




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、(轉(zhuǎn)自網(wǎng)絡(luò))電源完整性(1)為什么要重視電源噪聲芯 片內(nèi)部有成千上萬個晶體管,這些晶體管組成內(nèi)部的門電路、組合邏輯、寄存器、計(jì)數(shù)器、延遲線、狀態(tài)機(jī)、以及其他邏輯功能。隨著芯片的集成度越來越高,內(nèi)部 晶體管數(shù)量越來越大。芯片的外部引腳數(shù)量有限,為每一個晶體管提供單獨(dú)的供電引腳是不現(xiàn)實(shí)的。芯片的外部電源引腳提供給內(nèi)部晶體管一個公共的供電節(jié)點(diǎn),因 此內(nèi)部晶體管狀態(tài)的轉(zhuǎn)換必然引起電源噪聲在芯片內(nèi)部的傳遞。對內(nèi)部各個晶體管的操作通常由內(nèi)核時鐘或片內(nèi)外設(shè)時鐘同步,但是由于內(nèi)部延時的 差別,各個晶體管的狀態(tài)轉(zhuǎn)換不可能是嚴(yán)格同步的,當(dāng)某些晶體管已經(jīng)完成了狀態(tài)轉(zhuǎn)換,另一些晶體管可能仍處于轉(zhuǎn)換過程中。芯片內(nèi)部處于
2、高電平的門電路會把電 源噪聲傳遞到其他門電路的輸入部分。如果接受電源噪聲的門電路此時處于電平轉(zhuǎn)換的不定態(tài)區(qū)域,那么電源噪聲可能會被放大,并在門電路的輸出端產(chǎn)生矩形脈沖 干擾,進(jìn)而引起電路的邏輯錯誤。芯片外部電源引腳處的噪聲通過內(nèi)部門電路的傳播,還可能會觸發(fā)內(nèi)部寄存器產(chǎn)生狀態(tài)轉(zhuǎn)換。除了對芯片本身工作狀態(tài)產(chǎn)生影響外,電源噪聲還會對其他部分產(chǎn)生影響。比如電源噪聲會影響晶振、PLL、DLL的抖動特性,AD轉(zhuǎn)換電路的轉(zhuǎn)換精度等。解釋這些問題需要非常長的篇幅,本文不做進(jìn)一步介紹,我會在后續(xù)文章中詳細(xì)講解。 由于最終產(chǎn)品工作溫度的變化以及生產(chǎn)過程中產(chǎn)生的不一致性,如果是由于電源系統(tǒng)產(chǎn)生的問題,電路將非常難調(diào)
3、試,因此最好在電路設(shè)計(jì)之初就遵循某種成熟的設(shè)計(jì)規(guī)則,使電源系統(tǒng)更加穩(wěn)健。 電源完整性(2)電源系統(tǒng)噪聲余量分析電源系統(tǒng)噪聲余量分析絕大多數(shù)芯片都會給出一個正常工作的電壓范圍,這個值通常是5%。例如:對于3.3V電壓,為滿足芯片正常工作,供電電壓在3.13V到3.47V之 間,或3.3V165mV。對于1.2V電壓,為滿足芯片正常工作,供電電壓在1.14V到1.26V之間,或1.2V60mV。這些限制可以在芯片 datasheet中的recommended operating conditions部分查到。這些限制要考慮兩個部分,第一是穩(wěn)壓芯片的直流輸出誤差,第二是電源噪聲的峰值幅度。老式的穩(wěn)壓
4、芯片的輸出電壓精度通常 是2.5%,因此電源噪聲的峰值幅度不應(yīng)超過2.5%。當(dāng)然隨著芯片工藝的提高,現(xiàn)代的穩(wěn)壓芯片直流精度更高,可能會達(dá)到1%以下,TI公司的開關(guān) 電源芯片TPS54310精度可達(dá)1%,線性穩(wěn)壓源AMS1117可達(dá)0.2%。但是要記住,達(dá)到這樣的精度是有條件的,包括負(fù)載情況,工作溫度等限 制。因此可靠的設(shè)計(jì)還是以2.5%這個值更把握些。如果你能確保所用的芯片安裝到電路板上后能達(dá)到更高的穩(wěn)壓精度,那么你可以為你的這款設(shè)計(jì)單獨(dú)進(jìn)行噪 聲余量計(jì)算。本文著重電源部分設(shè)計(jì)的原理說明,電源噪聲余量將使用2.5%這個值。 電源噪聲余量計(jì)算非常簡單,方法如下: 比如芯片正常工作電壓范圍為3.1
5、3V到3.47V之間,穩(wěn)壓芯片標(biāo)稱輸出3.3V。安裝到電路板上后,穩(wěn)壓芯片輸出3.36V。那么容許電壓變化范圍為 3.47-3.36=0.11V=110mV。穩(wěn)壓芯片輸出精度1%,即3.363*1%=33.6 mV。電源噪聲余量為110-33.6=76.4 mV。計(jì)算很簡單,但是要注意四個問題: 第一,穩(wěn)壓芯片輸出電壓能精確的定在3.3V么?外圍器件如電阻電容電感的參數(shù)也不是精確的,這對穩(wěn)壓芯片的輸出電壓有影響,所以這里用了3.36V這個值。在安裝到電路板上之前,你不可能預(yù)測到準(zhǔn)確的輸出電壓值。 第二,工作環(huán)境是否符合穩(wěn)壓芯片手冊上的推薦環(huán)境?器件老化后參數(shù)還會和芯片手冊上的一致么? 第三,負(fù)
6、載情況怎樣?這對穩(wěn)壓芯片的輸出電壓也有影響。 第四,電源噪聲最終會影響到信號質(zhì)量。而信號上的噪聲來源不僅僅是電源噪聲,反射串?dāng)_等信號完整性問題也會在信號上疊加噪聲,不能把所有噪聲余量都分配給電源系統(tǒng)。所以,在設(shè)計(jì)電源噪聲余量的時候要留有余地。 另一個重要問題是:不同電壓等級,對電源噪聲余量要求不一樣,按2.5%計(jì)算的話,1.2V電壓等級的噪聲余量只有30mV。這是一個很苛刻的限制,設(shè) 計(jì)的時候要謹(jǐn)慎些。模擬電路對電源的要求更高。電源噪聲影響時鐘系統(tǒng),可能會引起時序匹配問題。因此必須重視電源噪聲問題電源完整性(3)電源系統(tǒng)的噪聲來源電源系統(tǒng)的噪聲來源有三個方面:第一,穩(wěn)壓電源芯片本身的輸出并不是
7、恒定的,會有一定的波紋。這是由穩(wěn)壓芯片自身決定的,一旦選好了穩(wěn)壓電源芯片,對這部分噪聲我們只能接受,無法控制。第 二,穩(wěn)壓電源無法實(shí)時響應(yīng)負(fù)載對于電流需求的快速變化。穩(wěn)壓電源芯片通過感知其輸出電壓的變化,調(diào)整其輸出電流,從而把輸出電壓調(diào)整回額定輸出值。多數(shù)常 用的穩(wěn)壓源調(diào)整電壓的時間在毫秒到微秒量級。因此,對于負(fù)載電流變化頻率在直流到幾百KHz之間時,穩(wěn)壓源可以很好的做出調(diào)整,保持輸出電壓的穩(wěn)定。當(dāng)負(fù) 載瞬態(tài)電流變化頻率超出這一范圍時,穩(wěn)壓源的電壓輸出會出現(xiàn)跌落,從而產(chǎn)生電源噪聲?,F(xiàn)在,微處理器的內(nèi)核及外設(shè)的時鐘頻率已經(jīng)超過了600兆赫茲,內(nèi)部 晶體管電平轉(zhuǎn)換時間下降到800皮秒以下。這要求電
