![基于MATLAB的有限元法分析平面應(yīng)力應(yīng)變問(wèn)題--劉剛_第1頁(yè)](http://file2.renrendoc.com/fileroot_temp3/2021-3/9/af470dea-a960-4562-846b-fbbcbdd14ac7/af470dea-a960-4562-846b-fbbcbdd14ac71.gif)
![基于MATLAB的有限元法分析平面應(yīng)力應(yīng)變問(wèn)題--劉剛_第2頁(yè)](http://file2.renrendoc.com/fileroot_temp3/2021-3/9/af470dea-a960-4562-846b-fbbcbdd14ac7/af470dea-a960-4562-846b-fbbcbdd14ac72.gif)
![基于MATLAB的有限元法分析平面應(yīng)力應(yīng)變問(wèn)題--劉剛_第3頁(yè)](http://file2.renrendoc.com/fileroot_temp3/2021-3/9/af470dea-a960-4562-846b-fbbcbdd14ac7/af470dea-a960-4562-846b-fbbcbdd14ac73.gif)
![基于MATLAB的有限元法分析平面應(yīng)力應(yīng)變問(wèn)題--劉剛_第4頁(yè)](http://file2.renrendoc.com/fileroot_temp3/2021-3/9/af470dea-a960-4562-846b-fbbcbdd14ac7/af470dea-a960-4562-846b-fbbcbdd14ac74.gif)
![基于MATLAB的有限元法分析平面應(yīng)力應(yīng)變問(wèn)題--劉剛_第5頁(yè)](http://file2.renrendoc.com/fileroot_temp3/2021-3/9/af470dea-a960-4562-846b-fbbcbdd14ac7/af470dea-a960-4562-846b-fbbcbdd14ac75.gif)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、姓名:劉剛 學(xué)號(hào):15平面應(yīng)力應(yīng)變分析有限元法Abstruct:本文通過(guò)對(duì)平面應(yīng)力/應(yīng)變問(wèn)題的簡(jiǎn)要理論闡述,使讀者對(duì)要分析的問(wèn)題有大致的印象,然后結(jié)合兩個(gè)實(shí)例,通過(guò)MATLAB軟件的計(jì)算,將有限元分析平面應(yīng)力/應(yīng)變問(wèn)題的過(guò)程形象的展示給讀者,讓人一目了然,快速了解有限元解決這類問(wèn)題的方法和步驟!一. 基本理論有限元法的基本思路和基本原則以結(jié)構(gòu)力學(xué)中的位移法為基礎(chǔ),把復(fù)雜的結(jié)構(gòu)或連續(xù)體看成有限個(gè)單元的組合,各單元彼此在節(jié)點(diǎn)出連接而組成整體。把連續(xù)體分成有限個(gè)單元和節(jié)點(diǎn),稱為離散化。先對(duì)單元進(jìn)行特性分析,然后根據(jù)節(jié)點(diǎn)處的平衡和協(xié)調(diào)條件建立方程,綜合后做整體分析。這樣一分一合,先離散再綜合的過(guò)程,就
2、是把復(fù)雜結(jié)構(gòu)或連續(xù)體的計(jì)算問(wèn)題轉(zhuǎn)化簡(jiǎn)單單元分析與綜合問(wèn)題。因此,一般的有限揭發(fā)包括三個(gè)主要步驟:離散化 單元分析 整體分析。二. 用到的函數(shù) 1. LinearTriangleElementStiffness(E,NU,t,xi,yi,xj,yj,xm,ym,p) 2.LinearBarAssemble(K k I f) 3.LinearBarElementForces(k u)4.LinearBarElementStresses(k u A)5.LinearTriangleElementArea(E NU t) 三.實(shí)例 例1.考慮如圖所示的受均布載荷作用的薄平板結(jié)構(gòu)。將平板離散化成兩個(gè)線性
3、三角元,假定E=200GPa,v=0.3,t=0.025m,w=3000kN/m. 1.離散化2.寫出單元?jiǎng)偠染仃囃ㄟ^(guò)matlab的LinearTriangleElementStiffness函數(shù),得到兩個(gè)單元?jiǎng)偠染仃嚭?,每個(gè)矩陣都是66的。 E=210e6E = 210000000 k1=LinearTriangleElementStiffness(E,NU,t,0,0,0.5,0.25,0,0.25,1)k1 = 1.0e+006 * Columns 1 through 5 2.0192 0 0 -1.0096 -2.0192 0 5.7692 -0.8654 0 0.8654 0 -0.
