![機(jī)械外文翻譯003_第1頁](http://file2.renrendoc.com/fileroot_temp3/2021-4/23/a5ef5e79-e077-4ec8-8665-fc9ec148717a/a5ef5e79-e077-4ec8-8665-fc9ec148717a1.gif)
![機(jī)械外文翻譯003_第2頁](http://file2.renrendoc.com/fileroot_temp3/2021-4/23/a5ef5e79-e077-4ec8-8665-fc9ec148717a/a5ef5e79-e077-4ec8-8665-fc9ec148717a2.gif)
![機(jī)械外文翻譯003_第3頁](http://file2.renrendoc.com/fileroot_temp3/2021-4/23/a5ef5e79-e077-4ec8-8665-fc9ec148717a/a5ef5e79-e077-4ec8-8665-fc9ec148717a3.gif)
![機(jī)械外文翻譯003_第4頁](http://file2.renrendoc.com/fileroot_temp3/2021-4/23/a5ef5e79-e077-4ec8-8665-fc9ec148717a/a5ef5e79-e077-4ec8-8665-fc9ec148717a4.gif)
![機(jī)械外文翻譯003_第5頁](http://file2.renrendoc.com/fileroot_temp3/2021-4/23/a5ef5e79-e077-4ec8-8665-fc9ec148717a/a5ef5e79-e077-4ec8-8665-fc9ec148717a5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、zzzzzzz大學(xué)畢業(yè)設(shè)計(jì)(論文)外文文獻(xiàn) 學(xué) 院 xxxxxxxx 專業(yè)班級(jí) xxxxxx 學(xué)生姓名 xxxxx 指導(dǎo)教師 xxxxxx automated surface finishing of plastic injection mold steel with spherical grinding and ball burnishing processesabstractthis study investigates the possibilities of automated spherical grinding and ball burnishing surface finishi
2、ng processes in a freeform surface plastic injection mold steel pds5 on a cnc machining center. the design and manufacture of a grinding tool holder has been accomplished in this study. the optimal surface grinding parameters were determined using taguchis orthogonal array method for plastic injecti
3、on molding steel pds5 on a machining center. the optimal surface grinding parameters for the plastic injection mold steel pds5 were the combination of an abrasive material of pa al2o3, a grinding speed of 18 000 rpm, a grinding depth of 20 m, and a feed of 50 mm/min. the surface roughness ra of the
4、specimen can be improved from about 1.60 m to 0.35 m by using the optimal parameters for surface grinding. surface roughness ra can be further improved from about 0.343 m to 0.06 m by using the ball burnishing process with the optimal burnishing parameters. applying the optimal surface grinding and
5、burnishing parameters sequentially to a fine-milled freeform surface mold insert, the surface roughness ra of freeform surface region on the tested part can be improved from about 2.15 m to 0.07 m.keywords automated surface finishing ball burnishing process grinding process surface roughness taguchi
6、s method1 introductionplastics are important engineering materials due to their specific characteristics, such as corrosion resistance, resistance to chemicals, low density, and ease of manufacture, and have increasingly replaced metallic components in industrial applications. injection molding is o
7、ne of the important forming processes for plastic products. the surface finish quality of the plastic injection mold is an essential requirement due to its direct effects on the appearance of the plastic product. finishing processes such as grinding, polishing and lapping are commonly used to improv
8、e the surface finish.the mounted grinding tools (wheels) have been widely used in conventional mold and die finishing industries. the geometric model of mounted grinding tools for automated surface finishing processes was introduced in. a finishing process mode of spherical grinding tools for automa
9、ted surface finishing systems was developed in. grinding speed, depth of cut, feed rate, and wheel properties such as abrasive material and abrasive grain size, are the dominant parameters for the spherical grinding process, as shown in fig. 1. the optimal spherical grinding parameters for the injec
