上海中考數(shù)學(xué)公式匯總_第1頁(yè)
上海中考數(shù)學(xué)公式匯總_第2頁(yè)
上海中考數(shù)學(xué)公式匯總_第3頁(yè)
上海中考數(shù)學(xué)公式匯總_第4頁(yè)
上海中考數(shù)學(xué)公式匯總_第5頁(yè)
已閱讀5頁(yè),還剩8頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、數(shù)學(xué)定理 公式匯編一、數(shù)與代數(shù)1 數(shù)與式(1)實(shí)數(shù) 性質(zhì):實(shí)數(shù)a的相反數(shù)是a,實(shí)數(shù)a的倒數(shù)是(a0);實(shí)數(shù)a的絕對(duì)值:正數(shù)大于0,負(fù)數(shù)小于0,兩個(gè)負(fù)實(shí)數(shù),絕對(duì)值大的反而小。(2)二次根式:積與商的方根的運(yùn)算性質(zhì):(a0,b0); (a0,b0);二次根式的性質(zhì): (2)整式與分式同底數(shù)冪的乘法法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加,即(m、n為正整數(shù));同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即(a0,m、n為正整數(shù),mn);冪的乘方法則:冪的乘方,底數(shù)不變,指數(shù)相乘,即(n為正整數(shù));零指數(shù):(a0);負(fù)整數(shù)指數(shù):(a0,n為正整數(shù));平方差公式:兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積等

2、于這兩個(gè) 數(shù)的平方,即;完全平方公式:兩數(shù)和(或差)的平方,等于它們的平方和,加上(或減去)它們的積的2倍,即;(3)分式分式的基本性質(zhì):分式的分子和分母都乘以(或除以)同一個(gè)不等于零的整式,分式的值不變,即;,其中m是不等于零的代數(shù)式;分式的乘法法則:;分式的除法法則:;分式的乘方法則:(n為正整數(shù));同分母分式加減法則:;異分母分式加減法則:;2 方程與不等式一元二次方程(a0)的求根公式:一元二次方程根的判別式:叫做一元二次方程(a0)的根的判別式:方程有兩個(gè)不相等的實(shí)數(shù)根;方程有兩個(gè)相等的實(shí)數(shù)根;方程沒(méi)有實(shí)數(shù)根;一元二次方程根與系數(shù)的關(guān)系:設(shè)、是方程 (a0)的兩個(gè)根,那么+=,=;不

3、等式的基本性質(zhì):不等式兩邊都加上(或減去)同一個(gè)數(shù)或同一個(gè)整式,不等號(hào)的方向不變;不等式兩邊都乘以(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變;不等式兩邊都乘以(或除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向改變;3 函數(shù)一次函數(shù)的圖象:函數(shù)y=kx+b(k、b是常數(shù),k0)的圖象是過(guò)點(diǎn)(0,b)且與直線(xiàn)y=kx平行的一條直線(xiàn);一次函數(shù)的性質(zhì):設(shè)y=kx+b(k0),則當(dāng)k0時(shí),y隨x的增大而增大;當(dāng)k0時(shí),y隨x的增大而增大;當(dāng)k0,則當(dāng)x0時(shí)或x0時(shí),y分別隨x的增大而減??;如果k0時(shí)或x0時(shí),拋物線(xiàn)開(kāi)口向上,當(dāng)a0時(shí),如果,則y隨x的增大而減小,如果,則y隨x的增大而增大;當(dāng)a0時(shí),如果,則y隨x的增大而增

4、大,如果,則y隨x的增大而減?。欢⒖臻g與圖形1 圖形的認(rèn)識(shí)(1)角 角平分線(xiàn)的性質(zhì):角平分線(xiàn)上的點(diǎn)到角的兩邊距離相等,角的內(nèi)部到兩邊距離相等的點(diǎn)在角平分線(xiàn)上。(2)相交線(xiàn)與平行線(xiàn)同角或等角的補(bǔ)角相等,同角或等角的余角相等;對(duì)頂角的性質(zhì):對(duì)頂角相等垂線(xiàn)的性質(zhì):過(guò)一點(diǎn)有且只有一條直線(xiàn)與已知直線(xiàn)垂直;直線(xiàn)外一點(diǎn)有與直線(xiàn)上各點(diǎn)連結(jié)的所有線(xiàn)段中,垂線(xiàn)段最短;線(xiàn)段垂直平分線(xiàn)定義:過(guò)線(xiàn)段的中點(diǎn)并且垂直于線(xiàn)段的直線(xiàn)叫做線(xiàn)段的垂直平分線(xiàn);線(xiàn)段垂直平分線(xiàn)的性質(zhì):線(xiàn)段垂直平分線(xiàn)上的點(diǎn)到線(xiàn)段兩端點(diǎn)的距離相等,到線(xiàn)段兩端點(diǎn)的距離相等的點(diǎn)在線(xiàn)段的垂直平分線(xiàn);平行線(xiàn)的定義:在同一平面內(nèi)不相交的兩條直線(xiàn)叫做平行線(xiàn);平行線(xiàn)的