8、源分配系統(tǒng)必須在直流到1GHz范圍內(nèi)都能快速響應(yīng)負(fù)載電流的變化,但現(xiàn)有穩(wěn)壓電源芯片不可能滿足這一 苛刻要求。我們只能用其他方法補(bǔ)償穩(wěn)壓源這一不足,這涉及到后面要講的電源去耦。第三,負(fù)載瞬態(tài)電流在電源路徑阻抗和地路徑阻抗上產(chǎn)生的壓 降。PCB板上任何電氣路徑不可避免的會存在阻抗,不論是完整的電源平面還是電源引線。對于多層板,通常提供一個完整的電源平面和地平面,穩(wěn)壓電源輸出首 先接入電源平面,供電電流流經(jīng)電源平面,到達(dá)負(fù)載電源引腳。地路徑和電源路徑類似,只不過電流路徑變成了地平面。完整平面的阻抗很低,但確實(shí)存在。如果不 使用平面而使用引線,那么路徑上的阻抗會更高。另外,引腳及焊盤本身也會有寄生電感
9、存在,瞬態(tài)電流流經(jīng)此路徑必然產(chǎn)生壓降,因此負(fù)載芯片電源引腳處的電壓 會隨著瞬態(tài)電流的變化而波動,這就是阻抗產(chǎn)生的電源噪聲。在電源路徑表現(xiàn)為負(fù)載芯片電源引腳處的電壓軌道塌陷,在地路徑表現(xiàn)為負(fù)載芯片地引腳處的電位和參 考地電位不同(注意,這和地彈不同,地彈是指芯片內(nèi)部參考地電位相對于板級參考地電位的跳變)。電源完整性(4)電容退耦的兩種解釋采用電容退耦是解決電源噪聲問題的主要方法。這種方法對提高瞬態(tài)電流的響應(yīng)速度,降低電源分配系統(tǒng)的阻抗都非常有效。對 于電容退耦,很多資料中都有涉及,但是闡述的角度不同。有些是從局部電荷存儲(即儲能)的角度來說明,有些是從電源分配系統(tǒng)的阻抗的角度來說明,還有些資 料
10、的說明更為混亂,一會提儲能,一會提阻抗,因此很多人在看資料的時候感到有些迷惑。其實(shí),這兩種提法,本質(zhì)上是相同的,只不過看待問題的視角不同而已。 為了讓大家有個清楚的認(rèn)識,本文分別介紹一下這兩種解釋。4.1 從儲能的角度來說明電容退耦原理。在制作電路板時,通常會在負(fù)載芯片周圍放置很多電容,這些電容就起到電源退耦作用。其原理可用圖1說明。圖1 去耦電路當(dāng)負(fù)載電流不變時,其電流由穩(wěn)壓電源部分提供,即圖中的I0,方向如圖所示。此時電容兩端電壓與負(fù)載兩端電壓一致,電流Ic為0,電容兩端存儲相當(dāng)數(shù)量的電荷,其電荷數(shù)量和電容量有關(guān)。當(dāng)負(fù)載瞬態(tài)電流發(fā)生變化時,由于負(fù)載芯片內(nèi)部晶體管電平轉(zhuǎn)換速度極快,必須在極短
11、的時間內(nèi)為負(fù)載芯片提供足夠的電流。但是穩(wěn)壓電源無法很快響應(yīng)負(fù)載電流的變化,因此,電流I0不會馬上滿足負(fù)載瞬態(tài)電流要求,因此負(fù)載芯片電壓會降低。但是由于電容電壓與負(fù)載電壓相同,因此電容兩端存在電壓變化。對于電容來說電壓變化必然產(chǎn)生電流,此時電容對負(fù)載放電,電流Ic不再為0,為負(fù)載芯片提供電流。根據(jù)電容等式: (公式1)只 要電容量C足夠大,只需很小的電壓變化,電容就可以提供足夠大的電流,滿足負(fù)載瞬態(tài)電流的要求。這樣就保證了負(fù)載芯片電壓的變化在容許的范圍內(nèi)。這里,相 當(dāng)于電容預(yù)先存儲了一部分電能,在負(fù)載需要的時候釋放出來,即電容是儲能元件。儲能電容的存在使負(fù)載消耗的能量得到快速補(bǔ)充,因此保證了負(fù)載
12、兩端電壓不至 于有太大變化,此時電容擔(dān)負(fù)的是局部電源的角色。從儲能的角度來理解電源退耦,非常直觀易懂,但是對電路設(shè)計(jì)幫助不大。從阻抗的角度理解電容退耦,能讓我們設(shè)計(jì)電路時有章可循。實(shí)際上,在決定電源分配系統(tǒng)的去耦電容量的時候,用的就是阻抗的概念。4.2 從阻抗的角度來理解退耦原理。將圖1中的負(fù)載芯片拿掉,如圖2所示。從AB兩點(diǎn)向左看過去,穩(wěn)壓電源以及電容退耦系統(tǒng)一起,可以看成一個復(fù)合的電源系統(tǒng)。這個電源系統(tǒng)的特點(diǎn)是:不論AB兩點(diǎn)間負(fù)載瞬態(tài)電流如何變化,都能保證AB兩點(diǎn)間的電壓保持穩(wěn)定,即AB兩點(diǎn)間電壓變化很小。圖片2 電源部分我們可以用一個等效電源模型表示上面這個復(fù)合的電源系統(tǒng),如圖3圖3 等
13、效電源對于這個電路可寫出如下等式: (公式2)我 們的最終設(shè)計(jì)目標(biāo)是,不論AB兩點(diǎn)間負(fù)載瞬態(tài)電流如何變化,都要保持AB兩點(diǎn)間電壓變化范圍很小,根據(jù)公式2,這個要求等效于電源系統(tǒng)的阻抗Z要足夠低。 在圖2中,我們是通過去耦電容來達(dá)到這一要求的,因此從等效的角度出發(fā),可以說去耦電容降低了電源系統(tǒng)的阻抗。另一方面,從電路原理的角度來說,可得到同 樣結(jié)論。電容對于交流信號呈現(xiàn)低阻抗特性,因此加入電容,實(shí)際上也確實(shí)降低了電源系統(tǒng)的交流阻抗。從阻抗的角度理解電容退耦,可以給我們設(shè)計(jì)電源分配系統(tǒng)帶來極大的方便。實(shí)際上,電源分配系統(tǒng)設(shè)計(jì)的最根本的原則就是使阻抗最小。最有效的設(shè)計(jì)方法就是在這個原則指導(dǎo)下產(chǎn)生的。
14、電源完整性設(shè)計(jì)(5)實(shí)際電容的特性正確使用電容進(jìn)行電源退耦,必須了解實(shí)際電容的頻率特性。理想電容器在實(shí)際中是不存在的,這就是為什么經(jīng)常聽到“電容不僅僅是電容”的原因。實(shí)際的電容器總會存在一些寄生參數(shù),這些寄生參數(shù)在低頻時表現(xiàn)不明顯,但是高頻情況下,其重要性可能會超過容值本身。圖4是實(shí)際電容器的SPICE模型,圖中,ESR代表等效串聯(lián)電阻,ESL代表等效串聯(lián)電感或寄生電感,C為理想電容。 圖4 電容模型等 效串聯(lián)電感(寄生電感)無法消除,只要存在引線,就會有寄生電感。這從磁場能量變化的角度可以很容易理解,電流發(fā)生變化時,磁場能量發(fā)生變化,但是不可能 發(fā)生能量躍變,表現(xiàn)出電感特性。寄生電感會延緩電