10、tion mold steel have not yet been investigated based in the literature.fig.1. schematic diagram of the spherical grinding processin recent years, some research has been carried out in determining the optimal parameters of the ball burnishing process (fig. 2). for instance, it has been found that pla
11、stic deformation on the workpiece surface can be reduced by using a tungsten carbide ball or a roller, thus improving the surface roughness, surface hardness, and fatigue resistance. the burnishing process is accomplished by machining centers and lathes. the main burnishing parameters having signifi
12、cant effects on the surface roughness are ball or roller material, burnishing force, feed rate, burnishing speed, lubrication, and number of burnishing passes, among others. the optimal surface burnishing parameters for the plastic injection mold steel pds5 were a combination of grease lubricant, th
13、e tungsten carbide ball, a burnishing speed of 200 mm/min, a burnishing force of 300 n, and a feed of 40 m. the depth of penetration of the burnished surface using the optimal ball burnishing parameters was about 2.5 microns. the improvement of the surface roughness through burnishing process genera
14、lly ranged between 40% and 90%.fig. 2. schematic diagram of the ball-burnishing processthe aim of this study was to develop spherical grinding and ball burnishing surface finish processes of a freeform surface plastic injection mold on a machining center. the flowchart of automated surface finish us
15、ing spherical grinding and ball burnishing processes is shown in fig. 3. we began by designing and manufacturing the spherical grinding tool and its alignment device for use on a machining center. the optimal surface spherical grinding parameters were determined by utilizing a taguchis orthogonal ar
16、ray method. four factors and three corresponding levels were then chosen for the taguchis l18 matrix experiment. the optimal mounted spherical grinding parameters for surface grinding were then applied to the surface finish of a freeform surface carrier. to improve the surface roughness, the ground
17、surface was further burnished, using the optimal ball burnishing parameters.fig. 3. flow chart of automated surface finish using spherical grinding and ball burnishing processes2 design of the spherical grinding tool and its alignment deviceto carry out the possible spherical grinding process of a f
18、reeform surface, the center of the ball grinder should coincide with the z-axis of the machining center. the mounted spherical grinding tool and its adjustment device was designed, as shown in fig. 4. the electric grinder was mounted in a tool holder with two adjustable pivot screws. the center of t
19、he grinder ball was well aligned with the help of the conic groove of the alignment components. having aligned the grinder ball, two adjustable pivot screws were tightened; after which, the alignment components could be removed. the deviation between the center coordinates of the ball grinder and th
20、at of the shank was about 5 m, which was measured by a cnc coordinate measuring machine. the force induced by the vibration of the machine bed is absorbed by a helical spring. the manufactured spherical grinding tool and ball-burnishing tool were mounted, as shown in fig. 5. the spindle was locked f
21、or both the spherical grinding process and the ball burnishing process by a spindle-locking mechanism.fig.4. schematic illustration of the spherical grinding tool and its adjustment devicefig.5. (a) photo of the spherical grinding tool (b) photo of the ball burnishing tool3 planning of the matrix ex