4、8654 1.4423 0 -1.4423 -1.0096 0 0 0.5048 1.0096 -2.0192 0.8654 -1.4423 1.0096 3.4615 1.0096 -5.7692 0.8654 -0.5048 -1.8750 Column 6 1.0096 -5.7692 0.8654 -0.5048 -1.8750 6.2740 NU=0.3NU = 0.3000 t=0.025t = 0.0250 k2=LinearTriangleElementStiffness(E,NU,t,0,0,0.5,0,0.5,0.25,1)k2 = 1.0e+006 * Columns 1
5、 through 5 1.4423 0 -1.4423 0.8654 0 0 0.5048 1.0096 -0.5048 -1.0096 -1.4423 1.0096 3.4615 -1.8750 -2.0192 0.8654 -0.5048 -1.8750 6.2740 1.0096 0 -1.0096 -2.0192 1.0096 2.0192 -0.8654 0 0.8654 -5.7692 0 Column 6 -0.8654 0 0.8654 -5.7692 0 5.76923.集成整體剛度矩陣 8*8零矩陣K = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6、0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 K=LinearTriangleAssemble(K,k1,1,3,4)K = 1.0e+006 * Columns 1 through 5 2.0192 0 0 0 0 0 5.7692 0 0 -0.8654 0 0 0 0 0 0 0 0 0 0 0 -0.8654 0 0 1.4423 -1.0096 0 0 0 0 -2.0192 0.8654 0 0 -1.4423 1.0096 -5.7692
7、0 0 0.8654 Columns 6 through 8 -1.0096 -2.0192 1.0096 0 0.8654 -5.7692 0 0 0 0 0 0 0 -1.4423 0.8654 0.5048 1.0096 -0.5048 1.0096 3.4615 -1.8750 -0.5048 -1.8750 6.2740 K=LinearTriangleAssemble(K,k1,1,2,3)K = 1.0e+007 * 0.4038 0 0 -0.1010 -0.2019 0 -0.2019 0.1010 0 1.1538 -0.0865 0 0 -0.5769 0.0865 -0
8、.5769 0 -0.0865 0.1442 0 -0.1442 0.0865 0 0 -0.1010 0 0 0.0505 0.1010 -0.0505 0 0 -0.2019 0 -0.1442 0.1010 0.4904 -0.1875 -0.1442 0.0865 0 -0.5769 0.0865 -0.0505 -0.1875 0.6779 0.1010 -0.0505 -0.2019 0.0865 0 0 -0.1442 0.1010 0.3462 -0.1875 0.1010 -0.5769 0 0 0.0865 -0.0505 -0.1875 0.62744.引入邊界條件.用上
9、一步得到的整體剛度矩陣,可以得到該結(jié)構(gòu)的方程組如下形式 本題的邊界條件:將邊界條件帶入,得到: 5.解方程分解上述方程組,提取總體剛度矩陣K的第3-6行的第3-6列作為子矩陣 Matlab命令 k=K(3:6,3:6)k = 1.0e+006 * 3.4615 -1.8750 -2.0192 0.8654 -1.8750 6.2740 1.0096 -5.7692 -2.0192 1.0096 3.4615 0 0.8654 -5.7692 0 6.2740 f=9.375;0;9.375;0f = 9.3750 0 9.3750 0 u=kfu = 1.0e-005 * 0.7111 0.1
10、115 0.6531 0.0045現(xiàn)在可以清楚的看出,節(jié)點(diǎn)2的水平位移和垂直位移分別是0.7111m和0.1115m。節(jié)點(diǎn)3的水平位移和垂直位移分別是0.6531m和0.0045m。6.后處理用matlab命令求出節(jié)點(diǎn)1和節(jié)點(diǎn)4的支反力以及每個(gè)單元的應(yīng)力。首先建立總體節(jié)點(diǎn)位移矢量U,U=0;0;u;0;0U = 1.0e-005 * 0 0 0.7111 0.1115 0.6531 0.0045 0 0 F=K*UF = -9.3750 -5.6295 9.3750 0.0000 9.3750 0.0000 -9.3750 5.6295由以上知,節(jié)點(diǎn)1的水平反力和垂直反力分別是9.375kn(
11、指向左邊)和5.6295kn(作用力方向向下),節(jié)點(diǎn)4的水平反力和垂直反力分別是9.375kn(指向左邊)和5.6295kn(作用力方向向下).滿足力平衡條件。接著,建立單元節(jié)點(diǎn)位移矢量,然后調(diào)用matlab命令LinearTriangleElementStresses計(jì)算單元應(yīng)力sigma1和sigma2 u1=U(1);U(2);U(5);U(6);U(7);U(8)u1 = 1.0e-005 * 0 0 0.6531 0.0045 0 0 u2=U(1);U(2);U(3);U(4);U(5);U(6)u2 = 1.0e-005 * 0 0 0.7111 0.1115 0.6531 0.