15、容電流的變化,電感越大,電容充放電阻抗就越大,反應(yīng)時間就越長。等效串聯(lián)電阻也不可消除的,很簡單,因 為制作電容的材料不是超導(dǎo)體。討論實(shí)際電容特性之前,首先介紹諧振的概念。對于圖4的電容模型,其復(fù)阻抗為: (公式3)當(dāng)頻率很低時, 遠(yuǎn)小于 ,整個電容器表現(xiàn)為電容性,當(dāng)頻率很高時, 大于 ,電容器此時表現(xiàn)為電感性,因此“高頻時電容不再是電容”,而呈現(xiàn)為電感。當(dāng) 時, ,此時容性阻抗矢量與感性阻抗之差為0,電容的總阻抗最小,表現(xiàn)為純電阻特性。該頻率點(diǎn)就是電容的自諧振頻率。自諧振頻率點(diǎn)是區(qū)分電容是容性還是感性的分 界點(diǎn),高于諧振頻率時,“電容不再是電容”,因此退耦作用將下降。因此,實(shí)際電容器都有一定的
16、工作頻率范圍,只有在其工作頻率范圍內(nèi),電容才具有很好的退 耦作用,使用電容進(jìn)行電源退耦時要特別關(guān)注這一點(diǎn)。寄生電感(等效串聯(lián)電感)是電容器在高于自諧振頻率點(diǎn)之后退耦功能被消弱的根本原因。圖5顯示了一個實(shí) 際的0805封裝0.1uF陶瓷電容,其阻抗隨頻率變化的曲線。圖5 電容阻抗特性電容的自諧振頻率值和它的電容值及等效串聯(lián)電感值有關(guān),使用時可查看器件手冊,了解該項(xiàng)參數(shù),確定電容的有效頻率范圍。下面列出了AVX生產(chǎn)的陶瓷電容不同封裝的各項(xiàng)參數(shù)值。封裝 ESL(nH) ESR(歐姆)0402 0.4 0.06 0603 0.5 0.0980805 0.6 0.0791206 1 0.121210 0
17、.9 0.121812 1.4 0.2032220 1.6 0.285電容的等效串聯(lián)電感和生產(chǎn)工藝和封裝尺寸有關(guān),同一個廠家的同種封裝尺寸的電容,其等效串聯(lián)電感基本相同。通常小封裝的電容等效串聯(lián)電感更低,寬體封裝的電容比窄體封裝的電容有更低的等效串聯(lián)電感。既然電容可以看成RLC串聯(lián)電路,因此也會存在品質(zhì)因數(shù),即Q值,這也是在使用電容時的一個重要參數(shù)。電路在諧振時容抗等于感抗,所以電容和電感上兩端的電壓有效值必然相等,電容上的電壓有效值UC=I*1/C=U/CR=QU,品質(zhì)因數(shù)Q=1/CR,這里I是電路的總電流。電感上的電壓有效值UL=LI=L*U/R=QU,品質(zhì)因數(shù)Q=L/R。因?yàn)椋篣C=UL
18、 所以Q=1/CR=L/R。電容上的電壓與外加信號電壓U之比UC/U=(I*1/C)/RI=1/CR=Q。電感上的電壓與外加信號電壓U之比UL/U=LI/RI=L/R=Q。從上面分析可見,電路的品質(zhì)因數(shù)越高,電感或電容上的電壓比外加電壓越高。圖6 Q值的影響Q值影響電路的頻率選擇性。當(dāng)電路處于諧振頻率時,有最大的電流,偏離諧振頻率時總電流減小。我們用I/I0表示通過電容的電流與諧振電流的比值,即相對變化率。 表示頻率偏離諧振頻率程度。圖6顯示了I/I0與 關(guān)系曲線。這里有三條曲線,對應(yīng)三個不同的Q值,其中有Q1Q2Q3。從圖中可看出當(dāng)外加信號頻率偏離電路的諧振頻率0時,I/I0均小于1。Q值越
19、高在一定的頻偏下電流下降得越快,其諧振曲線越尖銳。也就是說電路的選擇性是由電路的品質(zhì)因素Q所決定的,Q值越高選擇性越好。在電路板上會放置一些大的電容,通常是坦電容或電解電容。這類電容有很低的ESL,但是ESR很高,因此Q值很低,具有很寬的有效頻率范圍,非常適合板級電源濾波。電源完整性設(shè)計(jì)(6)電容的安裝諧振頻率電容的安裝諧振頻率上 一節(jié)介紹的是電容自身的參數(shù),當(dāng)電容安裝到電路板上后,還會引入額外的寄生參數(shù),從而引起諧振頻率的偏移。充分理解電容的自諧振頻率和安裝諧振頻率非常重 要,在計(jì)算系統(tǒng)參數(shù)時,實(shí)際使用的是安裝諧振頻率,而不是自諧振頻率,因?yàn)槲覀冴P(guān)注的是電容安裝到電路板上之后的表現(xiàn)。電容在電
20、路板上的安 裝通常包括一小段從焊盤拉出的引出線,兩個或更多的過孔。我們知道,不論引線還是過孔都存在寄生電感。寄生電感是我們主要關(guān)注的重要參數(shù),因?yàn)樗鼘﹄娙莸?特性影響最大。電容安裝后,可以對其周圍一小片區(qū)域有效去耦,這涉及到去耦半徑問題,本文后面還要詳細(xì)講述?,F(xiàn)在我們考察這樣一種情況,電容要對距離它處 的一點(diǎn)去耦,這時寄生電感包括哪幾部分。首先,電容自身存在寄生電感。從電容到達(dá)需要去耦區(qū)域的路徑上包括焊盤、一小段引出線、過孔、長的電源及地平面, 這幾個部分都存在寄生電感。相比較而言,過孔的寄生電感較大??梢杂霉浇朴?jì)算一個過孔的寄生電感有多大。 公式為其 中:L是過孔的寄生電感,單位是nH。
21、h為過孔的長度,和板厚有關(guān),單位是英寸。d為過孔的直徑,單位是英寸。下面就計(jì)算一個常見的過孔的寄生電感,看看 有多大,以便有一個感性認(rèn)識。設(shè)過孔的長度為63mil(對應(yīng)電路板的厚度,這一厚度的電路板很常見),過孔直徑8mil,根據(jù)上面公式得:這 一寄生電感比很多小封裝電容自身的寄生電感要大,必須考慮它的影響。過孔的直徑越大,寄生電感越小。過孔長度越長,電感越大。下面我們就以一個0805封 裝0.01uF電容為例,計(jì)算安裝前后諧振頻率的變化。參數(shù)如下:容值:C=0.01uF。電容自身等效串聯(lián)電感:ESL=0.6 nH。安裝后增加的寄生電感:Lmount=1.5nH。電容的自諧振頻率:安裝后的總寄
