版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、江蘇高一數(shù)學(xué)教案 #江蘇高一數(shù)學(xué)教案1#教學(xué)目的:(1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及記法(2)使學(xué)生初步了解“屬于”關(guān)系的意義(3)使學(xué)生初步了解有限集、無限集、空集的意義教學(xué)重點:集合的基本概念及表示方法教學(xué)難點:運用集合的兩種常用表示方法列舉法與描述法,正確表示一些簡單的集合授課類型:新授課課時安排:1課時教具:多媒體、實物投影儀內(nèi)容分析:1.集合是中學(xué)數(shù)學(xué)的一個重要的基本概念在小學(xué)數(shù)學(xué)中,就滲透了集合的初步概念,到了初中,更進(jìn)一步應(yīng)用集合的語言表述一些問題例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點集至于邏輯,可以說,從開始學(xué)習(xí)數(shù)學(xué)就離不開對邏輯知識的掌握和運
2、用,基本的邏輯知識在日常生活、學(xué)習(xí)、工作中,也是認(rèn)識問題、研究問題不可缺少的工具這些可以幫助學(xué)生認(rèn)識學(xué)習(xí)*的意義,也是*學(xué)習(xí)的基礎(chǔ)把集合的初步知識與簡易邏輯知識安排在高中數(shù)學(xué)的最開始,是因為在高中數(shù)學(xué)中,這些知識與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握和使用數(shù)學(xué)語言的基礎(chǔ)例如,下一章講函數(shù)的概念與性質(zhì),就離不開集合與邏輯本節(jié)首先從初中代數(shù)與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結(jié)合實例對集合的概念作了說明然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子這節(jié)課主要學(xué)習(xí)全章的引言和集合的基本概念學(xué)習(xí)引言是引發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生認(rèn)識學(xué)習(xí)*的意義本節(jié)
3、課的教學(xué)重點是集合的基本概念集合是集合論中的原始的、不定義的概念在開始接觸集合的概念時,主要還是通過實例,對概念有一個初步認(rèn)識教科書給出的“一般地,某些指定的對象集在一起就成為一個集合,也簡稱集”這句話,只是對集合概念的描述性說明教學(xué)過程:一、復(fù)習(xí)引入:1.簡介數(shù)集的發(fā)展,復(fù)習(xí)公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);2.教材中的章頭引言;3.集合論的創(chuàng)始人康托爾(德國數(shù)學(xué)家)(見附錄);4.“物以類聚”,“人以群分”;5.教材中例子(p4)二、講解新課:閱讀教材第一部分,問題如下:(1)有那些概念?是如何定義的?(2)有那些符號?是如何表示的?(3)集合中元素的特性是什么?(一)集合的有關(guān)概念:由一些
4、數(shù)、一些點、一些圖形、一些整式、一些物體、一些人組成的.我們說,每一組對象的全體形成一個集合,或者說,某些指定的對象集在一起就成為一個集合,也簡稱集.集合中的每個對象叫做這個集合的元素.定義:一般地,某些指定的對象集在一起就成為一個集合.1、集合的概念(1)集合:某些指定的對象集在一起就形成一個集合(簡稱集)(2)元素:集合中每個對象叫做這個集合的元素2、常用數(shù)集及記法(1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合記作n,(2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0的集記作n_或n+(3)整數(shù)集:全體整數(shù)的集合記作z,(4)有理數(shù)集:全體有理數(shù)的集合記作q,(5)實數(shù)集:全體實數(shù)的集合記作r注:(1)