5、判定:同位角相等,兩直線(xiàn)平行;內(nèi)錯(cuò)角相等,兩直線(xiàn)平行;同旁?xún)?nèi)角互補(bǔ),兩直線(xiàn)平行;平行線(xiàn)的特征:兩直線(xiàn)平行,同位角相等;兩直線(xiàn)平行,內(nèi)錯(cuò)角相等;兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ);平行公理:經(jīng)過(guò)直線(xiàn)外一點(diǎn)有且只有一條直線(xiàn)平行于已知直線(xiàn)。(3)三角形三角形的三邊關(guān)系定理及推論:三角形的兩邊之和大于第三邊,兩邊之差小于第三邊;三角形的內(nèi)角和定理:三角形的三個(gè)內(nèi)角的和等于;三角形的外角和定理:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)的和;三角形的外角和定理推理:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角;三角形的三條角平分線(xiàn)交于一點(diǎn)(內(nèi)心);三角形的三邊的垂直平分線(xiàn)交于一點(diǎn)(外心);三角形中位線(xiàn)定理:三角形兩邊中

6、點(diǎn)的連線(xiàn)平行于第三邊,并且等于第三邊的一半;全等三角形的判定:邊角邊公理(SAS) 角邊角公理(ASA) 角角邊定理(AAS) 邊邊邊公理(SSS)斜邊、直角邊公理(HL)等腰三角形的性質(zhì):等腰三角形的兩個(gè)底角相等;等腰三角形的頂角平分線(xiàn)、底邊上的中線(xiàn)、底邊上的高互相重合(三線(xiàn)合一)等腰三角形的判定:有兩個(gè)角相等的三角形是等腰三角形;直角三角形的性質(zhì):直角三角形的兩個(gè)銳角互為余角;直角三角形斜邊上的中線(xiàn)等于斜邊的一半;直角三角形的兩直角邊的平方和等于斜邊的平方(勾股定理);直角三角形中角所對(duì)的直角邊等于斜邊的一半;直角三角形的判定:有兩個(gè)角互余的三角形是直角三角形;如果三角形的三邊長(zhǎng)a、b 、

7、c有下面關(guān)系,那么這個(gè)三角形是直角三角形(勾股定理的逆定理)。(4)四邊形多邊形的內(nèi)角和定理:n邊形的內(nèi)角和等于(n3,n是正整數(shù));平行四邊形的性質(zhì):平行四邊形的對(duì)邊相等;平行四邊形的對(duì)角相等;平行四邊形的對(duì)角線(xiàn)互相平分;平行四邊形的判定:兩組對(duì)角分別相等的四邊形是平行四邊形;兩組對(duì)邊分別相等的四邊形是平行四邊形;對(duì)角線(xiàn)互相平分的四邊形是平行四邊形;一組對(duì)邊平行且相等的四邊形是平行四邊形。矩形的性質(zhì):(除具有平行四邊形所有性質(zhì)外)矩形的四個(gè)角都是直角;矩形的對(duì)角線(xiàn)相等;矩形的判定:有三個(gè)角是直角的四邊形是矩形;對(duì)角線(xiàn)相等的平行四邊形是矩形;菱形的特征:(除具有平行四邊形所有性質(zhì)外菱形的四邊相

8、等;菱形的對(duì)角線(xiàn)互相垂直平分,并且每一條對(duì)角線(xiàn)平分一組對(duì)角;菱形的判定:四邊相等的四邊形是菱形;正方形的特征:正方形的四邊相等;正方形的四個(gè)角都是直角;正方形的兩條對(duì)角線(xiàn)相等,且互相垂直平分,每一條對(duì)角線(xiàn)平分一組對(duì)角;正方形的判定:有一個(gè)角是直角的菱形是正方形;有一組鄰邊相等的矩形是正方形。等腰梯形的特征:等腰梯形同一底邊上的兩個(gè)內(nèi)角相等 等腰梯形的兩條對(duì)角線(xiàn)相等。等腰梯形的判定:同一底邊上的兩個(gè)內(nèi)角相等的梯形是等腰梯形;兩條對(duì)角線(xiàn)相等的梯形是等腰梯形。平面圖形的鑲嵌:任意一個(gè)三角形、四邊形或正六邊形可以鑲嵌平面;(5)圓點(diǎn)與圓的位置關(guān)系(設(shè)圓的半徑為r,點(diǎn)P到圓心O的距離為d):點(diǎn)P在圓上,

