已閱讀5頁,還剩2頁未讀, 繼續(xù)免費閱讀
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
AbstractPressurewavevelocityinahydraulicsystemwasdeterminedusingpiezopressuresensorswithoutremovingfluidfromthesystem.Themeasurementswerecarriedoutinalowpressurerange(0.26bar)andtheresultswerecomparedwiththeresultsofotherstudies.Thismethodisnotasaccurateasmeasurementwithseparatemeasurementequipment,butthefluidisintheactualmachinethewholetimeandtheeffectofairistakenintoconsiderationifairispresentinthesystem.Theamountofairisestimatedbycalculationsandcomparisonsbetweenotherstudies.Thismeasurementequipmentcanalsobeinstalledinanexistingmachineanditcanbeprogrammedsothatitmeasuresinrealtime.Thus,itcouldbeusede.g.tocontroldampers.KeywordsBulkmodulus,pressurewave,soundvelocity.I.INTRODUCTIONRESSUREwavevelocity(soundvelocity)isanimportantfactorwhenhydraulicsystemsareanalyzedanddevised.Itisaparameterinmanyequationsthatmodelthedynamicsofhydraulicsystemsanditisalsoanimportantparameterwhendampersofhydraulicsystemsaredimensioned.Withthehelpofpressurewavevelocitythebulkmodulusofahydraulicsystemcanbedefined,orviceversa.Differentmeansformeasuringpressurewavevelocityarepresentedinmanystudies.Normallythesemeasurementsarecarriedoutinseparatemeasurementequipment,sothatthemeasuredfluidisremovedfromtheoriginalmachine.Thisaffectscertaincharacteristicsofthefluid,suchastheamountofairormoistureconcentration,andtheresultsofpressurewavevelocitymeasurementsmaydifferfromtheoriginalsituation.Separatewavevelocitymeasurementinstrumentationisveryoftendesignedinsuchawaythatatleastentrainedaircanberemovedfromthemeasuredfluid.Thus,theresultsofmeasurementdonottaketheeffectofairintoconsideration,oronlydissolvedairisnoticed.Thisdoesnotcorrespondtorealsystems,becauseairispresentinfluids,especiallyatlowpressures.Separatepressurewavemeasurementequipmentusuallycannotbeconnectedtothemachine,soreal-timemeasurementofwavevelocityisimpossible.Inmanyearlierstudiespressurewavevelocityhasbeenmeasuredwithultrasonictransducers.Theultrasoundtechniquemaybebasedon,e.g.time-of-flightorpulse-echoprinciples.Thismethodisveryaccurate;anaccuracyofeven0.005m/scanbeachieved,1althoughlargererrorshavealsobeenpresentedintheliterature2-4.Benefitsoftheultrasoundtechniqueare,e.g.long-termstability,precision,sensitivity,capabilityofapplyingtoopticallyopaque,concentratedandelectricallynon-conductingsystemsandthepossibilitytoautomatethemeasurement.However,instrumentationdesignandthesamplestudiedmayaffecttheaccuracyofthemethod.5.Anothermethodfordefiningpressurewavevelocityistomeasurethebulkmodulusofafluidusingamethodbasedondeterminationofthevolumechangeofthesampleundercompressionorexpansion.6-9.Useofthistechniquepreventsunwantedpressuregradientsbetweenthesampleandthesurroundingsystem.Theusefulpressurerangeofthemethodiswide(0.1-350MPa).Theamountofentrainedaircanalsobetakenintoconsideration.Drawbacksofthemethodaretheneedtofirstdeterminethespecificvolumeofthesampleunderatmosphericpressureandtheobviousrequirementofmeasuringthedensityofthesampleunderallthepressuresused.Thus,thismethodcannotbeusedforcontinuousreal-timemeasurements.Calculationofthebulkmodulusandfurthermorethepressurewavevelocity(soundvelocity)isshownin(1)and(2)inchapterII.Someresearchershaveusedpressuretransducerstodetectpressurewavevelocitiesinoils.HarmsandPrinke10presentedamethodbasedonphasedifference.Inthismethodexcitationshouldbeconstant,e.g.pumprippling,becausethesignaliscomparedattwopointsandthevalueofthewavevelocityiscalculatedfromthetimedifferenceofthesesignals10.Choetal.11andYuetal.12measuredthewavepropagationtimeandcalculatedacross-correlationfunctionofthepressuresignals.Methodsbasedonpressuremeasurementsmakereal-timemeasurementspossibleandtheinfluenceofaircanbetakenintoconsideration.YetanothermethodfordeterminingpressurewavevelocitywaspresentedbyApfel13.Thismethodisatechniquethatmeasurestheadiabaticcompressibilityanddensityofafluidwhenthesampleamountsareextremelysmall,4nl-4l.Pressurewavevelocitiescanbecalculatedfromthesedata.Thismethodisapplicable,e.g.forsupercooledorsuperheatedsamples,biologicalorhazardoussamplesorineverycasewhenthebulkpropertiesoffluidshavetobedeterminedfromsmallsampleamounts.Thefluidstudiedisacousticallylevitatedonanimmisciblehostliquidatacertainspotofthetestequipment.Areferencemeasurementofafluidwhosepropertiesarewell-knownismadeattheexactsamespot.Theresultsarerelativelyaccurate(withina2%margincomparedwiththesamevaluesdeterminedbytraditionalmethods).Inordertocalculatepressurewavevelocities,thedensityoftheMeasuringPressureWaveVelocityinaHydraulicSystemLariKela,andPekkaVhojaPWorldAcademyofScience,EngineeringandTechnology492009610samplehastobemeasuredusingdifferentequipment.Obviously,thismethodissuitableforlaboratoryexperimentsonly.13-14.Pressurewavevelocity(soundvelocity)canbeusedtoevaluatevariousimportantcharacteristicpropertiesoffluids.Forinstance,ithasbeenusedtodeterminetheconcentrationofsolventsinoils4,tocalculatethephysicalpropertiesofhydraulicandotherlubricatingfluids,aswellasfueloils7,15-17,toestimatethestructuralandmechanicalpropertiesoffats18andthephysicalpropertiesofpetroleumfractionsandpetroleumreservoirfluids3,5andtodeterminethecompositionofoil-watermixturesandemulsions2ortomeasurethepropertiesofmagnetorheological(MR)fluids19.Themostimportantaimofthisstudywastodevelopamethodformeasuringpressurewavevelocitythatenablesreal-timemeasurements,whicharenecessaryif,e.g.real-timecontrolsystemsforhydraulicsareconstructed.AnotheraimwastocollectdataforfutureresearchwithaHelmholtzresonatorattachedtothissystem.II.THEORETICALASPECTSOFPRESSUREWAVEVELOCITYDETERMINATIONSThebulkmodulusofelasticmaterialBisdefinedasthequotientofpressurevariationandrelativevolumevariationaffectedbypressurevariationB=VdVdP(1)wherePispressureandVisvolume20.Pressurewavesconsideredinthispaperaresimilartowavesthatproduceaudiblesound.Thus,pressurewavesarehandledaslongitudinalvibrationmoleculesmovingbackandforthinthedirectionofpropagationofthewave,producingsuccessivecondensationsandexpansionsinthemedium.Thesealterationsofdensitiesaresimilartothoseproducedbylongitudinalwavesinabar.Asseeninmanystudies,mentionedalsointhispaper,thedifficultyofthemathematicsissidesteppedbyrestrictingthewavesunderconsiderationtoonedimension.21.Itisworthnotingthatatravellingwavedoesnotcarrymaterial,justthewaveanditsenergymove.Choetal.11havepresentedthreedefinitionsforbulkmodulus,whicharewidelyusedinmanytextbooks.Thesedefinitionsareonlyapplicabletotheirownspecificconditions,andinthispaperthesonicbulkmodulus(2)isused,whichhasthesamevalueastheadiabaticbulkmodulus.ThesonicbulkmodulusBisderivedfromthesonicvelocityinthefluidandfluiddensity11,20B=a2(2)whereisdensityandaiswavevelocity(soundvelocity).Equation(2)canbesolvedforthebulkmodulusorwavevelocity,dependingonwhichoneistheknownfactor.Inthispaperdensityisknownandwavevelocityismeasured,sothebulkmoduluscanbecalculated.Butas(2)presents,thesameparametersthataffectthevalueofwavevelocityalsoaffectthebulkmodulusandthisistakenintoconsiderationinthetheoryreview.Themainfactorsthataffectthevalueoftheeffectivebulkmodulusofahydraulicsystemarefluidpressureandtemperature.TheireffectsarepresentedinFig.1.Otherfactorsthataffectthevalueoftheeffectivebulkmodulusare,e.g.theaircontentofthefluid,piperigidityandinterfaceconditionsbetweenthefluidandtheair12.Fig.1Effectoftemperatureandpressureonwavevelocityinanoilsample:335.1K,370.7K,402.1K5Partoftheaircontentdissolvesinamolecularformandtherestofit,entrainedair,existsintheformofsmallbubbles.Dissolvedairhasonlyalittleeffectonthebulkmodulus11,butthevolumetricpercentofentrainedairwithinafluidisoneofthemostinfluentialvariableswhenthebulkmodulusisevaluated.Ithasbeenprovedthatonepercententrainedaircanreducetheeffectivebulkmodulusofafluidbyasmuchas1085MPa,whichcorrespondstoa75percentdecreaseinthefluidmanufacturersvalue22.Itshouldbenotedthatalsoothergases,notonlyair,affectthebulkmodulusandsonicwavevelocity,andthetypeofgashasagreatereffectthandoesthequantityofthegas23.Thelowerthemolecularweightofthegas,thegreatertheeffectonthesonicwavevelocity23.Fluidpressurehasaneffectonthevalueofthebulkmodulus,particularlyinthelowerrangeofpressure.Onereasonfortheeffectofpressureonthebulkmodulusistherelationshipbetweenentrainedaircontentanddissolvedaircontentinafluid.Someentrainedairbecomesdissolvedairwhenpressureincreases.12.Theinfluenceofpressurecanbediscussedatthemolecularlevel,also.Ifthepressureofthefluidunderstudyislow,thefluidmoleculesfitamongeachothereasilyandasignificantamountoffreespaceisstillavailable.Whenthefluidiscompressed,thefreespacedecreasesquicklyatlowerpressures.Whenthepressureofthesystemishigh,thefreespaceisalmostnegligible.Atthispointafurtherdecreaseinvolumeisconnectedwithinteractionsbetweenfluidmoleculesandtheirneighbouringmolecules.24.IfahydraulicsystemspressureismorethanWorldAcademyofScience,EngineeringandTechnology49200961150bar,theeffectoffreeairisonlyminor9.Fluidtemperatureaffectsthedensityoftheaircontent,thesizeofairbubblesinthefluidandthereforetheequivalentcompressibilityofthefluid.Anincrementoftemperaturealsocauseschangesinthemolecularlevelofthefluid.Morevigorouscollisionsbetweenmoleculesareobserved,whichmayeventuallycausechangesinmolecularstructures,andadecreaseintheireffectivevolumeisprobable.24.Therebytemperaturehasanimportantinfluenceonthebulkmodulusandsonicwavevelocity,especiallyindynamicsituations.Theinfluenceoftemperaturehasbeenstudied,e.g.by23.Theirstudiesincludedatemperaturerangebetween-30Cand130C,andtheeffectoftemperatureonsonicwavevelocityseemedtobesignificant23.However,theeffectoffluidtemperaturecanbeignoredifthefluidtemperatureisapproximatelyconstant12,andinmanystudiesthishasbeendone.Inaddition,thebulkmodulusoflubricatingoilsatlowpressurescanbealmostindependentofthetemperature25.Thedensityandbulkmodulusofsolidparts(e.g.pipes)willnotvaryasmuchasthedensityofafluidwhentemperatureandpressurevary10.Thus,theeffectofpiperigidityonthebulkmoduluscanbeignoredifrigidpipesareassumedinahydraulicsystem12.Themoisturecontentofthefluidmayalsoplayaroleifpressurewavevelocitiesaredetermined;itslightlyreducesthevalueofthepressurewavevelocity23.Theviscosityofthefluidalsoaffectsthepressurewavevelocity26,butofcoursetheviscosityofafluiddependsonitsmolecularstructureinthefirstplace,hencetheeffectofviscosityonthepressurewavevelocityvarieswithdifferentfluids.III.TESTEQUIPMENTThetestequipmentandtheprincipleofmeasurementaredepictedinFigs.2and3,respectively.Themeasurementswerecarriedoutbyidentifyingapressurepulseattwopoints,P1andP2,usingpiezosensors.ThedistancebetweenpointsP1andP2(variableLinFig.3)isknownandtwodifferentdistanceswereusedinthetests.Theshorterdistancewas2.75mandthelongerwas4.26m.DistancesL1andL2werealways1.03mand0.11m,respectively.Apressurewavewasexcitedbymeansofapistoninsideapipe.Thisexcitationsystemenablesexcitationofapurepressurewave,becauseunnecessaryelbowsandinterfacesareavoided,sothatreflectionsandtransmissionsofthewaveareminimized.Thepistonwasmovedlightlybutrapidlywithahammer.Asphericalplugvalveandanadjustablevalvewereinstalledinthetestequipmentsothatflowandpressurecouldbecontrolledduringthemeasurements.Thispropertywasusedinthemeasurementssothattwomeasurementserieswerecarriedout.Thefirstonewasdoneunderconstantpressurewithoutflowwiththebothvalvesclosed.Thesecondonewasdonewithflow,sothatflow(andpressure)wascontrolledwiththeadjustablevalve.Theeffectofflowonwavevelocityisinsignificant,asseenlaterinthetext.Themeasurementswerecarriedoutovertwodayssothattemperaturecouldbeassumedtobeconstant.Thetestequipmentdidnotincludeatemperaturesensor,butthetestequipmentwasinsidealaboratorysothatthefluidtemperaturecouldbeassumedtobethesameasthesurroundingtemperature.Thelowestpressureusedwas0.2barandthehighestwas6.1bar,and545measurementswereexecutedbetweentheselimits.ExamplesofthemeasurementresultsaredepictedinFigs.4and5.ThemeasurementsystemincludedoneKyowaPG-20KUpressuresensor(forreferencepressure),twoKuliteHKM-375M-7barVGpressuresensors(forrecognizingapressurewaveattwopoints),aKyowaStrainAmplifierDPM-6H(fortheKyowapressuresensor),aThandar30V-2Aprecisionpowersupply(fortheKulitepressuresensors),aNationalInstrumentsUSB-621116-input(16bit250kS/s)DAQcard,aHPCompaqnx9010laptopcomputerwithMicrosoftWindowsXP,DasyLabv.8.00.004measurementsoftwareandMeasurement&AutomationExplorerv.001.Themeasurementfrequencywas25kHz(0.04ms)andtheblocksizewas1024bit.Fig.2TestequipmentFig.3PrincipleofthemeasurementsFig.4Responseofthepressurewaveatdetectionpointone(upper,dottedline)andtwo(lower,dashedline).NotethepressuredifferencebetweenthedetectionpointsbecauseofflowWorldAcademyofScience,EngineeringandTechnology492009612Fig.5Samecaseasabove.Thetimedifferencebetweenthedetectionpointscanbereadfromthesurveybox.NotethatthelinesaremodifiedforpublishingbydecreasingtheirresolutionsnotablyfromtheoriginalThevolumeflowofthetestequipmentQcanbeestimatedwiththeHagen-Poiseulleequation(3)27Q=)(128214ppld(3)wheredispipediameter,isdynamicviscosity,lispipelength,p1ispressureatpoint1andp2ispressureatpoint2.Duringthemeasurementspressurewillvaryfromzeroto0.5bar(pipelength2.75m)ortoalmostonebar(pipelength4.26m).Thismeansthattheabsolutemaximumflow,whichisevenoverestimatedhereonpurpose,isconstantlylessthan1.2l/min(0.4m/s)atatemperatureof18Canditseffectontheresultsisimpossibletonoticeinthisarrangement.FluidviscositywasmeasuredwithaBrookfieldDV-II+rotationviscometeranddensitybyusingthespecificweightmethod(weighinganaccuratevolumeofthefluidatthedesiredtemperature).Fluiddensitywas874kg/m3atatemperatureof18Cand864kg/m3atatemperatureof40C.Thedynamicfluidviscositiesatthecorrespondingtemperatureswere121cPand42cP.Thefluidwasacommercialmineraloil-basedhydraulicoil.IV.RESULTSOFMEASUREMENTSAltogether545measurementswereanalyzed.Theaveragepressureofthemeasurementswas2.9barandthemeasuredaveragepressurewavevelocity(soundvelocity),1377m/s.TheresultsofallthemeasurementsarepresentedinFig.6,whichindicatesthemagnitudeofthewavevelocityinthepressurerangebetween0.2barand6bar.InFig.6themeasuredresultsoftheflowsituationandnon-flowsituationaresep
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年黑龍江道路貨運駕駛員從業(yè)資格證考試題庫
- 服裝公司總經(jīng)理聘用合同模板
- 工程監(jiān)理承包合同
- 農(nóng)村考古遺址考古旅游開發(fā)合同
- 社區(qū)服務管理分層管理辦法
- 2025勞動合同不續(xù)簽處理
- 2024年度高品質鈦礦出口貿(mào)易合同3篇
- 2024年物業(yè)管理招標申請文件3篇
- 陶藝館租賃合同
- 食品文件生產(chǎn)流程
- 公路養(yǎng)護資質標準匯編整理
- AFC1500擰緊控制器
- GB_T 37515-2019 再生資源回收體系建設規(guī)范(高清版)
- 商品條碼管理辦法條文釋義
- 八年級上冊歷史知識結構圖
- 特殊建設工程消防設計審查申請表
- 漢密爾頓抑郁量表(24項)——評定方法
- 功能高分子材料和智能高分子材料.PPT
- 莫爾條紋干涉光學系統(tǒng)仿真設計
- 紅外熱像儀的應用PPT課件
- 未婚承諾書模板
評論
0/150
提交評論