5、自然數(shù)集與非負(fù)整數(shù)集是相同的,也就是說,自然數(shù)集包括數(shù)0(2)非負(fù)整數(shù)集內(nèi)排除0的集記作n_或n+q、z、r等其它數(shù)集內(nèi)排除0的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成z_3、元素對于集合的隸屬關(guān)系(1)屬于:如果a是集合a的元素,就說a屬于a,記作aa(2)不屬于:如果a不是集合a的元素,就說a不屬于a,記作4、集合中元素的特性(1)確定性:按照明確的判斷標(biāo)準(zhǔn)給定一個元素或者在這個集合里,或者不在,不能模棱兩可(2)互異性:集合中的元素沒有重復(fù)(3)無序性:集合中的元素沒有一定的順序(通常用正常的順序?qū)懗?5、集合通常用大寫的拉丁字母表示,如a、b、c、p、q元素通常用小寫的拉丁字
6、母表示,如a、b、c、p、q“”的開口方向,不能把aa顛倒過來寫三、練習(xí)題:1、教材p5練習(xí)1、22、下列各組對象能確定一個集合嗎?(1)所有很大的實數(shù)(不確定)(2)好心的人(不確定)(3)1,2,2,3,4,5.(有重復(fù))3、設(shè)a,b是非零實數(shù),那么可能取的值組成集合的元素是_-2,0,2_4、由實數(shù)x,-x,|x|,所組成的集合,最多含(a)(a)2個元素(b)3個元素(c)4個元素(d)5個元素5、設(shè)集合g中的元素是所有形如a+b(az,bz)的數(shù),求證:(1)當(dāng)xn時,xg;(2)若xg,yg,則x+yg,而不一定屬于集合g證明(1):在a+b(az,bz)中,令a=xn,b=0,則
7、x=x+0_=a+bg,即xg證明(2):xg,yg,x=a+b(az,bz),y=c+d(cz,dz)x+y=(a+b)+(c+d)=(a+c)+(b+d)az,bz,cz,dz(a+c)z,(b+d)zx+y=(a+c)+(b+d)g,又=且不一定都是整數(shù),=不一定屬于集合g四、小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:1.集合的有關(guān)概念:(集合、元素、屬于、不屬于)2.集合元素的性質(zhì):確定性,互異性,無序性3.常用數(shù)集的定義及記法五、課后作業(yè):六、板書設(shè)計(略)七、課后記:八、附錄:康托爾簡介發(fā)瘋了的數(shù)學(xué)家康托爾(georgcantor,1845-1918)是德國數(shù)學(xué)家,集合論的1845年3月3日生于
8、圣彼得堡,1918年1月6日病逝于哈雷康托爾11歲時移居德國,在德國讀中學(xué)1862年17歲時入瑞士蘇黎世大學(xué),翌年入柏林大學(xué),主修數(shù)學(xué),1866年曾去格丁根學(xué)習(xí)一學(xué)期1867年以數(shù)論方面的論文獲博士學(xué)位1869年在哈雷大學(xué)通過講師資格考試,后在該大學(xué)任講師,1872年任副教授,1879年任教授由于研究無窮時往往推出一些合乎邏輯的但又荒謬的結(jié)果(稱為“悖論”),許多大數(shù)學(xué)家唯恐陷進(jìn)去而采取退避三舍的態(tài)度在18741876年期間,不到30歲的年輕德國數(shù)學(xué)家康托爾向神秘的無窮宣戰(zhàn)他靠著辛勤的汗水,成功地證明了一條直線上的點能夠和一個平面上的點一一對應(yīng),也能和空間中的點一一對應(yīng)這樣看起來,1厘米長的線
9、段內(nèi)的點與太平洋面上的點,以及整個地球內(nèi)部的點都“一樣多”,后來幾年,康托爾對這類“無窮集合”問題發(fā)表了一系列*,通過嚴(yán)格證明得出了許多驚人的結(jié)論康托爾的創(chuàng)造性工作與傳統(tǒng)的數(shù)學(xué)觀念發(fā)生了尖銳沖突,遭到一些人的反對、攻擊甚至謾罵有人說,康托爾的集合論是一種“疾病”,康托爾的概念是“霧中之霧”,甚至說康托爾是“瘋子”來自數(shù)學(xué)_們的巨大精神壓力終于摧垮了康托爾,使他心力交瘁,患了精神_癥,被送進(jìn)精神病醫(yī)院真金不怕火煉,康托爾的思想終于大放光彩1897年舉行的第一次國際數(shù)學(xué)家會議上,他的成就得到承認(rèn),偉大的哲學(xué)家、數(shù)學(xué)家羅素稱贊康托爾的工作“可能是這個時代所能夸耀的最巨大的工作”可是這時康托爾仍然神志