9、則d=r,反之也成立; 點(diǎn)P在圓內(nèi),則dr,反之也成立;圓心角、弦和弧三者之間的關(guān)系:在同圓或等圓中,圓心角、弦和弧三者之間只要有一組相等,可得到另外兩組也相等圓的確定:不在一直線(xiàn)上的三個(gè)點(diǎn)確定一個(gè)圓;垂徑定理(及垂徑定理的推論):垂直于弦的直徑平分弦,并且平分弦所對(duì)的兩條弧;平行弦?jiàn)A等弧:圓的兩條平行弦所夾的弧相等;圓心角定理:圓心角的度數(shù)等于它所對(duì)弧的度數(shù);圓心角、弧、弦、弦心距之間的關(guān)系定理及推論:在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦的弦心距相等;推論:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩條弦心距中有一組量相等,那么它們所對(duì)應(yīng)的其余各組量分別相等;圓周角定理:

10、圓周角的度數(shù)等于它所對(duì)的弧的度數(shù)的一半;圓周角定理的推論:直徑所對(duì)的圓周角是直角,反過(guò)來(lái),的圓周角所對(duì)的弦是直徑;切線(xiàn)的判定定理:經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn);切線(xiàn)的性質(zhì)定理:圓的切線(xiàn)垂直于過(guò)切點(diǎn)的半徑;切線(xiàn)長(zhǎng)定理:從圓外一點(diǎn)引圓的兩條切線(xiàn),這一點(diǎn)到兩切點(diǎn)的線(xiàn)段相等,它與圓心的連線(xiàn)平分兩切線(xiàn)的夾角;弧長(zhǎng)計(jì)算公式:(R為圓的半徑,n是弧所對(duì)的圓心角的度數(shù),為弧長(zhǎng))扇形面積:或(R為半徑,n是扇形所對(duì)的圓心角的度數(shù),為扇形的弧長(zhǎng))弓形面積(6)尺規(guī)作圖(基本作圖、利用基本圖形作三角形和圓)作一條線(xiàn)段等于已知線(xiàn)段,作一個(gè)角等于已知角;作已知角的平分線(xiàn);作線(xiàn)段的垂直平分線(xiàn);過(guò)一點(diǎn)作

11、已知直線(xiàn)垂線(xiàn);(7)視圖與投影畫(huà)基本幾何體(直棱柱、圓柱、圓錐、球)的三視圖(主視圖、左視圖、俯視圖);基本幾何體的展開(kāi)圖(除球外)、根據(jù)展開(kāi)圖判斷和設(shè)別立體模型;2.圖形與變換圖形的軸對(duì)稱(chēng) 軸對(duì)稱(chēng)的基本性質(zhì):對(duì)應(yīng)點(diǎn)所連的線(xiàn)段被對(duì)稱(chēng)軸平分;等腰三角形、矩形、菱形、等腰梯形、正多邊形、圓是軸對(duì)稱(chēng)圖形;圖形的平移 圖形平移的基本性質(zhì):對(duì)應(yīng)點(diǎn)的連線(xiàn)平行且相等;圖形的旋轉(zhuǎn)圖形旋轉(zhuǎn)的基本性質(zhì):對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的距離相等、對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心連線(xiàn)所成的角彼此相等;平行四邊形、矩形、菱形、正多邊形(邊數(shù)是偶數(shù))、圓是中心對(duì)稱(chēng)圖形;圖形的相似比例的基本性質(zhì):如果,則,如果,則相似三角形

