版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、數(shù)學(xué)基礎(chǔ)認(rèn)識與理解Mathematical Literacy and Understanding,數(shù)量的認(rèn)識和數(shù)數(shù),兒童從多大開始有數(shù)量的觀念呢? 數(shù)量的認(rèn)識是怎麼? 是先天的還是後天培養(yǎng)的? 兒童對數(shù)量的認(rèn)識是是透過聽覺, 視覺, 還是其他呢? 兒童何時懂得加數(shù),減數(shù)? 他們懂得做多大的數(shù)量的加減? 兒童何時懂得數(shù)數(shù)? 數(shù)數(shù)過程中包含什麼概念?,Humans are born with a fundamental sense of quantity?,Same number of marbles?,4/5 years old: Left, yes; Right, no. they can a
2、nswer correctly until 7-8 years.,Younger children do not posses a conceptual understanding of numbers and that any number re-related activities are learned by rote?,2 1/2 years to 4 1/2 years olds,Take the row you want to eat, and eat all the M&Ms in that row.,Children understand more than and less
3、than.,Numerical Competencies,Numerosity (數(shù)量感): 對數(shù)量的認(rèn)識 Ordinality(序列感): 對順序的認(rèn)識 Arithmetic: 基本數(shù)學(xué)運(yùn)算,思考問題,你以為兒童能否認(rèn)識簡單的數(shù)量呢? 如果可以, 他們可以認(rèn)識到多大的數(shù)量? 這種能力是與生俱來的(Innate)還是後天學(xué)習(xí)得到的? 如果你是一個研究人員, 你將怎樣設(shè)計你的實驗以找出這些問題的答案呢?,Numerosity,Habituation procedure: dishabituation means notificaiton of number of presented dots c
4、hanged. 4 months to 7 1/2 months: discriminate 2 from 3 items but not 4 from 6 itms. 10 - 12 months: 2 from 3, not 4 from 5 infants: look longer when 2 dots presented with 2 drum bits, (abstracts codes for numerosities up to 3 or 4 items),Infants abilities in numerosity,Not dependent on a specific m
5、odality not influenced by factors such as: whether dots or household items are presented, whether the presented items are static or moving, density of the displays,Ordinality,Infants sensitive to numerosity implies they understand larger than or less than? Ordinality before or after numerosity? Why?
6、,思考問題,Ordinality,Infants represent numerosity do not imply they can rank the representations. Developed during the first 1 1/2 years of life.,討論問題,兒童懂得加數(shù)和減數(shù)嗎, 何時開始懂得呢? 如果他們年紀(jì)這麼少便懂得加減數(shù), 這顯示了什麼呢?,Arithmetic,Infants have a preliminary sense of addition and subtraction at 5 months of age.,Objects take o
7、ut or add in,Infant looks in this direction,討論題目,你怎樣看出一組物件的數(shù)目?,Development of Early Numerical Abilities,Subitizing Counting Estimating,Reaction Time Patters for Making Numerosity Judgments,討論題目,試解釋上圖背後的原因,Error Rates,Rare for arrays with 4 or fewer items 50% for arrays with more than 7 items,討論題目,兒童
8、何時開始數(shù)數(shù)? 什麼原因令他開始? 數(shù)目有什麼特質(zhì)? 數(shù)數(shù)是什麼? 包括什麼過程? 兒童要懂得什麼才能開始數(shù)數(shù)? 數(shù)數(shù)過程中包含許多概念, 兒童是先有概念才數(shù)數(shù),還是從數(shù)數(shù)中學(xué)習(xí)概念?,Properties of Number System,Each number word is unique and represent a unique quantity numbers are serially ordered each number reflects a group of smaller numbers.,Counting: basic skills involved,One-to-one
9、 correspondence between number names and the counted items order the number names in the correct sequence the last number named in the count (the cardinal number) represents the total number of counted items.,Cardinality and Ordinality,Cardinality: number word assigned to the last counted object can
10、 be used to represent the total number of the counted objects Ordinality: successive number words represent successively larger quantities.,Cardinality and Last-word Rule,Test of cardinality: A child is asked to count his or her fingers asked, “How many fingers do you have?” understand the concept o
11、f cardinality or just use the Last-word Rule? Cardinality is always confused by how the items are arranged.,Ordinality,Refers mostly to the childs knowledge of equivalence and greater than and less than. Children as young as 2 1/2 years of age have an understanding of ordinal relationships.,Developm
12、ental Mechanisms for Counting and Number Knowledge,Most researchers agree that a sensitivity to numerical information is, at least in part, inborn, there is considerable disagreement over the relative importance of this innate sensitivity. Tow general positions: principals-first: innate principles g
13、uide the development, procedures-first: first count by rote and gradually induce counting concepts.,Principles-First,Behavior of young children guided by 5 principles: one-one correspondence: one number word one counted object stable order: same sequence of number words for counting cardinality: the
14、 number word associated with the last counted item has a special meaning. Abstraction: awareness of what is countable (skill at counting mixed sets too) order irrelevance:,The principles guide and structure the childs counting behavior, serve as a reference against which the child can evaluate this actual counting behavior, and m
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 貴州財經(jīng)職業(yè)學(xué)院《西方經(jīng)典戲劇鑒賞》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年江西建筑安全員-C證(專職安全員)考試題庫
- 2025江西省建筑安全員C證考試題庫
- 2025湖北省建筑安全員《C證》考試題庫及答案
- 2025山東省安全員-C證(專職安全員)考試題庫
- 廣州體育職業(yè)技術(shù)學(xué)院《物流管理信息系統(tǒng)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025黑龍江省建筑安全員知識題庫及答案
- 2025河南建筑安全員-C證(專職安全員)考試題庫
- 2025年重慶市安全員-C證考試題庫
- 中國China英文介紹
- 2024-2030年中國游艇產(chǎn)業(yè)發(fā)展?fàn)顩r規(guī)劃分析報告權(quán)威版
- 新能源汽車充電樁項目可行性研究報告模板及范文
- 上海市縣(2024年-2025年小學(xué)五年級語文)人教版摸底考試((上下)學(xué)期)試卷及答案
- 電力市場概論張利課后參考答案
- 無人機(jī)項目建設(shè)規(guī)劃投資計劃書
- 2024版首診負(fù)責(zé)制度課件
- 幼兒園班級管理中的沖突解決策略研究
- 【7上英YL】蕪湖市2023-2024學(xué)年七年級上學(xué)期英語期中素質(zhì)教育評估試卷
- 2024年度中國鈉離子電池報告
- 2024年-2025年全民“科學(xué)素養(yǎng)提升行動”競賽考試題庫(含各題型)
- 實習(xí)護(hù)士匯報
評論
0/150
提交評論