22、生電感:0.6+1.5=2.1nH。注意,實(shí)際上安裝一個電容至少要兩個過孔,寄生電感是串聯(lián)的,如果只用兩個過孔,則過孔引入的寄生電感就有3nH。但是在電容的每一端都并聯(lián)幾個過孔,可以有效減小總的寄生電感量,這和安裝方法有關(guān)。安裝后的諧振頻率為:可見,安裝后電容的諧振頻率發(fā)生了很大的偏移,使得小電容的高頻去耦特性被消弱。在進(jìn)行電路參數(shù)設(shè)計(jì)時,應(yīng)以這個安裝后的諧振頻率計(jì)算,因?yàn)檫@才是電容在電路板上的實(shí)際表現(xiàn)。安裝電感對電容的去耦特性產(chǎn)生很大影響,應(yīng)盡量減小。實(shí)際上,如何最大程度的減小安裝后的寄生電感,是一個非常重要的問題,本文后面還要專門討論。電源完整性設(shè)計(jì)(7)局部去耦設(shè)計(jì)方法局部去耦設(shè)計(jì)方法我
23、們從一個典型邏輯電路入手,討論局部退耦設(shè)計(jì)方法。圖7是典型的非門(NOT GATE)電路。當(dāng)輸入(Input)低電平時,Q1打開,拉低Q2的基極,因此Q4的基極被拉低,Q3打開,輸出(Output)高電平。圖7 非門內(nèi)部邏輯實(shí) 際電路設(shè)計(jì)中,器件之間相互連接構(gòu)成完整系統(tǒng),因此器件之間必然存在相互影響。作為例子,我們級聯(lián)兩個非門,如圖8所示,看看兩個器件之間怎樣相互影響。 理想的情況應(yīng)該是:第一個非門輸入邏輯低電平(邏輯0),其輸出為高電平,第二個非門輸入為第一個的輸出,也為高電平,因此第二個非門輸出低電平。為 保證邏輯電路能正常工作,表征電路邏輯狀態(tài)的電平值必須落在一定范圍內(nèi)。比如對于3.3V
24、邏輯,高電平大于2V為邏輯1,低電平小于0.8V為邏輯0。當(dāng) 邏輯門電路的輸入電平處于上述范圍內(nèi)時,電路能保證對輸入邏輯狀態(tài)的正確判斷。當(dāng)電平值處于0.8V到2V之間時,則不能保證對輸入邏輯狀態(tài)的正確判斷, 對于本例的非門來說,其輸出可能是邏輯0,也可能是邏輯1,或者處于不定態(tài)。因此輸入電平超出規(guī)定范圍時,可能發(fā)生邏輯錯誤。邏輯電路在設(shè) 計(jì)時采用了很多技術(shù)來保證器件本身不會發(fā)生這樣的錯誤。但是,當(dāng)器件安裝到電路板上,板級系統(tǒng)的其他因素仍可能導(dǎo)致類似錯誤的發(fā)生。圖8中級聯(lián)的兩個非門 共用電源端Vcc和接地端GND。Vcc到每個非門供電引腳間都會存在寄生電感,每個非門的地引腳到GND之間也同樣存在
25、寄生電感。在實(shí)際板級電路中設(shè)計(jì) 中,寄生電感不可避免,電源平面、地平面、過孔、焊盤、連接焊盤的引出線都會引入額外的寄生電感。圖8已經(jīng)畫出了電源端和地端的寄生電感。當(dāng)?shù)谝粋€非門輸 入高電平,其輸出低電平。此時將會形成圖中虛線所示的電流通路,第一個非門接地處寄生電感上的電壓為:V=L*di/dt。這里i為邏輯轉(zhuǎn)換過程形成的瞬 態(tài)電流。如果電路轉(zhuǎn)換過程非??欤ǜ咚倨骷?nèi)部晶體管轉(zhuǎn)換時間已經(jīng)降到了皮秒級),di/dt將是個很大的值,即使很小的寄生電感L也會在電感兩端感應(yīng)出 很大的電壓V。對于一些大規(guī)模邏輯芯片,接地引腳是內(nèi)部非常多的晶體管共用的,這些晶體管同時開關(guān)的話,將產(chǎn)生很大的瞬態(tài)電流,再加上極快
26、的轉(zhuǎn)換時間,寄 生電感上的感應(yīng)電壓更大。此時第一個非門的輸出信號電平為:非門本身低電平電壓+寄生電感上的電壓。如果這一值接近2V,可能會被第二個非門判斷為邏輯 1,從而發(fā)生邏輯錯誤。圖8 級聯(lián)的非門寄生電感可能引起電路邏輯錯誤,那么如何解決這一問題?圖 9展示了一種解決方法。把電容緊鄰器件放置,跨接在電源引腳和地引腳之間。正常時,電容充電,存儲一部分電荷。當(dāng)非門發(fā)生翻轉(zhuǎn)瞬間,電容放電,形成瞬間的 浪涌電流,方向如圖9中虛線所示。這樣電路轉(zhuǎn)換所需的瞬態(tài)電流不必再由VCC提供,電容相當(dāng)于局部小電源。因此電源端和地端的寄生電感被旁路掉了,寄生電 感在這一瞬間沒有電流流過,因而也不存在感應(yīng)電壓,這就保
27、證了第一個非門輸出信號的邏輯電平值的正確性。圖9 局部去耦所需電容可能不是一個,通常是兩個或多個電容并聯(lián)放置,減小電容本身的串聯(lián)電感,進(jìn)而減小電容充放電回路的阻抗。電容的擺放、安裝距離、安裝方法、電容選擇等問題,本文后面會詳細(xì)介紹。很 多芯片制造商在參考設(shè)計(jì)中給出的都是這種局部去耦方式,但并不是說這種方式就是最優(yōu)的。芯片商關(guān)心的是如何提高他所提供的特定器件的性能,也就是說,著眼 點(diǎn)在器件本身,并沒有從整個電路系統(tǒng)的角度來處理電源去耦的問題。有時你會發(fā)現(xiàn),對每一個的電源和地引腳都單獨(dú)去耦是不現(xiàn)實(shí)的,可能是空間限制,放不下如 此多的電容,也可能是成本限制。因此對于板級集成的工程師來說,除了要熟悉局
28、部去耦的方法外,還要深入研究如何從整個電源分配系統(tǒng)的角度進(jìn)行電源去耦設(shè) 計(jì)。電源完整性設(shè)計(jì)(8)去耦設(shè)計(jì)2從電源系統(tǒng)的角度進(jìn)行去耦設(shè)計(jì)先 插一句題外話,很多人在看資料時會有這樣的困惑,有的資料上說要對每個電源引腳加去耦電容,而另一些資料并不是按照每個電源引腳都加去偶電容來設(shè)計(jì)的,只 是說在芯片周圍放置多少電容,然后怎么放置,怎么打孔等等。那么到底哪種說法及做法正確呢?我在剛接觸電路設(shè)計(jì)的時候也有這樣的困惑。其實(shí),兩種方法都是 正確的,只不過處理問題的角度不同。看過本文后,你就徹底明白了。上一節(jié)講了對引腳去耦的方法,這一節(jié)就來講講另一種方法,從電源系統(tǒng)的角度進(jìn)行去耦設(shè)計(jì)。該方法本著這樣一個原則:
29、在感興趣的頻率范圍內(nèi),使整個電源分配系統(tǒng)阻抗最低。其方法仍然是使用去耦電容。電源去耦涉及到很多問題:總的電容量多大才能滿足要求?如何確定這個值?選擇那些電容值?放多少個電容?選什么材質(zhì)的電容?電容如何安裝到電路板上?電容放置距離有什么要求?下面分別介紹。著名的Target Impedance(目標(biāo)阻抗)目標(biāo)阻抗(Target Impedance)定義為: (公式4)其中: 為要進(jìn)行去耦的電源電壓等級,常見的有5V、3.3V、1.8V、1.26V、1.2V等。 為允許的電壓波動,在電源噪聲余量一節(jié)中我們已經(jīng)闡述過了,典型值為2.5%。 為負(fù)載芯片的最大瞬態(tài)電流變化量。該定義可解釋為:能滿足負(fù)載最