12、的設(shè)別方法:兩組角對(duì)應(yīng)相等;兩邊對(duì)應(yīng)成比例且?jiàn)A角對(duì)應(yīng)相等;三邊對(duì)應(yīng)成比例相似三角形的性質(zhì):相似三角形的對(duì)應(yīng)角相等;相似三角形的對(duì)應(yīng)邊成比例;相似三角形的周長(zhǎng)之比等于相似比;相似三角形的面積比等于相似比的平方;相似多邊形的性質(zhì):相似多邊形的對(duì)應(yīng)角相等;相似多邊形的對(duì)應(yīng)邊成比例;相似多邊形的面積之比等于相似比的平方;圖形的位似與圖形相似的關(guān)系:兩個(gè)圖形相似不一定是位似圖形,兩個(gè)位似圖形一定是相似圖形;三角函數(shù)RtABC中,C=,SinA=,cosA=, tanA=,CotA=特殊角的三角函數(shù)值:SinCostan1Cot1三、概率與統(tǒng)計(jì)1統(tǒng)計(jì)數(shù)據(jù)收集方法、數(shù)據(jù)的表示方法(統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖、折線(xiàn)統(tǒng)

13、計(jì)圖、條形統(tǒng)計(jì)圖)(1)總體與樣本所要考察對(duì)象的全體叫做總體,其中每一個(gè)考察對(duì)象叫做個(gè)體,從總體中所抽取的一部分個(gè)體叫做總體的一個(gè)樣本,樣本中個(gè)體數(shù)目叫做樣本的容量。數(shù)據(jù)的分析與決策(借助所學(xué)的統(tǒng)計(jì)知識(shí),對(duì)所收集到的數(shù)據(jù)進(jìn)行整理、分析,在分析的結(jié)果上再作判斷和決策)(2)眾數(shù)與中位數(shù)眾數(shù):一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)據(jù);中位數(shù):將一組數(shù)據(jù)按從大到小依次排列,處在最中間位置的數(shù)據(jù)。(3)頻率分布直方圖頻率=,各小組的頻數(shù)之和等于總數(shù),各小組的頻率之和等于1,頻率分布直方圖中各個(gè)小長(zhǎng)方形的面積為各組頻率。(4)平均數(shù)的兩個(gè)公式 n個(gè)數(shù)、, 的平均數(shù)為:; 如果在n個(gè)數(shù)中,出現(xiàn)次、出現(xiàn)次, 出現(xiàn)次,

14、并且+=n,則;(5)極差、方差與標(biāo)準(zhǔn)差計(jì)算公式:極差:用一組數(shù)據(jù)的最大值減去最小值所得的差來(lái)反映這組數(shù)據(jù)的變化范圍,用這種方法得到的差稱(chēng)為極差,即:極差=最大值-最小值;方差:數(shù)據(jù)、, 的方差為,則=標(biāo)準(zhǔn)差:數(shù)據(jù)、, 的標(biāo)準(zhǔn)差,則=一組數(shù)據(jù)的方差越大,這組數(shù)據(jù)的波動(dòng)越大。2 概率如果用P表示一個(gè)事件發(fā)生的概率,則0P(A)1;P(必然事件)=1;P(不可能事件)=0;在具體情境中了解概率的意義,運(yùn)用列舉法(包括列表、畫(huà)樹(shù)狀圖)計(jì)算簡(jiǎn)單事件發(fā)生的概率。大量的重復(fù)實(shí)驗(yàn)時(shí)頻率可視為事件發(fā)生概率的估計(jì)值;3. 統(tǒng)計(jì)的初步知識(shí)、概率在社會(huì)生活中有著廣泛的應(yīng)用,能用所學(xué)的這些知識(shí)解決實(shí)際問(wèn)題。數(shù)學(xué)定理

15、公式匯編二(一)定理,性質(zhì)1 過(guò)兩點(diǎn)有且只有一條直線(xiàn) 2 兩點(diǎn)之間線(xiàn)段最短 3 同角或等角的補(bǔ)角相等 4 同角或等角的余角相等 5 過(guò)一點(diǎn)有且只有一條直線(xiàn)和已知直線(xiàn)垂直 6 直線(xiàn)外一點(diǎn)與直線(xiàn)上各點(diǎn)連接的所有線(xiàn)段中,垂線(xiàn)段最短 7 平行公理 經(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行 8 如果兩條直線(xiàn)都和第三條直線(xiàn)平行,這兩條直線(xiàn)也互相平行 9 同位角相等,兩直線(xiàn)平行 10 內(nèi)錯(cuò)角相等,兩直線(xiàn)平行 11 同旁?xún)?nèi)角互補(bǔ),兩直線(xiàn)平行 12兩直線(xiàn)平行,同位角相等 13 兩直線(xiàn)平行,內(nèi)錯(cuò)角相等 14 兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ) 15 定理 三角形兩邊的和大于第三邊 16 推論 三角形兩邊的差小于第三邊

