智能控制現(xiàn)狀以及運用_第1頁
智能控制現(xiàn)狀以及運用_第2頁
智能控制現(xiàn)狀以及運用_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、智能控制現(xiàn)狀以及運用隨著信息技術(shù)的發(fā)展,許多新方法和技術(shù)進(jìn)入工程化、產(chǎn)品化階段,這對自動控制技術(shù)提出獷新的挑戰(zhàn),促進(jìn)了智能理論在控制技術(shù)中的應(yīng)用,以解決用傳統(tǒng)的方法難以解決的復(fù)雜系統(tǒng)的控制問題。 一、智能控制的主要方法 智能控制技術(shù)的主要方法有模糊控制、基于知識的專家控制、神經(jīng)網(wǎng)絡(luò)控制和集成智能控制等,以及常用優(yōu)化算法有:遺傳算法、蟻群算法、免疫算法等。 1.1模糊控制 模糊控制以模糊集合、模糊語言變量、模糊推理為其理論基礎(chǔ),以先驗知識和專家經(jīng)驗作為控制規(guī)則。其基本思想是用機器模擬人對系統(tǒng)的控制,就是在被控對象的模糊模型的基礎(chǔ)上運用模糊控制器近似推理等手段,實現(xiàn)系統(tǒng)控制。在實現(xiàn)模糊控制時主要考

2、慮模糊變量的隸屬度函數(shù)的確定,以及控制規(guī)則的制定二者缺一不可。 1.2專家控制 專家控制是將專家系統(tǒng)的理論技術(shù)與控制理論技術(shù)相結(jié)合,仿效專家的經(jīng)驗,實現(xiàn)對系統(tǒng)控制的一種智能控制。主體由知識庫和推理機構(gòu)組成,通過對知識的獲取與組織,按某種策略適時選用恰當(dāng)?shù)囊?guī)則進(jìn)行推理,以實現(xiàn)對控制對象的控制。專家控制可以靈活地選取控制率,靈活性高;可通過調(diào)整控制器的參數(shù),適應(yīng)對象特性及環(huán)境的變化,適應(yīng)性好;通過專家規(guī)則,系統(tǒng)可以在非線性、大偏差的情況下可靠地工作,魯棒性強。 1.3神經(jīng)網(wǎng)絡(luò)控制 神經(jīng)網(wǎng)絡(luò)模擬人腦神經(jīng)元的活動,利用神經(jīng)元之間的聯(lián)結(jié)與權(quán)值的分布來表示特定的信息,通過不斷修正連接的權(quán)值進(jìn)行自我學(xué)習(xí),以

3、逼近理論為依據(jù)進(jìn)行神經(jīng)網(wǎng)絡(luò)建模,并以直接自校正控制、間接自校正控制、神經(jīng)網(wǎng)絡(luò)預(yù)測控制等方式實現(xiàn)智能控制。 1.4學(xué)習(xí)控制 (1)遺傳算法學(xué)習(xí)控制 智能控制是通過計算機實現(xiàn)對系統(tǒng)的控制,因此控制技術(shù)離不開優(yōu)化技術(shù)??焖?、高效、全局化的優(yōu)化算法是實現(xiàn)智能控制的重要手段。遺傳算法是模擬自然選擇和遺傳機制的一種搜索和優(yōu)化算法,它模擬生物界/生存競爭,優(yōu)勝劣汰,適者生存的機制,利用復(fù)制、交叉、變異等遺傳操作來完成尋優(yōu)。遺傳算法作為優(yōu)化搜索算法,一方面希望在寬廣的空間內(nèi)進(jìn)行搜索,從而提高求得最優(yōu)解的概率;另一方面又希望向著解的方向盡快縮小搜索范圍,從而提高搜索效率。如何同時提高搜索最優(yōu)解的概率和效率,是遺

4、傳算法的一個主要研究方向。 (2)迭代學(xué)習(xí)控制 迭代學(xué)習(xí)控制模仿人類學(xué)習(xí)的方法、即通過多次的訓(xùn)練,從經(jīng)驗中學(xué)會某種技能,來達(dá)到有效控制的目的。迭代學(xué)習(xí)控制能夠通過一系列迭代過程實現(xiàn)對二階非線性動力學(xué)系統(tǒng)的跟蹤控制。整個控制結(jié)構(gòu)由線性反饋控制器和前饋學(xué)習(xí)補償控制器組成,其中線性反饋控制器保證了非線性系統(tǒng)的穩(wěn)定運行、前饋補償控制器保證了系統(tǒng)的跟蹤控制精度。它在執(zhí)行重復(fù)運動的非線性機器人系統(tǒng)的控制中是相當(dāng)成功的。 二、智能控制的應(yīng)用 1.工業(yè)過程中的智能控制 生產(chǎn)過程的智能控制主要包括兩個方面:局部級和全局級。局部級的智能控制是指將智能引入工藝過程中的某一單元進(jìn)行控制器設(shè)計,例如智能PID控制器、專

5、家控制器、神經(jīng)元網(wǎng)絡(luò)控制器等。研究熱點是智能PID控制器,因為其在參數(shù)的整定和在線自適應(yīng)調(diào)整方面具有明顯的優(yōu)勢,且可用于控制一些非線性的復(fù)雜對象。全局級的智能控制主要針對整個生產(chǎn)過程的自動化,包括整個操作工藝的控制、過程的故障診斷、規(guī)劃過程操作處理異常等。 2.機械制造中的智能控制 在現(xiàn)代先進(jìn)制造系統(tǒng)中,需要依賴那些不夠完備和不夠精確的數(shù)據(jù)來解決難以或無法預(yù)測的情況,人工智能技術(shù)為解決這一難題提供了有效的解決方案。智能控制隨之也被廣泛地應(yīng)用于機械制造行業(yè),它利用模糊數(shù)學(xué)、神經(jīng)網(wǎng)絡(luò)的方法對制造過程進(jìn)行動態(tài)環(huán)境建模,利用傳感器融合技術(shù)來進(jìn)行信息的預(yù)處理和綜合??刹捎脤<蚁到y(tǒng)的“Then-If”逆向

6、推理作為反饋機構(gòu),修改控制機構(gòu)或者選擇較好的控制模式和參數(shù)。利用模糊集合和模糊關(guān)系的魯棒性,將模糊信息集成到閉環(huán)控制的外環(huán)決策選取機構(gòu)來選擇控制動作。利用神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)功能和并行處理信息的能力,進(jìn)行在線的模式識別,處理那些可能是殘缺不全的信息。 3.電力電子學(xué)研究領(lǐng)域中的智能控制 電力系統(tǒng)中發(fā)電機、變壓器、電動機等電機電器設(shè)備的設(shè)計、生產(chǎn)、運行、控制是一個復(fù)雜的過程,國內(nèi)外的電氣工作者將人工智能技術(shù)引入到電氣設(shè)備的優(yōu)化設(shè)計、故障診斷及控制中,取得了良好的控制效果。遺傳算法是一種先進(jìn)的優(yōu)化算法,采用此方法來對電器設(shè)備的設(shè)計進(jìn)行優(yōu)化,可以降低成本,縮短計算時間,提高產(chǎn)品設(shè)計的效率和質(zhì)量。應(yīng)用于電氣設(shè)備故障診斷的智能控制技術(shù)有:模糊邏輯、專家系統(tǒng)和神經(jīng)網(wǎng)絡(luò)。在電力電子學(xué)的眾多應(yīng)用領(lǐng)域中,智能控制在電流控制PWM技術(shù)中的應(yīng)用是具有代表性的技術(shù)應(yīng)用方向之一,也是研究的新熱點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論