30、大瞬態(tài)電流供應(yīng),且電壓變化不超過最大容許波動范圍的情況下,電源系統(tǒng)自身阻抗的最大值。超過這一阻抗值,電源波動將超過容許范圍。如果你對阻抗和電壓波動的關(guān)系不清楚的話,請回顧“電容退耦的兩種解釋”一節(jié)。對目標(biāo)阻抗有兩點(diǎn)需要說明:1 目標(biāo)阻抗是電源系統(tǒng)的瞬態(tài)阻抗,是對快速變化的電流表現(xiàn)出來的一種阻抗特性。2 目標(biāo)阻抗和一定寬度的頻段有關(guān)。在感興趣的整個頻率范圍內(nèi),電源阻抗都不能超過這個值。阻抗是電阻、電感和電容共同作用的結(jié)果,因此必然與頻率有關(guān)。感興 趣的整個頻率范圍有多大?這和負(fù)載對瞬態(tài)電流的要求有關(guān)。顧名思義,瞬態(tài)電流是指在極短時間內(nèi)電源必須提供的電流。如果把這個電流看做信號的話,相當(dāng)于一 個階
31、躍信號,具有很寬的頻譜,這一頻譜范圍就是我們感興趣的頻率范圍。如果暫時不理解上述兩點(diǎn),沒關(guān)系,繼續(xù)看完本文后面的部分,你就明白了。需要多大的電容量有 兩種方法確定所需的電容量。第一種方法利用電源驅(qū)動的負(fù)載計(jì)算電容量。這種方法沒有考慮ESL及ESR的影響,因此很不精確,但是對理解電容量的選擇有好 處。第二種方法就是利用目標(biāo)阻抗(Target Impedance)來計(jì)算總電容量,這是業(yè)界通用的方法,得到了廣泛驗(yàn)證。你可以先用這種方法來計(jì)算,然后做局部微調(diào),能達(dá)到很好的效果,如何進(jìn)行局部 微調(diào),是一個更高級的話題。下面分別介紹兩種方法。方法一:利用電源驅(qū)動的負(fù)載計(jì)算電容量設(shè)負(fù)載(容性)為30pF,要
32、在2ns內(nèi)從0V驅(qū)動到3.3V,瞬態(tài)電流為: (公式5)如果共有36個這樣的負(fù)載需要驅(qū)動,則瞬態(tài)電流為:36*49.5mA=。假設(shè)容許電壓波動為:3.3*2.5%=82.5 mV,所需電容量為C=I*dt/dv=*2ns/0.0825V=43.2nF說 明:所加的電容實(shí)際上作為抑制電壓波紋的儲能元件,該電容必須在2ns內(nèi)為負(fù)載提供的電流,同時電壓下降不能超過82.5 mV,因此電容值應(yīng)根據(jù)82.5 mV來計(jì)算。記?。弘娙莘烹娊o負(fù)載提供電流,其本身電壓也會下降,但是電壓下降的量不能超過82.5 mV(容許的電壓波紋)。這種計(jì)算沒什么實(shí)際意義,之所以放在這里說一下,是為了讓大家對去耦原理認(rèn)識更深。
33、方法二:利用目標(biāo)阻抗計(jì)算電容量(設(shè)計(jì)思想很嚴(yán)謹(jǐn),要吃透)為了清楚的說明電容量的計(jì)算方法,我們用一個例子。要去耦的電源為1.2V,容許電壓波動為2.5%,最大瞬態(tài)電流600mA,第一步:計(jì)算目標(biāo)阻抗第二步:確定穩(wěn)壓電源頻率響應(yīng)范圍。和 具體使用的電源片子有關(guān),通常在DC到幾百kHz之間。這里設(shè)為DC到100kHz。在100kHz以下時,電源芯片能很好的對瞬態(tài)電流做出反應(yīng),高于 100kHz時,表現(xiàn)為很高的阻抗,如果沒有外加電容,電源波動將超過允許的2.5%。為了在高于100kHz時仍滿足電壓波動小于2.5%要求,應(yīng)該加 多大的電容?第三步:計(jì)算bulk電容量當(dāng)頻率處于電容自諧振點(diǎn)以下時,電容的阻
34、抗可近似表示為:頻率f越高,阻抗越小,頻率越低,阻抗越大。在感興趣的頻率范圍內(nèi),電容的最大阻抗不能超過目標(biāo)阻抗,因此使用100kHz計(jì)算(電容起作用的頻率范圍的最低頻率,對應(yīng)電容最高阻抗)。第四步:計(jì)算bulk電容的最高有效頻率當(dāng)頻率處于電容自諧振點(diǎn)以上時,電容的阻抗可近似表示為:頻率f越高,阻抗越大,但阻抗不能超過目標(biāo)阻抗。假設(shè)ESL為5nH,則最高有效頻率為:。這樣一個大的電容能夠讓我們把電源阻抗在100kHz到1.6MHz之間控制在目標(biāo)阻抗之下。當(dāng)頻率高于1.6MHz時,還需要額外的電容來控制電源系統(tǒng)阻抗。第五步:計(jì)算頻率高于1.6MHz時所需電容如果希望電源系統(tǒng)在500MHz以下時都能
35、滿足電壓波動要求,就必須控制電容的寄生電感量。必須滿足,所以有:假 設(shè)使用AVX公司的0402封裝陶瓷電容,寄生電感約為0.4nH,加上安裝到電路板上后過孔的寄生電感(本文后面有計(jì)算方法)假設(shè)為0.6nH,則總的 寄生電感為1 nH。為了滿足總電感不大于0.16 nH的要求,我們需要并聯(lián)的電容個數(shù)為:1/0.016=62.5個,因此需要63個0402電容。為了在1.6MHz時阻抗小于目標(biāo)阻抗,需要電容量為:因此每個電容的電容量為1.9894/63=0.0316 uF。綜上所述,對于這個系統(tǒng),我們選擇1個31.831 uF的大電容和63個0.0316 uF的小電容即可滿足要求。電源完整性設(shè)計(jì)(9
36、)電容的連接相同容值電容的并聯(lián)使用很多電容并聯(lián)能有效地減小阻抗。63個0.0316 uF的小電容(每個電容ESL為1 nH)并聯(lián)的效果相當(dāng)于一個具有0.159 nH ESL的1.9908 uF電容。圖10 多個等值電容并聯(lián)單個電容及并聯(lián)電容的阻抗特性如圖10所示。并聯(lián)后仍有相同的諧振頻率,但是并聯(lián)電容在每一個頻率點(diǎn)上的阻抗都小于單個電容。但 是,從圖中我們看到,阻抗曲線呈V字型,隨著頻率偏離諧振點(diǎn),其阻抗仍然上升的很快。要在很寬的頻率范圍內(nèi)滿足目標(biāo)阻抗要求,需要并聯(lián)大量的同值電容。這 不是一種好的方法,造成極大地浪費(fèi)。有些人喜歡在電路板上放置很多0.1uF電容,如果你設(shè)計(jì)的電路工作頻率很高,信