12、0045 sigma1=LinearTriangleElementStresses(E,NU,0.025,0,0,0.5,0.25,0,0.25,1,u1)sigma1 = 1.0e+003 * 3.0144 0.9043 0.0072 sigma2=LinearTriangleElementStresses(E,NU,0.025,0,0,0.5,0,0.5,0.25,1,u2)sigma2 = 1.0e+003 * 2.9856 -0.0036 -0.0072由以上可知,單元1的應(yīng)力, 。單元2的應(yīng)力是。顯然,在x方向的應(yīng)力(拉應(yīng)力)接近于正確的值3MPa(拉應(yīng)力)。接著調(diào)用LinearTr
13、iangleElementStresses函數(shù)計(jì)算每個(gè)單元的主應(yīng)力和主應(yīng)力方向角。 s1= LinearTriangleElementPStresses(sigma1)s1 = 1.0e+003 * 3.0144 0.9043 0.0002 s2= LinearTriangleElementPStresses(sigma2)s2 = 1.0e+003 * 2.9856 -0.0036 -0.0001,主應(yīng)力方向角,例2.考慮如圖3.1所示的由均勻分布載荷和集中載荷作用的薄平板結(jié)構(gòu)。將平板離散化成12個(gè)線性三角單元,如圖4所示。假定E=210GPa,v=0.3,t=0.025m,w=100kN/
14、m和P=12.5kN。1. 離散化2. 寫出單元?jiǎng)偠染仃?E=201e6; NU=0.3; t=0.025; k1= LinearTriangleElementStiffness(E,NU,t,0,0.5,0.125,0.375,0.25,0.5,1); k2= LinearTriangleElementStiffness(E,NU,t,0,0.5,0,0.25,0.125,0.375,1); k3= LinearTriangleElementStiffness(E,NU,t,0.125,0.375,0.25,0.25,0.25,0.5,1); k4= LinearTriangleElemen
15、tStiffness(E,NU,t,0.125,0.375,0,0.25,0.25,0.25,1); k5= LinearTriangleElementStiffness(E,NU,t,0,0.25,0.125,0.125,0.25,0.25,1); k6= LinearTriangleElementStiffness(E,NU,t,0,0.25,0,0,0.125,0.125,1); k7= LinearTriangleElementStiffness(E,NU,t,0.25,0.25,0.125,0.125,0.25,0,1); k8= LinearTriangleElementStiff
16、ness(E,NU,t,0.125,0.125,0,0,0.25,0,1); k9= LinearTriangleElementStiffness(E,NU,t,025,0.25,0.25,0,0.375,0.125,1); k10= LinearTriangleElementStiffness(E,NU,t,0.25,0.25,0.375,0.125,0.5,0.25,1); k11= LinearTriangleElementStiffness(E,NU,t,0.25,0,0.5,0,0.375,0.125,1); k12= LinearTriangleElementStiffness(E
17、,NU,t,0.375,0.125,0.5,0,0.5,0.25,1)k1 = 1.0e+006 * 1.8637 -0.8973 -0.9663 0.8283 -0.8973 0.0690 -0.8973 1.8637 0.9663 -2.7610 -0.0690 0.8973 -0.9663 0.9663 1.9327 0 -0.9663 -0.9663 0.8283 -2.7610 0 5.5220 -0.8283 -2.7610 -0.8973 -0.0690 -0.9663 -0.8283 1.8637 0.89730.0690 0.8973 -0.9663 -2.7610 0.89
18、73 1.86373.集成整體剛度矩陣:K=zero(22,22);K=LinearTriangleAssemble(K,k1,1,3,2);K=LinearTriangleAssemble(K,k2,1,4,3);K=LinearTriangleAssemble(K,k3,3,5,2);K=LinearTriangleAssemble(K,k4,3,4,5);K=LinearTriangleAssemble(K,k5,4,6,5);K=LinearTriangleAssemble(K,k6,4,7,6);K=LinearTriangleAssemble(K,k7,5,6,8);K=Linea
19、rTriangleAssemble(K,k8,6,7,8);K=LinearTriangleAssemble(K,k9,5,8,9);K=LinearTriangleAssemble(K,k10,5,9,10);K=LinearTriangleAssemble(K,k11,8,11,9);K=LinearTriangleAssemble(K,k12,9,11,10)運(yùn)行得 1.0e+008 * Columns 1 through 7 0.0389 -0.0187 -0.0094 0.0007 -0.0389 0.0187 0.0094 -0.0187 0.0389 -0.0007 0.0094
20、 0.0187 -0.0389 0.0007 -0.0094 -0.0007 0.0389 0.0187 -0.0389 -0.0187 0 0.0007 0.0094 0.0187 0.0389 -0.0187 -0.0389 0 -0.0389 0.0187 -0.0389 -0.0187 0.1558 0 -0.0389 0.0187 -0.0389 -0.0187 -0.0389 0 0.1558 -0.0187 0.0094 0.0007 0 0 -0.0389 -0.0187 0.0779 -0.0007 -0.0094 0 0 -0.0187 -0.0389 0 0 0 0.00