22、periment3.1 configuration of taguchis orthogonal arraythe effects of several parameters can be determined efficiently by conducting matrix experiments using taguchis orthogonal array. to match the aforementioned spherical grinding parameters, the abrasive material of the grinder ball (with the diame
23、ter of 10 mm), the feed rate, the depth of grinding, and the revolution of the electric grinder were selected as the four experimental factors (parameters) and designated as factor a to d (see table 1) in this research. three levels (settings) for each factor were configured to cover the range of in
24、terest, and were identified by the digits 1, 2, and 3. three types of abrasive materials, namely silicon carbide (sic), white aluminum oxide (al2o3, wa), and pink aluminum oxide (al2o3, pa), were selected and studied. three numerical values of each factor were determined based on the pre-study resul
25、ts. the l18 orthogonal array was selected to conduct the matrix experiment for four 3-level factors of the spherical grinding process.table1. the experimental factors and their levels3.2 definition of the data analysisengineering design problems can be divided into smaller-the better types, nominal-
26、the-best types, larger-the-better types, signed-target types, among others 8. the signal-to-noise (s/n) ratio is used as the objective function for optimizing a product or process design. the surface roughness value of the ground surface via an adequate combination of grinding parameters should be s
27、maller than that of the original surface. consequently, the spherical grinding process is an example of a smaller-the-better type problem. the s/n ratio, , is defined by the following equation: =10 log10(mean square quality characteristic) =10 log10where:yi : observations of the quality characterist
28、ic under different noise conditions n: number of experimentafter the s/n ratio from the experimental data of each l18 orthogonal array is calculated, the main effect of each factor was determined by using an analysis of variance (anova) technique and an f-ratio test. the optimization strategy of the
29、 smaller-the better problem is to maximize , as defined by eq. 1. levels that maximize will be selected for the factors that have a significant effect on . the optimal conditions for spherical grinding can then be determined.4 experimental work and resultsthe material used in this study was pds5 too
30、l steel (equivalent to aisi p20), which is commonly used for the molds of large plastic injection products in the field of automobile components and domestic appliances. the hardness of this material is about hrc33 (hs46). one specific advantage of this material is that after machining, the mold can
31、 be directly used for further finishing processes without heat treatment due to its special pre-treatment. the specimens were designed and manufactured so that they could be mounted on a dynamometer to measure the reaction force. the pds5 specimen was roughly machined and then mounted on the dynamom
32、eter to carry out the fine milling on a three-axis machining center made by yang-iron company (type mv-3a), equipped with a funuc company nc-controller (type 0m). the pre-machined surface roughness was measured, using hommelwerke t4000 equipment, to be about 1.6 m. figure 6 shows the experimental se