37、號變化很快,那就不要這樣做,最好使 用不同容值的組合來構(gòu)成相對平坦的阻抗曲線。不同容值電容的并聯(lián)與反諧振(Anti-Resonance)容值不同的電容具有不同的諧振點(diǎn)。圖11畫出了兩個電容阻抗隨頻率變化的曲線。左 邊諧振點(diǎn)之前,兩個電容都呈容性,右邊諧振點(diǎn)后,兩個電容都呈感性。在兩個諧振點(diǎn)之間,阻抗曲線交叉,在交叉點(diǎn)處,左邊曲線代表的電容呈感性,而右邊曲線 代表的電容呈容性,此時相當(dāng)于LC并聯(lián)電路。對于LC并聯(lián)電路來說,當(dāng)L和C上的電抗相等時,發(fā)生并聯(lián)諧振。因此,兩條曲線的交叉點(diǎn)處會發(fā)生并聯(lián)諧振,這 就是反諧振效應(yīng),該頻率點(diǎn)為反諧振點(diǎn)。圖12 不同容值電容并聯(lián)后阻抗曲線兩個容值不同的電容并聯(lián)后
38、,阻抗曲線如圖12所示。從圖12中我們可以得出兩個結(jié)論:a 不同容值的電容并聯(lián),其阻抗特性曲線的底部要比圖10阻抗曲線的底部平坦得多(雖然存在反諧振點(diǎn),有一個阻抗尖峰),因而能更有效地在很寬的頻率范圍內(nèi)減小阻抗。b 在反諧振(Anti-Resonance)點(diǎn)處,并聯(lián)電容的阻抗值無限大,高于兩個電容任何一個單獨(dú)作用時的阻抗。并聯(lián)諧振或反諧振現(xiàn)象是使用并聯(lián)去耦方法的不足之處。在 并聯(lián)電容去耦的電路中,雖然大多數(shù)頻率值的噪聲或信號都能在電源系統(tǒng)中找到低阻抗回流路徑,但是對于那些頻率值接近反諧振點(diǎn)的,由于電源系統(tǒng)表現(xiàn)出的高阻 抗,使得這部分噪聲或信號能量無法在電源分配系統(tǒng)中找到回流路徑,最終會從PCB
39、上發(fā)射出去(空氣也是一種介質(zhì),波阻抗只有幾百歐姆),從而在反諧振頻率 點(diǎn)處產(chǎn)生嚴(yán)重的EMI問題。因此,并聯(lián)電容去耦的電源分配系統(tǒng)一個重要的問題就是:合理的選擇電容,盡可能的壓低反諧振點(diǎn)處的阻抗。ESR對反諧振(Anti-Resonance)的影響Anti-Resonance 給電源去耦帶來麻煩,但幸運(yùn)的是,實(shí)際情況不會像圖12顯示的那么糟糕。實(shí)際電容除了LC之外,還存在等效串聯(lián)電阻ESR。因此,反諧振點(diǎn)處的阻抗也不會是無限大的。實(shí)際上,可以通過計(jì)算得到反諧振點(diǎn)處的阻抗為 其中,X為反諧振點(diǎn)處單個電容的阻抗虛部(均相等)。怎樣合理選擇電容組合前 面我們提到過,瞬態(tài)電流的變化相當(dāng)于階躍信號,具有很
40、寬的頻譜。因而,要對這一電流需求補(bǔ)償,就必須在很寬的頻率范圍內(nèi)提供足夠低的電源阻抗。但是,不同 電容的有效頻率范圍不同,這和電容的諧振頻率有關(guān)(嚴(yán)格來說應(yīng)該是安裝后的諧振頻率),有效頻率范圍(電容能提供足夠低阻抗的頻率范圍)是諧振點(diǎn)附近一小 段頻率。因此要在很寬的頻率范圍內(nèi)提供足夠低的電源阻抗,就需要很多不同電容的組合。你可能會說,只用一個容值,只要并聯(lián)電容數(shù)量足夠多,也能達(dá)到同樣低的阻抗。的確如此,但是在實(shí)際應(yīng)用中你可以算一下,多數(shù)時候,所需要的電容數(shù)量很大。真要這樣做的話,可能你的電路板上密密麻麻的全是電容。既不專業(yè),也沒必要。選擇電容組合,要考慮的問題很多,比如選什么封裝、什么材質(zhì)、多大
41、的容值、容值的間隔多大、主時鐘頻率及其各次諧波頻率是多少、信號上升時間等等,這需要根據(jù)具體的設(shè)計(jì)來專門設(shè)計(jì)。通常,用鉭電容或電解電容來進(jìn)行板級低頻段去耦。電容量的計(jì)算方法前面講過了,需要提醒一點(diǎn)的是,最好用幾個或多個電容并聯(lián)以減小等效串聯(lián)電感。這兩種電容的Q值很低,頻率選擇性不強(qiáng),非常適合板級濾波。高頻小電容的選擇有些麻煩,需要分頻段計(jì)算??梢园研枰ヱ畹念l率范圍分成幾段,每一段單獨(dú)計(jì)算,用多個相同容值電容并聯(lián)達(dá)到阻抗要求,不同頻段選擇的不同的電容值。但這種方法中,頻率段的劃分要根據(jù)計(jì)算的結(jié)果不斷調(diào)整。一般劃分3到4個頻段就可以了,這樣需要3到4個容值等級。實(shí)際上,選擇的容值等級越多,阻抗特性
42、越平坦,但是沒必要用非常多的容值等級,阻抗的平坦當(dāng)然好,但是我們的最終目標(biāo)是總阻抗小于目標(biāo)阻抗,只要能滿足這個要求就行。在某個等級中到底選擇那個容值,還要看系統(tǒng)時鐘頻率。前面講過,電容的并聯(lián)存在反諧振,設(shè)計(jì)時要注意,盡量不要讓時鐘頻率的各次諧波落在反諧振頻率附近。比如在零點(diǎn)幾微法等級上選擇0.47、0.22、0.1還是其他值,要計(jì)算以下安裝后的諧振頻率再來定。還有一點(diǎn)要注意,容值的等級不要超過10倍。比如你可以選類似0.1、0.01 、0.001這樣的組合。因?yàn)檫@樣可以有效控制反諧振點(diǎn)阻抗的幅度,間隔太大,會使反諧振點(diǎn)阻抗很大。當(dāng)然這不是絕對的,最好用軟件看一下,最終目標(biāo)是反諧振點(diǎn)阻抗能滿足要
43、求。高 頻小電容的選擇,要想得到最優(yōu)組合,是一個反復(fù)迭代尋找最優(yōu)解的過程。最好的辦法就是先粗略計(jì)算一下大致的組合,然后用電源完整性仿真軟件做仿真,再做局 部調(diào)整,能滿足目標(biāo)阻抗要求即可,這樣直觀方便,而且控制反諧振點(diǎn)比較容易。而且可以把電源平面的電容也加進(jìn)來,聯(lián)合設(shè)計(jì)。圖13是一個電 容組合的例子。這個組合中使用的電容為:2個680uF鉭電容,7個2.2uF陶瓷電容(0805封裝),13個0.22uF陶瓷電容(0603封 裝),26個0.022uF陶瓷電容(0402封裝)。圖中,上部平坦的曲線是680uF電容的阻抗曲線,其他三個容值的曲線為圖中的三個V字型曲線,從 左到右一次為2.2uF、0.