16、 17 三角形內(nèi)角和定理 三角形三個(gè)內(nèi)角的和等于180 18 推論1 直角三角形的兩個(gè)銳角互余 19 推論2 三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和 20 推論3 三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角 21 全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等 22邊角邊公理(SAS) 有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等 23 角邊角公理( ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等 24 推論(AAS) 有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等 25 邊邊邊公理(SSS) 有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等 26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形

17、全等 27 定理1 在角的平分線(xiàn)上的點(diǎn)到這個(gè)角的兩邊的距離相等 28 定理2 到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線(xiàn)上 29 角的平分線(xiàn)是到角的兩邊距離相等的所有點(diǎn)的集合 30 等腰三角形的性質(zhì)定理 等腰三角形的兩個(gè)底角相等 (即等邊對(duì)等角) 31 推論1 等腰三角形頂角的平分線(xiàn)平分底邊并且垂直于底邊 32 等腰三角形的頂角平分線(xiàn)、底邊上的中線(xiàn)和底邊上的高互相重合 33 推論3 等邊三角形的各角都相等,并且每一個(gè)角都等于60 34 等腰三角形的判定定理 如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊) 35 推論1 三個(gè)角都相等的三角形是等邊三角形 36 推論 2

18、有一個(gè)角等于60的等腰三角形是等邊三角形 37 在直角三角形中,如果一個(gè)銳角等于30那么它所對(duì)的直角邊等于斜邊的一半 38 直角三角形斜邊上的中線(xiàn)等于斜邊上的一半 39 定理 線(xiàn)段垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等 40 逆定理 和一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上 41 線(xiàn)段的垂直平分線(xiàn)可看作和線(xiàn)段兩端點(diǎn)距離相等的所有點(diǎn)的集合 42 定理1 關(guān)于某條直線(xiàn)對(duì)稱(chēng)的兩個(gè)圖形是全等形 43 定理 2 如果兩個(gè)圖形關(guān)于某直線(xiàn)對(duì)稱(chēng),那么對(duì)稱(chēng)軸是對(duì)應(yīng)點(diǎn)連線(xiàn)的垂直平分線(xiàn) 44定理3 兩個(gè)圖形關(guān)于某直線(xiàn)對(duì)稱(chēng),如果它們的對(duì)應(yīng)線(xiàn)段或延長(zhǎng)線(xiàn)相交,那么交點(diǎn)在對(duì)稱(chēng)軸上 45逆定理 如果兩個(gè)

19、圖形的對(duì)應(yīng)點(diǎn)連線(xiàn)被同一條直線(xiàn)垂直平分,那么這兩個(gè)圖形關(guān)于這條直線(xiàn)對(duì)稱(chēng) 46勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2 47勾股定理的逆定理 如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a2+b2=c2 ,那么這個(gè)三角形是直角三角形 48定理 四邊形的內(nèi)角和等于360 49四邊形的外角和等于360 50多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)180 51推論 任意多邊的外角和等于360 52平行四邊形性質(zhì)定理1 平行四邊形的對(duì)角相等 53平行四邊形性質(zhì)定理2 平行四邊形的對(duì)邊相等 54推論 夾在兩條平行線(xiàn)間的平行線(xiàn)段相等 55平行四邊形性質(zhì)定理3 平行四邊形的

20、對(duì)角線(xiàn)互相平分 56平行四邊形判定定理1 兩組對(duì)角分別相等的四邊形是平行四邊形 57平行四邊形判定定理2 兩組對(duì)邊分別相等的四邊形是平行四邊形 58平行四邊形判定定理3 對(duì)角線(xiàn)互相平分的四邊形是平行四邊形 59平行四邊形判定定理4 一組對(duì)邊平行相等的四邊形是平行四邊形 60矩形性質(zhì)定理1 矩形的四個(gè)角都是直角 61矩形性質(zhì)定理2 矩形的對(duì)角線(xiàn)相等 62矩形判定定理1 有三個(gè)角是直角的四邊形是矩形 63矩形判定定理2 對(duì)角線(xiàn)相等的平行四邊形是矩形 64菱形性質(zhì)定理1 菱形的四條邊都相等 65菱形性質(zhì)定理2 菱形的對(duì)角線(xiàn)互相垂直,并且每一條對(duì)角線(xiàn)平分一組對(duì)角 66菱形面積=對(duì)角線(xiàn)乘積的一半,即S=