33、t-up of the spherical grinding process. a mp10 touch-trigger probe made by the renishaw company was also integrated with the machining center tool magazine to measure and determine the coordinated origin of the specimen to be ground. the nc codes needed for the ball-burnishing path were generated by
34、 powermill cam software. these codes can be transmitted to the cnc controller of the machining center via rs232 serial interface.fig.6. experimental set-up to determine the optimal spherical grinding parameterstable 2 summarizes the measured ground surface roughness alue ra and the calculated s/n ra
35、tio of each l18 orthogonal array sing eq. 1, after having executed the 18 matrix experiments. the average s/n ratio for each level of the four actors is shown graphically in fig. 7.table2. ground surface roughness of pds5 specimenexp.inner array (control factors)measured surface roughness value (ra)
36、responsenoabcds/n(db)mean111110.350.350.359.1190.350212220.370.360.388.6340.370313330.410.440.407.5970.417421230.630.650.643.8760.640522310.730.770.782.3800.760623120.450.420.397.5300.420731320.340.310.329.8010.323832130.270.250.2811.4710.267933210.320.320.329.8970.3201011220.350.390.408.3900.380111
37、2330.410.500.436.9680.4471213110.400.390.427.8830.4031321130.330.340.319.7120.3271422210.480.500.476.3120.4831523320.570.610.534.8680.5701631310.590.550.545.0300.5601732120.360.360.358.9540.3571833230.570.530.535.2930.543fig.7. plots of control factor effectsthe goal in the spherical grinding proces
38、s is to minimize the surface roughness value of the ground specimen by determining the optimal level of each factor. since log is a monotone decreasing function, we should maximize the s/n ratio. consequently, we can determine the optimal level for each factor as being the level that has the highest
39、 value of . therefore, based on the matrix experiment, the optimal abrasive material was pink aluminum oxide; the optimal feed was 50 mm/min; the optimal depth of grinding was 20 m; and the optimal revolution was 18 000 rpm, as shown in table 3.the optimal parameters for surface spherical grinding o
40、btained from the taguchis matrix experiments were applied to the surface finish of the freeform surface mold insert to evaluate the surface roughness improvement. a perfume bottle was selected as the tested carrier. the cnc machining of the mold insert for the tested object was simulated with power
41、mill cam software. after fine milling, the mold insert was further ground with the optimal spherical grinding parameters obtained from the taguchis matrix experiment. shortly afterwards, the ground surface was burnished with the optimal ball burnishing parameters to further improve the surface rough
42、ness of the tested object (see fig. 8). the surface roughness of the mold insert was measured with hommelwerke t4000 equipment. the average surface roughness value ra on a fine-milled surface of the mold insert was 2.15 m on average; that on the ground surface was 0.45 m on average; and that on burn
43、ished surface was 0.07 m on average. the surface roughness improvement of the tested object on ground surface was about (2.150.45)/2.15 = 79.1%, and that on the burnished surface was about (2.150.07)/2.15 = 96.7%.fig.8. fine-milled, ground and burnished mold insert of a perfume bottle5 conclusionin
44、this work, the optimal parameters of automated spherical grinding and ball-burnishing surface finishing processes in a freeform surface plastic injection mold were developed successfully on a machining center. the mounted spherical grinding tool (and its alignment components) was designed and manufa