21、94 -0.0007 -0.0389 0.0187 -0.0187 0 0 0.0007 -0.0094 0.0187 -0.0389 0 0 0 0 0 0 0 -0.0389 0 0 0 0 0 0 0.0187 0 0 0 0 0 0 0.0094 0 0 0 0 0 0 -0.0007 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Columns 8 through 14 -0.0007 0 0 0 0 0 0
22、 -0.0094 0 0 0 0 0 0 0 0.0094 0.0007 0 0 0 0 0 -0.0007 -0.0094 0 0 0 0 -0.0187 -0.0389 0.0187 0 0 0 0 -0.0389 0.0187 -0.0389 0 0 0 0 0 -0.0187 0 -0.0389 0.0187 0.0094 -0.0007 0.0779 0 0.0187 0.0187 -0.0389 0.0007 -0.0094 0 0.0972 -0.0093 -0.0389 -0.0187 0 0 0.0187 -0.0093 0.0972 -0.0187 -0.0389 0 0
23、0.0187 -0.0389 -0.0187 0.1558 0 -0.0389 -0.0187 -0.0389 -0.0187 -0.0389 0 0.1558 -0.0187 -0.0389 0.0007 0 0 -0.0389 -0.0187 0.0389 0.0187 -0.0094 0 0 -0.0187 -0.0389 0.0187 0.0389 0 -0.0009 0.0095 -0.0389 0.0187 -0.0094 0.0007 0 0.0095 -0.0384 0.0187 -0.0389 -0.0007 0.0094 0 0.0004 -0.0002 0 0 0 0 0
24、 -0.0002 0.0004 0 0 0 0 0 -0.0094 -0.0007 0 0 0 0 0 0.0007 0.0094 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Columns 15 through 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.0009 0.0095 0.0004 -0.0002 -0.0094 0.0007 0 0.0095 -0.0384 -0
25、.0002 0.0004 -0.0007 0.0094 0 -0.0389 0.0187 0 0 0 0 0 0.0187 -0.0389 0 0 0 0 0 -0.0094 -0.0007 0 0 0 0 0 0.0007 0.0094 0 0 0 0 0 -1.9408 0.0095 1.9994 -0.0377 0 0 -0.0094 0.0095 -5.6533 -0.0377 5.7119 0 0 0.0007 1.9994 -0.0377 -1.9219 0.0379 -0.0389 -0.0187 -0.0389 -0.0377 5.7119 0.0379 -5.6344 -0.
26、0187 -0.0389 0.0187 0 0 -0.0389 -0.0187 0.0389 0.0187 0.0094 0 0 -0.0187 -0.0389 0.0187 0.0389 -0.0007 -0.0094 0.0007 -0.0389 0.0187 0.0094 -0.0007 0.0389 -0.0007 0.0094 0.0187 -0.0389 0.0007 -0.0094 -0.0187 Column 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.0007 0.0094 0.0187 -0.0389 0.0007 -0.0094 -0.0187 0
27、.0389 0.0007 -0.0094 -0.0187 0.03894.引入邊界條件:U1x= U1y= U4x= U4y=U7x=U7y=0F2x= F2y= F3x= F3y=F6x=F6y=F8x= F8y= F9x= F9y=F10x=F10y= F11x= F11y= 0F5x= 0,F5y= -12.55.解方程:k=K(3:6,3:6),K(3:6,9:12),K(3:6,15:22);K(9:12,3:6),K(9:12,9:12),K(9:12,15:22);K(15:22,3:6),K(15:22,9:12) ,K(15:22,15:22);K = 1.0e+008 *
28、Columns 1 through 8 0.0389 -0.0187 -0.0094 0.0007 -0.0389 0.0187 0.0094 -0.0007 -0.0187 0.0389 -0.0007 0.0094 0.0187 -0.0389 0.0007 -0.0094 -0.0094 -0.0007 0.0389 0.0187 -0.0389 -0.0187 0 0 0.0007 0.0094 0.0187 0.0389 -0.0187 -0.0389 0 0 -0.0389 0.0187 -0.0389 -0.0187 0.1558 0 -0.0389 -0.0187 0.0187
29、 -0.0389 -0.0187 -0.0389 0 0.1558 -0.0187 -0.0389 0.0094 0.0007 0 0 -0.0389 -0.0187 0.0779 0 -0.0007 -0.0094 0 0 -0.0187 -0.0389 0 0.0779 0 0 0.0094 -0.0007 -0.0389 0.0187 -0.0187 0 0 0 0.0007 -0.0094 0.0187 -0.0389 0 0.0187 0 0 0 0 0 0 -0.0389 0.0187 0 0 0 0 0 0 0.0187 -0.0389 0 0 0 0 0 0 0.0094 0.