21、(ab)2 67菱形判定定理1 四邊都相等的四邊形是菱形 68菱形判定定理2 對(duì)角線(xiàn)互相垂直的平行四邊形是菱形 69正方形性質(zhì)定理1 正方形的四個(gè)角都是直角,四條邊都相等 70正方形性質(zhì)定理2正方形的兩條對(duì)角線(xiàn)相等,并且互相垂直平分,每條對(duì)角線(xiàn)平分一組對(duì)角 71定理1 關(guān)于中心對(duì)稱(chēng)的兩個(gè)圖形是全等的 72定理2 關(guān)于中心對(duì)稱(chēng)的兩個(gè)圖形,對(duì)稱(chēng)點(diǎn)連線(xiàn)都經(jīng)過(guò)對(duì)稱(chēng)中心,并且被對(duì)稱(chēng)中心平分 73逆定理 如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線(xiàn)都經(jīng)過(guò)某一點(diǎn),并且被這一 點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱(chēng) 74等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個(gè)角相等 75等腰梯形的兩條對(duì)角線(xiàn)相等 76等腰梯形判定定理 在同一底上

22、的兩個(gè)角相等的梯形是等腰梯形 77對(duì)角線(xiàn)相等的梯形是等腰梯形 78平行線(xiàn)等分線(xiàn)段定理 如果一組平行線(xiàn)在一條直線(xiàn)上截得的線(xiàn)段 相等,那么在其他直線(xiàn)上截得的線(xiàn)段也相等 79 推論1 經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線(xiàn),必平分另一腰 80 推論2 經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線(xiàn),必平分第 三邊 81 三角形中位線(xiàn)定理 三角形的中位線(xiàn)平行于第三邊,并且等于它 的一半 82 梯形中位線(xiàn)定理 梯形的中位線(xiàn)平行于兩底,并且等于兩底和的 一半 L=(a+b)2 S=Lh 83 (1)比例的基本性質(zhì) 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d 84 (2)合比性質(zhì) 如果ab=c

23、d,那么(ab)b=(cd)d 85 (3)等比性質(zhì) 如果ab=cd=mn(b+d+n0),那么 (a+c+m)(b+d+n)=ab 86 平行線(xiàn)分線(xiàn)段成比例定理 三條平行線(xiàn)截兩條直線(xiàn),所得的對(duì)應(yīng) 線(xiàn)段成比例 87 推論 平行于三角形一邊的直線(xiàn)截其他兩邊(或兩邊的延長(zhǎng)線(xiàn)),所得的對(duì)應(yīng)線(xiàn)段成比例 88 定理 如果一條直線(xiàn)截三角形的兩邊(或兩邊的延長(zhǎng)線(xiàn))所得的對(duì)應(yīng)線(xiàn)段成比例,那么這條直線(xiàn)平行于三角形的第三邊 89 平行于三角形的一邊,并且和其他兩邊相交的直線(xiàn),所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例 90 定理 平行于三角形一邊的直線(xiàn)和其他兩邊(或兩邊的延長(zhǎng)線(xiàn))相交,所構(gòu)成的三角形與原三角形相

24、似 91 相似三角形判定定理1 兩角對(duì)應(yīng)相等,兩三角形相似(ASA) 92 直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似 93 判定定理2 兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相似(SAS) 94 判定定理3 三邊對(duì)應(yīng)成比例,兩三角形相似(SSS) 95 定理 如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似 96 性質(zhì)定理1 相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線(xiàn)的比與對(duì)應(yīng)角平 分線(xiàn)的比都等于相似比 97 性質(zhì)定理2 相似三角形周長(zhǎng)的比等于相似比 98 性質(zhì)定理3 相似三角形面積的比等于相似比的平方 99 任意銳角的正弦值等于它的

25、余角的余弦值,任意銳角的余弦值等 于它的余角的正弦值 100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等 于它的余角的正切值 101圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合 102圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合 103圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合 104同圓或等圓的半徑相等 105到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半 徑的圓 106和已知線(xiàn)段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線(xiàn)段的垂直平分線(xiàn) 107到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線(xiàn) 108到兩條平行線(xiàn)距離相等的點(diǎn)的軌跡,是和這兩條平行線(xiàn)平行且距離相等的一條直線(xiàn) 109

26、定理 不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。 110垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧 111推論1 平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧 弦的垂直平分線(xiàn)經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧 平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧 112推論2 圓的兩條平行弦所夾的弧相等 113圓是以圓心為對(duì)稱(chēng)中心的中心對(duì)稱(chēng)圖形 114定理 在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等 115推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等 116定理 一條弧