10、恍惚,不能從人們的崇敬中得到安慰和喜悅1918年1月6日,康托爾在一家精神病院去世集合論是現(xiàn)代數(shù)學(xué)的基礎(chǔ),康托爾在研究函數(shù)論時產(chǎn)生了探索無窮集和超窮數(shù)的興趣康托爾肯定了無窮數(shù)的存在,并對無窮問題進(jìn)行了哲學(xué)的討論,最終建立了較完善的集合理論,為現(xiàn)代數(shù)學(xué)的發(fā)展打下了堅實的基礎(chǔ)康托爾創(chuàng)立了集合論作為實數(shù)理論,以至整個微積分理論體系的基礎(chǔ)從而解決17世紀(jì)牛頓(i.newton,1642-1727)與萊布尼茨(g.w.leibniz,1646-1716)創(chuàng)立微積分理論體系之后,在近一二百年時間里,微積分理論所缺乏的邏輯基礎(chǔ)和從19世紀(jì)開始,柯西(a.l.cauchy,1789-1857)、魏爾斯特拉斯(
11、k.weierstrass,1815-1897)等人進(jìn)行的微積分理論嚴(yán)格化所建立的極限理論克隆尼克(l.kronecker,1823-1891),康托爾的老師,對康托爾表現(xiàn)了無微不至的關(guān)懷他用各種用得上的尖刻語言,粗暴地、連續(xù)不斷地攻擊康托爾達(dá)十年之久他甚至在柏林大學(xué)的學(xué)生面前公開攻擊康托爾橫加阻撓康托爾在柏林得到一個薪金較高、聲望更大的教授職位使得康托爾想在柏林得到職位而改善其地位的任何努力都遭到挫折法國數(shù)學(xué)家彭加勒(h.poi-ncare,1854-1912):我個人,而且還不只我一人,認(rèn)為重要之點在于,切勿引進(jìn)一些不能用有限個文字去完全定義好的東西集合論是一個有趣的“病理學(xué)的情形”,后一
12、代將把(cantor)集合論當(dāng)作一種疾病,而人們已經(jīng)從中恢復(fù)過來了德國數(shù)學(xué)家魏爾(c.h.her-mannwey1,1885-1955)認(rèn)為,康托爾關(guān)于基數(shù)的等級觀點是霧上之霧菲利克斯.克萊因(f.klein,1849-1925)不贊成集合論的思想數(shù)學(xué)家h.a.施瓦茲,康托爾的好友,由于反對集合論而同康托爾斷交從1884年春天起,康托爾患了嚴(yán)重的憂郁癥,極度沮喪,神態(tài)不安,精神病時時發(fā)作,不得不經(jīng)常住到精神病院的療養(yǎng)所去變得很自卑,甚至懷疑自己的工作是否可靠他請求哈勒大學(xué)_把他的數(shù)學(xué)教授職位改為哲學(xué)教授職位健康狀況逐漸惡化,1918年,他在哈勒大學(xué)附屬精神病院去世流星埃.伽羅華(e.galoi
13、s,1811-1832),法國數(shù)學(xué)家伽羅華17歲時,就著手研究數(shù)學(xué)中最困難的問題之一一般次方程求解問題#江蘇高一數(shù)學(xué)教案2#教學(xué)目標(biāo)1.掌握等比數(shù)列前項和公式,并能運用公式解決簡單的問題.(1)理解公式的推導(dǎo)過程,體會轉(zhuǎn)化的思想;(2)用方程的思想認(rèn)識等比數(shù)列前項和公式,利用公式知三求一;與通項公式結(jié)合知三求二;2.通過公式的靈活運用,進(jìn)一步滲透方程的思想、分類討論的思想、等價轉(zhuǎn)化的思想.3.通過公式推導(dǎo)的教學(xué),對學(xué)生進(jìn)行思維的嚴(yán)謹(jǐn)性的訓(xùn)練,培養(yǎng)他們實事求是的科學(xué)態(tài)度.教學(xué)建議教材分析(1)知識結(jié)構(gòu)先用錯位相減法推出等比數(shù)列前#江蘇高一數(shù)學(xué)教案3#教學(xué)目標(biāo)熟悉與數(shù)列知識相關(guān)的背景,如增長率、存
