KBEiswidelyusedinengineeringarea,whichintegratesartificialintelligencewithCAXsystemandconnectsengineeringdesignwithCAXsystemwithoutinterruption1.Greatly,aKnowledge-BasedEngineeringSystems(KBES)performancedependsonthescaleoftheknowledgebaseitpossesses.Knowledgeacquisitionremainsasthemaindifficultandcrucialproblem.Manualacquisitionneedshardworkofknowledgeengineersanddomainexperts,togetherwiththetightcorporationbetweenthem.Thequalityofacquiredknowledgeisusuallypoor.Therefore,thereisanurgentneedfornewknowledgeacquisitiontechniquesandtoolstoextractusefulknowledgefromtherapidlygrowingvolumesofdata.KDDisthenon-trivialprocessofidentifying2valid,novel,potentiallyuseful,andultimatelyunderstandablepatternsindata.Itcanacquireimplicitandusefulknowledgeinlarge-scaledatasetsandhasmadegreatsuccessincommercialareas.Ithasexpandedtoengineeringdisciplines.TheoverallKDDprocessincludesdataselection,datapreprocessing,datatransformation,datamining,interpretationandevaluation,asshowninFigure1.Recently,numericalsimulationhasbecomethethirdmodeofsciencecomplementingtheoryandexperimentinalmostalloftheengineeringareas.FEAisthemostcommoncomputersimulationmethodinsheetmetalforminganalysis3.FEAsimulationsgeneratevastquantitiesofdata.TohelpthedesignersunderstandtheoutputofFEA,visualizationtechniquesareoftenusedtodisplaytheresults.However,thescaleoftheresultdataissolargethatvisualizationisfarfromsufficientresultdescription.Designershavetointerpretanalysisresultstodeterminewhetheradesignschemeisacceptable.Thisisalaboriousanderror-proneprocess,andrequiresasignificantamountofexperienceandexpertise.Ontheotherhand,themassiveresultdataimpliesmuchusefulknowledge,buttheyaresimplystoredawayondisksandneveranalyzedeffectively.SoextractingtheimplicitengineeringknowledgefromFEAresultsisverymeaningfulandurgent.Inthisstudy,thecharacteristicsoftheFEAdataarestudiedfirstly.ThenaframeworkforknowledgediscoveryfromFEAsimulationdataisproposed.Accordingtothecharacteristicsofthedata,afuzzy-roughalgorithmisdeveloped.Finally,toverifythevalidityoftheframeworkandthealgorithm,thestampingprocessofasquarecupisanalyzedandtheconclusionisgiven.2.FrameworkofKnowledgeDiscoveryfromFEASimulationData2.1.CharacteristicsofFEASimulationDataThoughitisthesuccessofKDDincommercialareathatinterestsusinknowledgediscoveryfromFEAdata4,5,thereismuchdifferencebetweenthem.Firstly,simulationdataareusuallystoredinaflatfileorspecialformatdatabase,whilebusinessdataareoftenstoredincommercialdatabase6.TheaccessibilityandqueryofdataismoredifficultforFEAsimulationdatafilethanforcommercialdatabase.ToaccessthedatafromvariousCAXsystems,aspecialinterfacetoolkitmustbeused.Secondly,mostbusinessdatabasescontainstructureddataconsistingofwell-definedfields.Eachvalueofthatattributeprovidesforthetargetlabel.However,FEAdataareintheformofmeshdatawithoutlabels.Valuesatameshpointarerealandcanbeelement-centered,node-centeredoredge-centered7.Obviously,theyaresemi-structuredorunstructured.Domainknowledgemustbeusedtoidentifythepatternfeature.Thirdly,unlikeinbusinessorproduction,thegenerationoftheFEAdatadoesnotrelyonexternaleventsandcanbecontrolledcompletely.Thusthedesignofexperiments(DOE)canbeappliedByDOEtechniques,fewersimulationdataisneededtoacquiremoreknowledge.Comparisonbetweensimulationsalsocanbemadetounderstandthedependenceofoutputdataonthedesignparameterspace.Therefore,amodifiedframeworkforknowledgediscoveryfromFEAsimulationdatamustbedevelopedandanappropriatedata-miningalgorithmmustbedesignedtofitthecharacteristicsofFEAdata.2.2.TheProposedFrameworkAccordingtothecharacteristicsofFEAdata,amodifiedknowledgediscoveryframeworkisproposedasshowninFigure2.Thetotalframeworkiscomposedoffourparts:productdesignanddevelopment,data-collection,knowledgediscovery,knowledgemanagementandreuse.Productdesignandprocessdevelopmentisthesequenceofactivitiestoturnopportunitiesandideasintosuccessfulproducts.Eachdesignwillbeexaminedbysimulationmethodorexperimentbeforeobtainingasuccessfulproduct.Tostudytherelationbetweenthedesignparametersandproductsperformance,DOEtechnologycanbeused.Intheiterativeprocessofproductdevelopment,largeamountofFEAsimulationdatarelatedtodesignparametersaregenerated.Thesedataareusuallystoredintoflatfilesorspecialformatdatabasesdispersedlyandcanbeusedasthedatasourceforknowledgediscovery.Duetothediversityofthedata,therefore,thesecondpartoftheframework,adatacollectorisusedtocollectthesedataandtransformsthemintoaunifieddatabase.ItshouldintegratevarioustoolstoexchangedataamongdifferentCAX(CAD/CAEKAM)softwareandknowledgediscoverysystem.Thethirdpartisknowledgediscovery,aniterativeprocessincludingfivebasicsteps:domainunderstanding,dataselectionandintegration,datapre-processing,ruleinduction,knowledgeevaluationandinterpretation.Indomainunderstandingstage,everydatasetsconnotativemeaningandthemechanismbywhichtheyinteractshouldbeknownclearly.Theselecteddatawillbeusedandanalyzedtogiveananswertotheproblemunderconsideration.ToimprovethequalityofthedataforDMalgorithm,datapre-processingmustbedone.Inruleinduction,intelligentmethodsareappliedinordertoextractdatapatterns.Productionrulesareselectedastheknowledgerepresentationforminthisstudyduetotheirmodularity,simplicityandexpandability.Thedataminingprocessmayberefinedandsomeofitsstepsbeiteratedseveraltimesbeforetheextractedknowledgecanbeused.Thefourthpartoftheframeisknowledgemanagementandreuse.Theminedknowledgeiscleanedupfirsttoeliminatetheredundancyandconflictsbeforestoringintoknowledgebase.Themindedknowledgecanbeappliedinthreeways.Firstly,itcanhelpdesignersunderstandsimulationresultclearly.Secondly,itcanbeusedasheuristicknowledgeinsearchingoptimaldesign.Thirdly,itcanbeusedasaknowledgeauto-acquisitiontooltohelpknowledgeengineersinbuildingknowledgebase.Theframeworkitselfisalsoaniterativeprocess.Minedknowledgecanbereused,verifiedandrefreshedinthenextdesignloops.NewFEAsimulationdataaregeneratedandcanbeappendedintodatabaseasdatasourcefornextknowledgediscovery.Thus,theknowledgebasewillbecomemoreefficientandeasiertobeused.3.Fuzzy-roughsetsalgorithmTherough-settheory(RST)proposedbyPawlakhasbeenusedwidelyinknowledgereasoningandknowledgeacquisition9.SincethebasicRSTalgorithmcanonlyhandlenominalfeatureindecisiontable,mostpreviousstudieshavejustshownhowbinaryorcrisptrainingdatamaybehandled10.ToapplyingtheRSTalgorithmonrealvaluedataset,discretizationoftenhastobeappliedasthepreprocessingsteptotransformthemintonominalfeaturespace11.Inthisstudy,animprovedalgorithmnamedfuzzy-roughsetsalgorithmisdevelopedbyintegra

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論