27、所對(duì)的圓周角等于它所對(duì)的圓心角的一半 117推論1 同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等 118推論2 半圓(或直徑)所對(duì)的圓周角是直角;90的圓周角所 對(duì)的弦是直徑 119推論3 如果三角形一邊上的中線(xiàn)等于這邊的一半,那么這個(gè)三角形是直角三角形 120定理 圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它 的內(nèi)對(duì)角 121直線(xiàn)L和O相交 dr 直線(xiàn)L和O相切 d=r 直線(xiàn)L和O相離 dr 122切線(xiàn)的判定定理 經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn) 123切線(xiàn)的性質(zhì)定理 圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑 124推論1 經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切

28、點(diǎn) 125推論2 經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心 126切線(xiàn)長(zhǎng)定理 從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(zhǎng)相等, 圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角 127圓的外切四邊形的兩組對(duì)邊的和相等 128弦切角定理 弦切角等于它所夾的弧對(duì)的圓周角 129推論 如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等 130相交弦定理 圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線(xiàn)段長(zhǎng)的積 相等 131推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的 兩條線(xiàn)段的比例中項(xiàng) 132切割線(xiàn)定理 從圓外一點(diǎn)引圓的切線(xiàn)和割線(xiàn),切線(xiàn)長(zhǎng)是這點(diǎn)到割 線(xiàn)與圓交點(diǎn)的兩條線(xiàn)段長(zhǎng)的比例中項(xiàng) 133推論 從圓外一點(diǎn)引圓的兩條割線(xiàn)

29、,這一點(diǎn)到每條割線(xiàn)與圓的交點(diǎn)的兩條線(xiàn)段長(zhǎng)的積相等 134如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上 135兩圓外離 dR+r 兩圓外切 d=R+r 兩圓相交 R-rdR+r(Rr) 兩圓內(nèi)切 d=R-r(Rr) 兩圓內(nèi)含dR-r(Rr) 136定理 相交兩圓的連心線(xiàn)垂直平分兩圓的公共弦 137定理 把圓分成n(n3): 依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形 經(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形 138定理 任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓 139正n邊形的每個(gè)內(nèi)角都等于(n-2)180n 140定理 正n邊形的半徑和邊心距把

30、正n邊形分成2n個(gè)全等的直角三角形 141正n邊形的面積Sn=pnrn2 p表示正n邊形的周長(zhǎng) 142正三角形面積3a4 a表示邊長(zhǎng) 143如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應(yīng)為 360,因此k(n-2)180n=360化為(n-2)(k-2)=4 144弧長(zhǎng)計(jì)算公式:L=n兀R180 145扇形面積公式:S扇形=n兀R2360=LR2 146內(nèi)公切線(xiàn)長(zhǎng)= d-(R-r) 外公切線(xiàn)長(zhǎng)= d-(R+r) (二)實(shí)用工具:常用數(shù)學(xué)公式 公式分類(lèi) 公式表達(dá)式 乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab

31、+b2) 三角不等式 |a+b|a|+|b| |a-b|a|+|b| |a|b-bab |a-b|a|-|b| -|a|a|a| 一元二次方程的解 -b+(b2-4ac)/2a -b-(b2-4ac)/2a 根與系數(shù)的關(guān)系 X1+X2=-b/a X1*X2=c/a 注:韋達(dá)定理 判別式: b2-4ac=0 注:方程有兩個(gè)相等的實(shí)根 b2-4ac0 注:方程有兩個(gè)不等的實(shí)根 b2-4acn);a01 (a0);ap1/ap(a0,p是正整數(shù)) 整式的乘方:?jiǎn)雾?xiàng)式與單項(xiàng)式,把系數(shù)、相同字母的冪分別相加,其余字母連同其指數(shù)不變,作為積的因式 單項(xiàng)式與多項(xiàng)式,根據(jù)分配律用單項(xiàng)式去成多項(xiàng)式的每一項(xiàng),再把

