2020版高中數(shù)學(xué) 第二章 圓錐曲線與方程 2.5 直線與圓錐曲線(第1課時(shí))課件 新人教B版選修2-1_第1頁(yè)
2020版高中數(shù)學(xué) 第二章 圓錐曲線與方程 2.5 直線與圓錐曲線(第1課時(shí))課件 新人教B版選修2-1_第2頁(yè)
2020版高中數(shù)學(xué) 第二章 圓錐曲線與方程 2.5 直線與圓錐曲線(第1課時(shí))課件 新人教B版選修2-1_第3頁(yè)
2020版高中數(shù)學(xué) 第二章 圓錐曲線與方程 2.5 直線與圓錐曲線(第1課時(shí))課件 新人教B版選修2-1_第4頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、2.52.5直線與圓錐曲線直線與圓錐曲線 第二章第二章 圓錐曲線與方程圓錐曲線與方程 知識(shí)點(diǎn)一:直線與圓錐曲線的位置關(guān)系 1.直線與圓錐曲線的位置關(guān)系有 、 、 三種情況.相交 相切 相離 2.判斷位置關(guān)系的方法就步驟: 聯(lián)立直線與圓錐曲線的方程組成方程組; 將方程組消元得關(guān)于x(或y)的方程; 判斷方程是否為一元二次方程; 若方程為一元一次方程,則直線與圓錐曲線相交,且有一個(gè)交點(diǎn); 若方程為一元二次方程,利用與0的關(guān)系判斷三種位置關(guān)系. 知識(shí)點(diǎn)二:圓錐曲線的弦及弦長(zhǎng)公式 1.直線與圓錐曲線有兩個(gè)交點(diǎn)時(shí),這條直線上以這兩個(gè)交點(diǎn)為端點(diǎn)的線段 叫做 ,線段的長(zhǎng)就是弦長(zhǎng) 2若直線l與圓錐曲線交于A(

2、x1,y1),B(x2,y2)兩點(diǎn) (1)若直線l的斜率不存在,則|AB| ; (2)若直線l的斜率為0,則|AB| ; (3)若直線l的方程為ykxb,則|AB| 或 . 圓錐曲線的弦 |y1y2| |x1x2| 典例分析典例分析 解: 例1 已知曲線C:x2y21及直線l:ykx1. (1)若l與C有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)k的取值范圍; (2)若l與C交于A,B兩點(diǎn),O是坐標(biāo)原點(diǎn),且AOB的面積為,求實(shí)數(shù)k的值 (1)由 ykx1, x2y21, 1-k20, =4k2+8(1-k2)0, 由已知得 消去y,得(1k2)x22kx20, 跟蹤訓(xùn)練跟蹤訓(xùn)練 1.若拋物線yx22xm與直線y2

3、x相交于不同兩點(diǎn)A、B. (1)求m的取值范圍;(2)求線段AB中點(diǎn)坐標(biāo) 典例分析典例分析 例2 已知雙曲線3x2y23,過(guò)P(2,1)點(diǎn)作一直線交雙曲線于A,B兩點(diǎn) 若P為AB的中點(diǎn), (1)求直線AB的方程;(2)求弦AB的長(zhǎng) 跟蹤訓(xùn)練跟蹤訓(xùn)練 典例分析 例3 已知拋物線C:y22px(p0)過(guò)點(diǎn)A(1,2) (1)求拋物線C的方程,并求其準(zhǔn)線方程; (2)是否存在平行于OA(O為坐標(biāo)原點(diǎn))的直線l,使得直線l與拋物線C 有公共點(diǎn),且直線OA與l的距離等于?若存在,求出直線l的方程; 若不存在,說(shuō)明理由 解:(1)將(1,2)代入y22px,得(2)22p1,所以p2. 故所求的拋物線C的

4、方程為y24x,其準(zhǔn)線方程為x1. (2)假設(shè)存在符合題意的直線l,其方程為y2xt, y=-2x+t, y2=4x, 由 得y22y2t0. 跟蹤訓(xùn)練跟蹤訓(xùn)練 歸納小結(jié)歸納小結(jié) 1直線與圓錐曲線的公共點(diǎn)個(gè)數(shù)的討論,一般通過(guò)聯(lián)立、消元, 轉(zhuǎn)化為一元二次方程根的個(gè)數(shù)進(jìn)行討論,在應(yīng)用判別式前, 應(yīng)注意對(duì)二次項(xiàng)系數(shù)為0,不為0分類討論 2直線與圓錐曲線相交,主要有兩個(gè)問(wèn)題,即弦長(zhǎng)和弦中點(diǎn)問(wèn)題, 都要用方程思想求解,弦長(zhǎng)可由弦長(zhǎng)公式求解, 弦中點(diǎn)問(wèn)題利用中點(diǎn)坐標(biāo)公式求解 3直線與圓錐曲線的綜合問(wèn)題,千變?nèi)f化,靈活多變, 但最終都要通過(guò)轉(zhuǎn)化與化歸,轉(zhuǎn)化為直線與圓錐曲線的基本問(wèn)題, 利用方程思想求解. 當(dāng)堂訓(xùn)練當(dāng)堂訓(xùn)練 2直線l過(guò)y24x的焦點(diǎn)F,交拋物線于A

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論