30、0007 0 0 0 0 0 0 -0.0007 -0.0094 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Columns 9 through 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0094 0.0007 0 0 0 0 0 0 -0.0007 -0.0094 0 0 0 0 0 0 -0.0389 0.0187 0 0 0 0 0 0 0.018
31、7 -0.0389 0 0 0 0 0 0 -0.0187 0 -0.0389 0.0187 0.0094 -0.0007 0 0 0 0.0187 0.0187 -0.0389 0.0007 -0.0094 0 0 0.0972 -0.0093 -0.0389 -0.0187 0 0 -0.0009 0.0095 -0.0093 0.0972 -0.0187 -0.0389 0 0 0.0095 -0.0384 -0.0389 -0.0187 0.1558 0 -0.0389 -0.0187 -0.0389 0.0187 -0.0187 -0.0389 0 0.1558 -0.0187 -0
32、.0389 0.0187 -0.0389 0 0 -0.0389 -0.0187 0.0389 0.0187 -0.0094 -0.0007 0 0 -0.0187 -0.0389 0.0187 0.0389 0.0007 0.0094 -0.0009 0.0095 -0.0389 0.0187 -0.0094 0.0007 -1.9408 0.0095 0.0095 -0.0384 0.0187 -0.0389 -0.0007 0.0094 0.0095 -5.6533 0.0004 -0.0002 0 0 0 0 1.9994 -0.0377 -0.0002 0.0004 0 0 0 0 -0.0377 5.7119 -0.0094 -0.0007 0 0 0 0 0 0 0.0007 0.0094 0 0 0 0 0 0 0 0 0 0 0 0 -0.0094 0.0007 0 0 0 0 0 0 -0.0007 0.0094 Columns 17 through 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030年中國(guó)日式醬油數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025至2030年中國(guó)手工滴定儀數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025至2030年中國(guó)3-甲基黃酮-8-羧酸數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025年中國(guó)塑料鏡片拋光劑市場(chǎng)調(diào)查研究報(bào)告
- 2025年輕紡機(jī)械襯套項(xiàng)目可行性研究報(bào)告
- 2025至2030年中國(guó)雙軸玻璃鋼管纏繞機(jī)數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025至2030年中國(guó)包銅箱數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025年中國(guó)計(jì)算機(jī)數(shù)據(jù)信號(hào)電涌保護(hù)器市場(chǎng)調(diào)查研究報(bào)告
- 2025年中國(guó)牙膏蠟市場(chǎng)調(diào)查研究報(bào)告
- 創(chuàng)意產(chǎn)業(yè)對(duì)城市社區(qū)的影響和改造考核試卷
- 2024年湖南省普通高中學(xué)業(yè)水平考試政治試卷(含答案)
- 零售企業(yè)加盟管理手冊(cè)
- 設(shè)備維保的維修流程與指導(dǎo)手冊(cè)
- 招標(biāo)代理服務(wù)的關(guān)鍵流程與難點(diǎn)解析
- GB/T 5465.2-2023電氣設(shè)備用圖形符號(hào)第2部分:圖形符號(hào)
- 材料預(yù)定協(xié)議
- 2023年河北省中考數(shù)學(xué)試卷(含解析)
- 《學(xué)習(xí)的本質(zhì)》讀書會(huì)活動(dòng)
- 高氨血癥護(hù)理課件
- 物流營(yíng)銷(第四版) 課件 胡延華 第3、4章 物流目標(biāo)客戶選擇、物流服務(wù)項(xiàng)目開(kāi)發(fā)
- 《石油化工電氣自動(dòng)化系統(tǒng)設(shè)計(jì)規(guī)范》
評(píng)論
0/150
提交評(píng)論