32、積相加 多項(xiàng)式與多項(xiàng)式,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另一個(gè)的每一項(xiàng),再把積相加 平方差公式:兩數(shù)和與這兩數(shù)差的積,等于它們的平方差(a+b)(ab)a2-b2 完全平方公式:(ab)2(ba)2a22abb2 (ab)2(ab)2a22abb2 整式除法:?jiǎn)雾?xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除后,作為商的因式;對(duì)于只在被除式里含有的字母,則連同它的指數(shù)一起作為商的一個(gè)因式 多項(xiàng)式除以單項(xiàng)式,先把多項(xiàng)式的每一項(xiàng)分別除以單項(xiàng)式,再把所得商相加 分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式 公因式:多項(xiàng)式各項(xiàng)都含有的相同因式 提公因式:多項(xiàng)式的各項(xiàng)含有公因式,把這個(gè)公因式提出來(lái),將多項(xiàng)式化成兩個(gè)因式的乘積

33、 完全平方式:形如a22abb2和a22abb2的式子 運(yùn)用公式法:把乘法公式反過(guò)來(lái),用來(lái)把某些多項(xiàng)式分解因式 分式:整式A除以整式B,表示成A/B。A為分式的分子;B為分式的分母(B不為0) 分式的基本性質(zhì):分式的分子與分母都乘以(或除以)同一個(gè)不等于0的整式,分式值不變 約分:把一個(gè)分式的分子和分母的公因式約去的變形 最簡(jiǎn)分式:分子和分母沒(méi)有公因式的分式 分式乘除法法則:分式相乘,分子相乘作分子,分母相乘作分母 分式相除,把除式的分子和分母顛倒位置后再與被除式相乘 分式加減法則:同分母分式加減,分母不變,分子相加;異分式先通分,再加減 通分:根據(jù)分式的基本性質(zhì),異分母分式化為同分母分式的過(guò)

34、程;通分時(shí)常取最簡(jiǎn)公分母 分式方程:分母中含有未知數(shù)的方程 增根:使原分式方程的分母為0的原方程的根;解分式方程必須檢驗(yàn) (五)、方程(組) =等式:用等號(hào)表示相等關(guān)系的式子;等式具有傳遞性 方程:含有未知數(shù)的等式 一元一次方程:一個(gè)方程中,只含一個(gè)未知數(shù)(元),且未知數(shù)的指數(shù)為1(次)的方程 等式性質(zhì):等式兩邊同時(shí)加上(或減去)同一個(gè)代數(shù)式,結(jié)果還是等式 等式兩邊同時(shí)乘以同一個(gè)數(shù)(或除以同一個(gè)不為0的數(shù)),結(jié)果還是等式 移項(xiàng):從方程一邊移到另一邊的變形 二元一次方程:含有兩個(gè)未知數(shù),且所含未知數(shù)的項(xiàng)數(shù)的次數(shù)都是1的方程 二元一次方程組:含有兩個(gè)未知數(shù)的兩個(gè)一次方程所組成的一組方程 二元一次方

35、程的一個(gè)解:適合一個(gè)二元一次方程的一組未知數(shù)的值 二元一次方程組的解:二元一次方程組中各個(gè)方程的公共解;它們成對(duì)出現(xiàn) 代入消元法:簡(jiǎn)稱(chēng)“代入法”,將其中一個(gè)方程的某未知數(shù)用含有另一個(gè)未知數(shù)的代數(shù)式表示,并代入另一個(gè)方程中,從 而消去一個(gè)未知數(shù),化二元一次方程組為一元一次方程的方法 加減消元法:簡(jiǎn)稱(chēng)“加減法”,通過(guò)兩式相加(減)消去其中一個(gè)未知數(shù)的方法 圖像法:根據(jù)二元一次方程的解和一次函數(shù)圖像的關(guān)系,找出兩直線(xiàn)的交點(diǎn)坐標(biāo)求解的方法 整式方程:等號(hào)兩邊都是關(guān)于未知數(shù)的整式方程 一元二次方程:只含有一個(gè)未知數(shù)的整式方程,化成ax2bxc0(a0,a,b,c為常數(shù)) 配方法:通過(guò)配成完全平方式的方法得到一元二次方程的根的方法 公式法:對(duì)于ax2bxc0(a0,a,b,c為常數(shù)),當(dāng)b24ac0時(shí)(當(dāng)b24ac0時(shí),方程無(wú)解),可用一元二次方程的求根公式求解的方法 分解因式法:又稱(chēng)“十字相乘法”,當(dāng)一元二次方程的一邊為0,另一邊能分解成兩個(gè)一次因式的乘積時(shí),求方程的根的方法 (六)、不等式(組) =不大于:等于或小于,符號(hào)“”,讀作“小于等于” 不小于:大于或大于,符號(hào)“”,讀作“大于等于” 不等式:用符號(hào)“”(或“”)連接的式子;不等有傳遞性

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論