外文翻譯--其對(duì)稱性揭示了行星齒輪減速器獨(dú)立振蕩  英文版.pdf_第1頁
外文翻譯--其對(duì)稱性揭示了行星齒輪減速器獨(dú)立振蕩  英文版.pdf_第2頁
外文翻譯--其對(duì)稱性揭示了行星齒輪減速器獨(dú)立振蕩  英文版.pdf_第3頁
外文翻譯--其對(duì)稱性揭示了行星齒輪減速器獨(dú)立振蕩  英文版.pdf_第4頁
外文翻譯--其對(duì)稱性揭示了行星齒輪減速器獨(dú)立振蕩  英文版.pdf_第5頁
全文預(yù)覽已結(jié)束

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

12thIFToMMWorldCongress,Besanon(France),June18-21,2007RevealingofIndependentOscillationsinPlanetaryReducerGearowingtoitssymmetryL.Banakh*Yu.Fedoseev+MechanicalEngineeringResearchInstituteofRussianAcademyofSciencesMoscow,RussiaAbstract-Theplanetaryreducer11gearisasymmetricsystem.Foritsoscillationanalysisthereisappliedthesymmetrygrouprepresentationtheory,whichwasgeneralizedformechanicalsystems.Itwasfoundthatduetoreducersymmetrytheoscillationsdecompositionhasarisen.Thereareindependentoscillationsclasses,suchas:angularoscillationsofsolargearandepicycle-satellitesoscillationsinphase;transversaloscillationsofsolargearandepicycle-satellitesoscillationsinantiphase.Solargearandepicycleoscillationsinaphasedonotdependonangularsatellitesoscillations.Keywords:planetaryreducer,symmetry,grouprepresentationtheory,independentoscillationsI.IntroductionItiswellknownthatattheoperationofplanetaryreducerthereareoscillationsofitselements,suchassolargear,epicycleandsatellites.Thisfactoressentiallyworsensaqualityofreduceroperation,andinsomecasescanresultintheircurvatureandbreakage.Aplentyofpapersaredevotedtothedynamicanalysisofgearreducers1.Basicallytherearecomputationalresearches.Inthegivenpapertheanalyticalapproachesforinvestigationofreducerdynamicsispresented.Theplanetaryreducerhasahighdegreeofsymmetry.Sothispropertywasusedandthegrouprepresentationtheorywasapplied.Applicationofthistheoryallowscarryingoutdeepenoughdynamicanalysis,usingsymmetrypropertiesonly.Forthispurposeitisnecessarytohavethedynamicalmodelwhichistakingintoaccountstiffnesscharacteristicsinlinkagesbetweenreducerelements.Themathematicalapparatusofthesymmetrygroupsrepresentationtheoryiswidelyusedinthequantummechanics,crystallographic,spectroscopy2,3,4.Theadvantagesofthisapproacharedifficultforoverestimating.Withitshelpitispossibletodefinewithexhaustivecompletenessthedynamicproperties,usingstructuresymmetryofsystemonlywithoutsolvingofmotionequations.Howeverintheclassicalmechanicsthisapproachisnotwidelyused.Itisresultfromsomeparticularfeaturesofmechanicalsystems.First,thereisan*E-mail:banlinbox.ruavailabilityofsolidswith6-thdegreesoffreedom.Itisuncleartowhatsymmetrygrouptorelateasolidinorderthatsystemsymmetrymayberetained.Secondatrealdesignsmaybetechnologicalerrorsandmistakesatassembly,sothereisasmallasymmetryandthesystembecomesquasisymmetricFurtherthemechanicalsystemsconsistfromvarioussubsystemswithvarioussymmetrygroups.Inthisconnectionitisnecessarytohavemethodsfortheanalysisassymmetricandquasisymmetricmechanicalsystemsconsistingofvarioussubsystemsandsolids.Havingmadesomegeneralizations,thismathematicalapparatusformechanicalsystemsmaybeused.Forthispurposeweproposetoapplythegeneralizedprojectiveoperators5.Theseoperatorsarematrixesoftheappropriateorderinsteadofscalarasinphysics.Theuseofgeneralizedprojectiveoperatorsallowstakingintoaccountallabovementionedfeaturesofmechanicalsystems.Theapplicationoftheseoperatorstoinitialstiffnessmatrixleadstoitsdecompositiononindependentblockseachofthemcorrespondstoownoscillationclassinindependentsubspaces.Toaccountforthesolidssymmetrytheequivalentpointswereentered:thesepointsarechosenonsolidsothattheirdisplacementswerecompatibletoconnectionsandcorrespondedtogroupofsymmetryofallsystem.Theseoperatorsenablealsomaybeappliedwiththefiniteelementsmodels(FEM).II.Dynamicmodelofplanetaryreducer.Stiffnessmatrix.Themodelofaplanetaryreducerstepissubmittedonfig.16.ThestepconsistsfromsolargearS,itsmassandradiusareequalto11,mr.ItengagesintomeshwiththreesatellitesSti(i=1,2,3)(itsmassesandradiusareidenticalandequalto22,mr).SatellitesinturnareengagedintomeshwithepicycleEp(33,mr)andtheyarefastenoncarrierbyelasticsupportwithrigidityh6.Therigidityofgearingsolargear-satellitesisequalto1h,thegearingepicycle-satellitesis3h,isangleofgearing.12thIFToMMWorldCongress,Besanon(France),June18-21,2007Fig.1Planetaryreducerstep.S-solargear,-epicycle,1,2,3satellites(St).Letsconsideralloveragaintheplaneoscillationsofplanetaryreducerstep:transversal(x,y)andangular()oscillations(withoutthecasing).AstiffnessmatrixmayberepresentedinablockviewK=123123123SSStSStSStStStStStStStKKKKKKKKKKK(1)Hereonthemaindiagonaltherearethestiffnesssubmatrixes(3x3)forappropriateelements,andoutsideofthemaindiagonaltherearestiffnesssubmatrixesofconnectionbetweentheseelements.Thereare15generalizedcoordinates:X=(*,;,SSSEpEpEpxyxy;1113,.StStStStxy)TheconcreteviewoftheseblocksissubmittedinAppendix.Thus,thetotalorderofmatrixKis(15x15).AninertiamatrixMisdiagonal.III.Introductionofequivalentpointsindynamicmodel.Operatorsofsymmetry.Byvirtueofsymmetryofsatellitesfasteningthissubsystemhassymmetrysuchas3C(astriangle).Torevealsymmetry3CatmovingofsolargearSandepicycleEpweshallenterthecoordinates123,lllonsolargearSinpointsofsatellitesfastening(fig.2.).Fig.2EquivalentpointsonsolargearS.1,2,3,-satellitesTheyare“equivalentpoints”.Theircoordinatesare:1111222133312(1)cos3;2(1)sin31,2,3.SSiSSiSSirXriripipi=(2)orinmatrixformL=AXAndanaloguesrelationsfor“equivalentpoints”onepicycle,butinstead1rin(2)mustbewritten3r.Andlateronthesecoordinateofsolargearandepicyclewillbeusedinstead(x,y)and().Afterthatitispossibletocount,thatallcoordinatesofsystemshouldvaryaccordingtosymmetrygroup3Cand,hence,itispossibletoapplytheprojectiveoperatorofsymmetrytoallsystemelements:S,Ep,andalsotothreesatellitesSti(i=1,2,3).(fig.3)Theortho-normalprojectiveoperatorgofsymmetryforpointgroup3Cisknownas2.Itisg=11133312166611022(3)Forthewholesystemtheprojectiveoperatormustberepresentedasblock-diagonalmatrix12thIFToMMWorldCongress,Besanon(France),June18-21,2007G=Stggg(4)HereeachsubmatrixcorrespondstoS,Ep,andalsotothreesatellitesSti(i=1,2,3).SoBecausewehavethreeidenticalsatellitesandeachofthemhas3degreesoffreedom(,iiStStxyandangular.iiStSt),thereforeitisnecessarytoentergeneralizeoperator(3)3,4andtoconsiderStgasblockmatrixwheretheeachelementisdiagonalmatrix(33),thatisitispossibletopresenteachelementasStg=1,11=EgEEEThustoinitialcoordinates,(,)SEpxyofsolargearandepicycleconsistentlytwotransformationsareapplied:AandG.AndresultingtransformationofaninitialmatrixKequalstoproductofoperatorsGA.ThisorthogonaltransformationanditlookslikeG=StgAgAg,wheregA=223300100+Byapplyingofthistransformationtomatrix(1),weshallreceive*=(G)()(G)trSothecorrespondingtransformationsofcoordinatesandforcesareX*=(G),F*=(G)trF(5)AsaresulttheinitialmatrixK(1515)isdividedon3independentblocks(5x5)and,lookinglike,*(1)*(2)=IIIIIKKKK(6)TheinertiamatrixMremainsdiagonalbecausematrixGAisorthogonal;thereforetheindependenceofoscillationclassesdefinesmatrix*only.IV.RevealingofindependentmotionsclassesatfornaturalandforcedoscillationsA.NaturaloscillationsFromtheviewofmatrix(6)itisseen,thatowingtosystemsymmetrythereisadecompositionofinitialmatrixK,and,hence,divisionofoscillationclassesandaswellasspaceofparameters.Theconcreterelationsforsubmatrixesin(6)showthattherearefollowingindependentoscillationsclasses:I-stclass(subspaceI-submatrix*IK):angularoscillationofsolargearandepicycle+oscillationsofsatellitesinaphase.Dimensionofthissubspaceisequalto5.Itsdeterminingparametersare:12313612139,.rrrhhhhrh2-ndclass(subspaceII-submatrixes*(1)IIK(2)*IIK):transversaloscillationsofsolargearandepicycle+oscillationsofsatellitesinanantiphase.SubspaceIIbreaksuptotwoidenticalsubmatrixes*(1)IIKand(2)*IIK(55).Itmeansthatinsystemthereare5equalfrequencies.Itsdeterminingparametersare:213679,.rhhhhhThus,takingintoaccountonlypropertiesofsymmetryitispossibletoreceivedeepenoughanalysisofdynamicpropertiesofsystemofaplanetaryreducer.Besidesitispossibletosimplifyalsoprocessofsystemoptimization.B.ForcedoscillationsAttheforcedoscillationstheuseoftheindependentoscillationclassesissuitableonlyintwocases:a)ifthepointsofapplicationoftheexternalforceshavethesametypeofsymmetry,asadesignhas,orb)iftheyaredisposedaccordingtotheindependentclassesofoscillations.Really,thentransformation(5)bringaforcesvectorF*intoaformcontainingzeroelementsorin1-st,or2-thsubspaces.Theanalysisoftherealloadingsforcesonareducer,shows,thatitisvalidifelementsdisbalancesarethesame:)identicalsatellitesdisbalances+disbalanceofepicycle;)identicalsatellitesdisbalances+disbalanceofsolargear.V.Thefurthermotionsdecomposition.ThefurtherdecompositionofsubspacesIandIIin(6)ispossibleonlyifthereareadditionalconditionsraisingatypeofsystemsymmetry.12thIFToMMWorldCongress,Besanon(France),June18-21,2007Theseconditions,inparticular,canbereceivedfromsimilaritysymmetryofsolargearandepicycle.Theylooklike:1.EqualityofgearingstiffnesswithSandEp,i.e.12hh=,2.EqualityofpartialfrequenciesforangularmotionsSandEp()()SEp=,whence:78hh=,or3.EqualityofpartialfrequenciesattranversalmotionsofSandEp(,)(,)SEpxyxy=,whence:h7=2h9.Sobyfulfillmentofconditions1,2(or1,3)theadditionalsymmetrytype2Cisappeared(reflectionsymmetry).Tothissymmetrygrouptheoperator2G(or2G)iscorresponded2G=11311113;1311rhrh2G=111113213112hhTheapplicationoftheseoperatorstomatrixK*permittoachievethefurtherdecompositionofcorrespondingmatrixesandappropriatemotions.Reallytheymayhavesymmetricandantisymmetricoscillationclassesforsolargearandepicycle.Thusthecoordinatetransformationis:111*3131111*3131SEprrhSEprrh=+=XXXXXXAnd1*3121*312SEphSEph=+=XXXXXXBythiscoordinatetransformationthefollowingindependentmotiontypesarearisen()*()IIIKKKTheconcreterelationsforthesesubmatrixesshowthattherearefollowingindependentoscillationsclasses:Isubspace(matrix*IK):-angularoscillationsofsolargearSandepicycleEpinphase+satellitesS

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論