44、22uF、0.022uF??偟淖杩骨€為圖中底部的粗包絡(luò)線。這個組合實(shí)現(xiàn)了在500kHz到150MHz范圍內(nèi)保持電源阻抗在33毫歐以下。到500MHz頻率點(diǎn)處,阻抗上升到110毫歐。從圖中可見,反諧振點(diǎn)的阻抗控制得很低。圖13 設(shè)計(jì)實(shí)例小電容的介質(zhì)一般常規(guī)設(shè)計(jì)中都選則陶瓷電容。NP0介質(zhì)電容的ESR要低得多,對于有更嚴(yán)格阻抗控制的局部可以使用,但是注意這種電容的Q值很高,可能引起嚴(yán)重的高頻振鈴,使用時要注意。封 裝的選擇,只要加工能力允許,當(dāng)然越小越好,這樣可以得到更低的ESL,也可以留出更多的布線空間。但不同封裝,電容諧振頻率點(diǎn)不同,容值范圍也不同,可 能影響到最終的電容數(shù)量。因此,電容封裝
45、尺寸、容值要聯(lián)合考慮。總之最終目標(biāo)是,用最少的電容達(dá)到目標(biāo)阻抗要求,減輕安裝和布線的壓力?,F(xiàn)代工藝生產(chǎn)的貼片電容,等效串聯(lián)阻抗很低,因此就有辦法控制電容并聯(lián)去耦時反諧振點(diǎn)處的阻抗。等效串聯(lián)電阻ESR使整個電源分配系統(tǒng)的阻抗特性趨于平坦。電源完整性設(shè)計(jì)(10)電容的去耦半徑與安裝電容的去耦半徑電 容去耦的一個重要問題是電容的去耦半徑。大多數(shù)資料中都會提到電容擺放要盡量靠近芯片,多數(shù)資料都是從減小回路電感的角度來談這個擺放距離問題。確實(shí),減 小電感是一個重要原因,但是還有一個重要的原因大多數(shù)資料都沒有提及,那就是電容去耦半徑問題。如果電容擺放離芯片過遠(yuǎn),超出了它的去耦半徑,電容將失去 它的去耦的作
46、用。理解去耦半徑最好的辦法就是考察噪聲源和電容補(bǔ)償電流之間的相位關(guān)系。當(dāng)芯片對電流的需求發(fā)生變化時,會在電源平面的一個 很小的局部區(qū)域內(nèi)產(chǎn)生電壓擾動,電容要補(bǔ)償這一電流(或電壓),就必須先感知到這個電壓擾動。信號在介質(zhì)中傳播需要一定的時間,因此從發(fā)生局部電壓擾動到 電容感知到這一擾動之間有一個時間延遲。同樣,電容的補(bǔ)償電流到達(dá)擾動區(qū)也需要一個延遲。因此必然造成噪聲源和電容補(bǔ)償電流之間的相位上的不一致。特定的電容,對與它自諧振頻率相同的噪聲補(bǔ)償效果最好,我們以這個頻率來衡量這種相位關(guān)系。設(shè)自諧振頻率為f,對應(yīng)波長為,補(bǔ)償電流表達(dá)式可寫為:其中,A是電流幅度,R為需要補(bǔ)償?shù)膮^(qū)域到電容的距離,C為信
47、號傳播速度。當(dāng)擾動區(qū)到電容的距離達(dá)到時,補(bǔ)償電流的相位為, 和噪聲源相位剛好差180度,即完全反相。此時補(bǔ)償電流不再起作用,去耦作用失效,補(bǔ)償?shù)哪芰繜o法及時送達(dá)。為了能有效傳遞補(bǔ)償能量,應(yīng)使噪聲源和補(bǔ)償電 流的相位差盡可能的小,最好是同相位的。距離越近,相位差越小,補(bǔ)償能量傳遞越多,如果距離為0,則補(bǔ)償能量百分之百傳遞到擾動區(qū)。這就要求噪聲源距離電 容盡可能的近,要遠(yuǎn)小于。實(shí)際應(yīng)用中,這一距離最好控制在之間,這是一個經(jīng)驗(yàn)數(shù)據(jù)。例如:0.001uF陶瓷電容,如果安裝到電路板上后總的寄生電感為1.6nH,那么其安裝后的諧振頻率為125.8MHz,諧振周期為7.95ps。假設(shè)信號在電路板上的傳播速度
48、為166ps/inch,則波長為。電容去耦半徑為47.9/50=,大約等于。本 例中的電容只能對它周圍范圍內(nèi)的電源噪聲進(jìn)行補(bǔ)償,即它的去耦半徑。不同的電容,諧振頻率不同,去耦半徑也不同。對于大電容,因?yàn)槠渲C振頻率很低,對應(yīng)的 波長非常長,因而去耦半徑很大,這也是為什么我們不太關(guān)注大電容在電路板上放置位置的原因。對于小電容,因去耦半徑很小,應(yīng)盡可能的靠近需要去耦的芯片, 這正是大多數(shù)資料上都會反復(fù)強(qiáng)調(diào)的,小電容要盡可能近的靠近芯片放置。電容的安裝方法電容的擺放對 于電容的安裝,首先要提到的就是安裝距離。容值最小的電容,有最高的諧振頻率,去耦半徑最小,因此放在最靠近芯片的位置。容值稍大些的可以距離
49、稍遠(yuǎn),最外 層放置容值最大的。但是,所有對該芯片去耦的電容都盡量靠近芯片。下面的圖14就是一個擺放位置的例子。本例中的電容等級大致遵循10倍等級關(guān)系。圖14 電容擺放位置示例還 有一點(diǎn)要注意,在放置時,最好均勻分布在芯片的四周,對每一個容值等級都要這樣。通常芯片在設(shè)計(jì)的時候就考慮到了電源和地引腳的排列位置,一般都是均勻分 布在芯片的四個邊上的。因此,電壓擾動在芯片的四周都存在,去耦也必須對整個芯片所在區(qū)域均勻去耦。如果把上圖中的680pF電容都放在芯片的上部,由于 存在去耦半徑問題,那么就不能對芯片下部的電壓擾動很好的去耦。電容的安裝在 安裝電容時,要從焊盤拉出一小段引出線,然后通過過孔和電源
50、平面連接,接地端也是同樣。這樣流經(jīng)電容的電流回路為:電源平面-過孔-引出 線-焊盤-電容-焊盤-引出線-過孔-地平面,圖15直觀的顯示了電流的回流路徑。圖15 流經(jīng)電容的電流回路放置過孔的基本原則就是讓這一環(huán)路面積最小,進(jìn)而使總的寄生電感最小。圖16顯示了幾種過孔放置方法。圖16 高頻電容過孔放置方法第一種方法從焊盤引出很長的引出線然后連接過孔,這會引入很大的寄生電感,一定要避免這樣做,這時最糟糕的安裝方式。第二種方法在焊盤的兩個端點(diǎn)緊鄰焊盤打孔,比第一種方法路面積小得多,寄生電感也較小,可以接受。第三種在焊盤側(cè)面打孔,進(jìn)一步減小了回路面積,寄生電感比第二種更小,是比較好的方法。第四種在焊盤兩
51、側(cè)都打孔,和第三種方法相比,相當(dāng)于電容每一端都是通過過孔的并聯(lián)接入電源平面和地平面,比第三種寄生電感更小,只要空間允許,盡量用這種方法。最后一種方法在焊盤上直接打孔,寄生電感最小,但是焊接是可能會出現(xiàn)問題,是否使用要看加工能力和方式。推薦使用第三種和第四種方法。需要強(qiáng)調(diào)一點(diǎn):有些工程師為了節(jié)省空間,有時讓多個電容使用公共過孔。任何情況下都不要這樣做。最好想辦法優(yōu)化電容組合的設(shè)計(jì),減少電容數(shù)量。由于印制線越寬,電感越小,從焊盤到過孔的引出線盡量加寬,如果可能,盡量和焊盤寬度相同。這樣即使是0402封裝的電容,你也可以使用20mil寬的引出線。引出線和過孔安裝如圖17所示,注意圖中的各種尺寸。圖1