14、款利息等問題,提高學(xué)生閱讀理解能力、抽象轉(zhuǎn)化的能力以及解答實際問題的能力,強化應(yīng)用儀式。教學(xué)重難點熟悉與數(shù)列知識相關(guān)的背景,如增長率、存款利息等問題,提高學(xué)生閱讀理解能力、抽象轉(zhuǎn)化的能力以及解答實際問題的能力,強化應(yīng)用儀式。教學(xué)過程【復(fù)習(xí)要求】熟悉與數(shù)列知識相關(guān)的背景,如增長率、存款利息等問題,提高學(xué)生閱讀理解能力、抽象轉(zhuǎn)化的能力以及解答實際問題的能力,強化應(yīng)用儀式?!痉椒ㄒ?guī)律】應(yīng)用數(shù)列知識界實際應(yīng)用問題的關(guān)鍵是通過對實際問題的綜合分析,確定其數(shù)學(xué)模型是等差數(shù)列,還是等比數(shù)列,并確定其首項,公差(或公比)等基本元素,然后設(shè)計合理的計算方案,即數(shù)學(xué)建模是解答數(shù)列應(yīng)用題的關(guān)鍵。一、基礎(chǔ)訓(xùn)練1.某種
15、細(xì)菌在培養(yǎng)過程中,每20分鐘_一次(一個_為兩個),經(jīng)過3小時,這種細(xì)菌由1個可繁殖成()a、511b、512c、1023d、10242.若一工廠的生產(chǎn)總值的月平均增長率為p,則年平均增長率為()a、b、c、d、二、典型例題例1:某人每期期初到銀行存入一定金額a,每期利率為p,到第n期共有本金na,_期的利息是nap,第二期的利息是(n-1)ap,第n期(即_后一期)的利息是ap,問到第n期期末的本金和是多少?評析:此例來自一種常見的存款叫做零存整取。存款的方式為每月的某日存入一定的金額,這是零存,一定時期到期,可以提出全部本金及利息,這是整取。計算本利和就是本例所用的有窮等差數(shù)列求和的方法。
16、用實際問題列出就是:本利和=每期存入的金額存期+1/2存期(存期+1)利率例2:某人從1999到2002年間,每年6月1日都到銀行存入m元的一年定期儲蓄,若每年利率q保持不變,且每年到期的存款本息均自動轉(zhuǎn)為新的一年定期,到2003年6月1日,此人到銀行不再存款,而是將所有存款的本息全部取回,則取回的金額是多少元?例3、某地區(qū)位于沙漠邊緣,人與自然進(jìn)行長期頑強的斗爭,到1999年底全地區(qū)的綠化率已達(dá)到30%,從2000年開始,每年將出現(xiàn)以下的變化:原有沙漠面積的16%將栽上樹,改造為綠洲,同時,原有綠洲面積的4%又被侵蝕,變?yōu)樯衬?問經(jīng)過多少年的努力才能使全縣的綠洲面積超過60%.(lg2=0.3)例4、.流行性感冒(簡稱流感)是由流感病毒引起的急性呼吸道傳染病.某市去年11月分曾發(fā)生流感,據(jù)資料記載,11月1日,該市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于該市醫(yī)療部門采取措施,使該種病毒的傳播得到控制,從
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 汽車購買保障合同范例
- 臨時雇工合同范例
- 采摘芒果合同范例
- cng銷售合同范例
- 樁基檢測服務(wù)合同范例
- 農(nóng)藥產(chǎn)品購銷合同范例
- 櫥柜嵌入式定制合同范例
- 外貿(mào)合同范例雙文
- 國企招聘簽合同范例
- 技術(shù)分紅協(xié)議合同范例
- 天津市西青區(qū)2023-2024學(xué)年八年級上學(xué)期期末數(shù)學(xué)達(dá)標(biāo)卷(含答案)
- 社會心理學(xué)理論考試試題及答案
- 國開2023秋《電子商務(wù)概論》實踐任務(wù)B2B電子商務(wù)網(wǎng)站調(diào)研報告參考答案
- 國家開放大學(xué)《個人理財》形考任務(wù)1-4
- 幼兒園學(xué)前教育五以內(nèi)的數(shù)字比大小練習(xí)題
- 垃圾自動分揀機構(gòu)plc控制畢業(yè)論文
- 中國省市行政代碼表
- JTG D70-2-2014 公路隧道設(shè)計規(guī)范 第二冊 交通工程與附屬設(shè)施正式版
- 廈門市2023-2024學(xué)年度初中語文初一上學(xué)期語文期末質(zhì)量檢測
- 廣東省文物保護(hù)單位“四有”工作規(guī)范
- 社區(qū)政審證明
評論
0/150
提交評論