52、7 推薦的高頻電容過孔放置方法對于大尺寸的電容,比如板級濾波所用的鉭電容,推薦用圖18中的安裝方法。圖18 低頻大電容過孔放置結(jié)束語電 源系統(tǒng)去耦設(shè)計(jì)要把引腳去耦和電源平面去耦結(jié)合使用已達(dá)到最優(yōu)設(shè)計(jì)。時鐘、PLL、DLL等去耦設(shè)計(jì)要使用引腳去耦,必要時還要加濾波網(wǎng)絡(luò),模擬電源部分 還要使用磁珠等進(jìn)行濾波。針對具體應(yīng)用選擇退耦電容的方法也很流行,如在電路板上發(fā)現(xiàn)某個頻率的干擾較大,就要專門針對這一頻率選擇合適的電容,改進(jìn)系統(tǒng) 設(shè)計(jì)??傊?,電源系統(tǒng)的設(shè)計(jì)和具體應(yīng)用密切相關(guān),不存在放之四海皆準(zhǔn)的具體方案。關(guān)鍵是掌握基本的設(shè)計(jì)方法,具體情況具體分析,才能很好的解決電源去耦問 題。PCB板去耦電容合理配
53、置一、PCB板中去耦電容的分類去耦電容在補(bǔ)償集成片或電路板工作電壓跌落時能起到儲能作用。它可以分成整體的、局部的和板間的三種。整體去耦電容又稱旁路電容,它工作于低頻(1MHz)范圍狀態(tài),為整個電路板提供一個電流源,補(bǔ)償電路板工作時產(chǎn)生的I噪聲電流,保證工作電源電壓的穩(wěn)定。它的大小為PCB上所有負(fù)載電容和的50100倍。它應(yīng)放置在緊靠PCB外接電源線和地線的地方,印制線密度很高的地方。這不僅不會減小低頻去耦,而且還會為PCB上布置關(guān)鍵性的印制線提供空間。局 部去耦電容有兩個作用。第一,出于功能上的考慮:通過電容的充放電使集成片得到的供電電壓比較平穩(wěn),不會由于電壓的暫時跌落導(dǎo)致集成片功能受到影響;
54、第 二,出于EMC考慮:為集成片的瞬變電流提供就近的高頻通道,使電流不至于通過環(huán)路面積較大的供電線路,從而大大減小向外的輻射噪聲。同時由于各集成片擁 有自己的高頻通道,相互之間沒有公共阻抗,抑止了其阻抗耦合。局部去耦電容安裝在每個集成片的電源端子和接地端子之間,并盡量靠近集成片。板間去耦電容是指電源面和接地面之間的電容,它是高頻率時去耦電流的主要來源。板間電容可以通過增加電源層和接地層間面積來增大。在PCB中,一些接地面可以布到了電源層,移去這些接地面,用電源隔離區(qū)代之,可以增加板間電容。二、PCB板中去耦電容的大小在 直流電源回路中,負(fù)載的變化會引起電源噪聲。例如在數(shù)字電路中,當(dāng)電路從一個狀
55、態(tài)轉(zhuǎn)換為另一種狀態(tài)時,就會在電源線上產(chǎn)生一個很大的尖峰電流,形成瞬變的 噪聲電壓。配置去耦電容可以抑制因負(fù)載變化而產(chǎn)生的噪聲,是印制電路板的可靠性設(shè)計(jì)的一種常規(guī)做法,好的高頻去耦電容可以去除高到1GHz的高頻成分。陶 瓷片電容或多層陶瓷電容的高頻特性較好。設(shè)計(jì)印制線路板時,每個集成電路的電源、地之間都要加一個去耦電容。去耦電容有兩個作用:一方面是本集成電路的蓄 能電容,提供和吸收該集成電路開門關(guān)門瞬間的充放電能;另一方面旁路掉該器件的高頻噪聲。去耦電容的配置原則如下:1 電源分配濾波電容電 源輸入端跨接一個10F100F的電解電容器,如果印制電路板的位置允許,采用以上的電解電容器的抗干擾效果會
56、更好。1F,10F電容,并行共 振頻率在20MHz以上,去除高頻率噪聲的效果要好一些。在電源進(jìn)入印制板的地方和一個1F或10F的去高頻電容往往是有利的,即使是用電池供電的系 統(tǒng)也需要這種電容。2 芯片配置去耦電容為每個集成電路芯片配置一個0.01F的陶瓷電容 器。數(shù)字電路中典型的去耦電容為0.1/F的去耦電容有5nH分布電感,它的并行共振頻率在7MHz左右,也就是說對于10MHz以下的噪聲有較好的去 耦作用,對40MHz以上的噪聲幾乎不起作用。如遇到印制電路板空間小而裝不下時,可每410個芯片配置一個1F10F鉭電解電容器,這種器件的 高頻阻抗特別小,在500kHz20MHz范圍內(nèi)阻抗小于1F
57、10F而且漏電流很小(0.5A以下)。去耦電容值的選取并不嚴(yán)格,可按 C=1/f計(jì)算,即10MHz取0.1F。對微控制器構(gòu)成的系統(tǒng),取0.1F0.01F之間都可以。3 必要時加蓄放電容每10片左右的集成電路要加一片充放電電容,或稱為蓄放電容,電容大小可選10F。通常使用的大電容為電解電容,但是在濾波頻率比較高時,最好不用電解電容,電解電容是兩層薄膜卷起來的,這種卷起來的結(jié)構(gòu)在高頻時表現(xiàn)為電感,最好使用鉭電容或聚碳酸酯電容。三、PCB板中合理布置去耦電容(一)電容的等效模型在 用電容抑制電磁騷擾和濾波的時候,最容易忽視的問題就是電容引線對濾波效果的影響。電容器的容抗與頻率成反比,正是利用這一特性,將電容并聯(lián)在信號線與地 線之間起到對高頻噪聲的旁路作用。然而,在實(shí)際工程中,很多人發(fā)現(xiàn)這種方法并不能起到預(yù)期濾除噪聲的效果,面對頑固的電磁噪聲束手無策。出現(xiàn)這種情況的一 個原因
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 勞斯萊斯魅影購車合同范本
- 為要使用合同范本
- pvc銷售合同范本
- 代辦旅游合同范本
- 兼職司機(jī) 合同范本
- 養(yǎng)生店合同范本
- 分期車輛協(xié)議合同范本
- 2024年上海健康醫(yī)學(xué)院招聘考試真題
- 北京一對一合伙合同范本
- 下鋪門店轉(zhuǎn)讓合同范本
- 2025年山西杏花村汾酒集團(tuán)限責(zé)任公司人才招聘71名高頻重點(diǎn)提升(共500題)附帶答案詳解
- 貴州黔源電力股份有限公司招聘筆試沖刺題2025
- 2025年江蘇省環(huán)保集團(tuán)招聘筆試參考題庫含答案解析
- 新修訂中華人民共和國畜牧法全文解讀學(xué)習(xí)
- 物業(yè)管理服務(wù)內(nèi)容標(biāo)準(zhǔn)及質(zhì)量保證措施
- 統(tǒng)編版語文五年級下冊第二單元習(xí)作:寫讀后感課件
- 學(xué)校提高《規(guī)范書寫水平、傳承漢字文化》活動方案3篇
- 幕墻施工現(xiàn)場安全檢查方案
- 2023年4月2日湖北事業(yè)單位聯(lián)考C類《職業(yè)能力傾向測驗(yàn)》試題
- 主持課課件教學(xué)課件
- 第四節(jié)-全電路歐姆定律
評論
0/150
提交評論