45、ctured. the optimal spherical grinding parameters for surface grinding were determined by conducting a taguchi l18 matrix experiments. the optimal spherical grinding parameters for the plastic injection mold steel pds5 were the combination of the abrasive material of pink aluminum oxide (al2o3, pa),
46、 a feed of 50 mm/min, a depth of grinding 20 m, and a revolution of 18 000 rpm. the surface roughness ra of the specimen can be improved from about 1.6 m to 0.35 m by using the optimal spherical grinding conditions for surface grinding. by applying the optimal surface grinding and burnishing paramet
47、ers to the surface finish of the freeform surface mold insert, the surface roughness improvements were measured to be ground surface was about 79.1% in terms of ground surfaces, and about 96.7% in terms of burnished surfaces. acknowledgement the authors are grateful to the national science council o
48、f the republic of china for supporting this research with grant nsc 89-2212-e-011-059.基于注塑模具鋼研磨和拋光工序的自動(dòng)化表面處理摘要本文研究了注塑模具鋼自動(dòng)研磨與球面拋光加工工序的可能性,這種注塑模具鋼pds5的塑性曲面是在數(shù)控加工中心完成的。這項(xiàng)研究已經(jīng)完成了磨削刀架的設(shè)計(jì)與制造。 最佳表面研磨參數(shù)是在鋼鐵pds5 的加工中心測(cè)定的。對(duì)于pds5注塑模具鋼的最佳球面研磨參數(shù)是以下一系列的組合:研磨材料的磨料為粉紅氧化鋁,進(jìn)給量500毫米/分鐘,磨削深度20微米,磨削轉(zhuǎn)速為18000rpm。用優(yōu)化的參數(shù)進(jìn)行
49、表面研磨,表面粗糙度ra值可由大約1.60微米改善至0.35微米。 用球拋光工藝和參數(shù)優(yōu)化拋光,可以進(jìn)一步改善表面粗糙度ra值從0.343微米至0.06微米左右。在模具內(nèi)部曲面的測(cè)試部分,用最佳參數(shù)的表面研磨、拋光,曲面表面粗糙度就可以提高約2.15微米到0 0.07微米。關(guān)鍵詞: 自動(dòng)化表面處理 拋光 磨削加工 表面粗糙度 田口方法 一、引言塑膠工程材料由于其重要特點(diǎn),如耐化學(xué)腐蝕性、低密度、易于制造,并已日漸取代金屬部件在工業(yè)中廣泛應(yīng)用。 注塑成型對(duì)于塑料制品是一個(gè)重要工藝。注塑模具的表面質(zhì)量是設(shè)計(jì)的本質(zhì)要求,因?yàn)樗苯佑绊懥怂苣z產(chǎn)品的外觀和性能。 加工工藝如球面研磨、拋光常用于改善表面光
50、潔度。研磨工具(輪子)的安裝已廣泛用于傳統(tǒng)模具的制造產(chǎn)業(yè)。自動(dòng)化表面研磨加工工具的幾何模型將介紹。自動(dòng)化表面處理的球磨研磨工具將得到示范和開發(fā)。 磨削速度, 磨削深度,進(jìn)給速率和砂輪尺寸、研磨材料特性(如磨料粒度大小)是球形研磨工藝中主要的參數(shù),如圖1(球面研磨過程示意圖)所示。注塑模具鋼的球面研磨最優(yōu)化參數(shù)目前尚未在文獻(xiàn)得到確切的依據(jù)。 步距研磨高度球磨研磨進(jìn)給速度工作臺(tái)圖1 球面研磨過程示意圖進(jìn)給研磨球工作臺(tái)研磨深度研磨表面近年來 ,已經(jīng)進(jìn)行了一些研究,確定了球面拋光工藝的最優(yōu)參數(shù)(圖2) (球面拋光過程示意圖)。 比如,人們發(fā)現(xiàn), 用碳化鎢球滾壓的方法可以使工件表面的塑性變形減少,從而改
51、善表面粗糙度、表面硬度、抗疲勞強(qiáng)度。 拋光的工藝的過程是由加工中心和車床共同完成的。對(duì)表面粗糙度有重大影響的拋光工藝主要參數(shù),主要是球或滾子材料,拋光力, 進(jìn)給速率,拋光速度,潤(rùn)滑、拋光率及其他因素等。注塑模具鋼pds5的表面拋光的參數(shù)優(yōu)化,分別結(jié)合了油脂潤(rùn)滑劑,碳化鎢球,拋光速度200毫米/分鐘,拋光力300牛,40微米的進(jìn)給量。采用最佳參數(shù)進(jìn)行表面研磨和球面拋光的深度為2.5微米。 通過拋光工藝,表面粗糙度可以改善大致為40至90。 圖2 球面拋光過程示意圖此項(xiàng)目研究的目的是,發(fā)展注塑模具鋼的球形研磨和球面拋光工序,這種注塑模具鋼的曲面實(shí)在加工中心完成的。表面光潔度的球研磨與球拋光的自動(dòng)化
52、流程工序,如圖3所示。 我們開始自行設(shè)計(jì)和制造的球面研磨工具及加工中心的對(duì)刀裝置。利用田口正交法,確定了表面球研磨最佳參數(shù)。選擇為田口l18型矩陣實(shí)驗(yàn)相應(yīng)的四個(gè)因素和三個(gè)層次。 用最佳參數(shù)進(jìn)行表面球研磨則適用于一個(gè)曲面表面光潔度要求較高的注塑模具。 為了改善表面粗糙, 利用最佳球面拋光工藝參數(shù),再進(jìn)行對(duì)表層打磨。pds試樣的設(shè)計(jì)與制造選擇最佳矩陣實(shí)驗(yàn)因子確定最佳參數(shù)實(shí)施實(shí)驗(yàn)分析并確定最佳因子進(jìn)行表面拋光應(yīng)用最佳參數(shù)加工曲面測(cè)量試樣的表面粗糙度球研磨和拋光裝置的設(shè)計(jì)與制造圖3自動(dòng)球面研磨與拋光工序的流程圖二、球研磨的設(shè)計(jì)和對(duì)準(zhǔn)裝置實(shí)施過程中可能出現(xiàn)的曲面的球研磨,研磨球的中心應(yīng)和加工中心的z軸相
53、一致。 球面研磨工具的安裝及調(diào)整裝置的設(shè)計(jì),如圖4(球面研磨工具及其調(diào)整裝置)所示。電動(dòng)磨床展開了兩個(gè)具有可調(diào)支撐螺絲的刀架。磨床中心正好與具有輔助作用的圓錐槽線配合。 擁有磨床的球接軌,當(dāng)兩個(gè)可調(diào)支撐螺絲被收緊時(shí),其后的對(duì)準(zhǔn)部件就可以拆除。研磨球中心坐標(biāo)偏差約為5微米, 這是衡量一個(gè)數(shù)控坐標(biāo)測(cè)量機(jī)性能的重要標(biāo)準(zhǔn)。 機(jī)床的機(jī)械振動(dòng)力是被螺旋彈簧所吸收。球形研磨球和拋光工具的安裝,如圖5(a. 球面研磨工具的圖片. b.球拋光工具的圖片)所示。為使球面磨削加工和拋光加工的進(jìn)行,主軸通過球鎖機(jī)制而被鎖定。 模柄彈簧工具可調(diào)支撐緊固螺釘磨球自動(dòng)研磨磨球組件圖4 球面研磨工具及其調(diào)整裝置圖5 a. 球
54、面研磨工具的圖片. b.球拋光工具的圖片三、矩陣實(shí)驗(yàn)的規(guī)劃3.1田口正交表利用矩陣實(shí)驗(yàn)田口正交法,可以確定參數(shù)的有影響程度。 為了配合上述球面研磨參數(shù),該材料磨料的研磨球(直徑10毫米),進(jìn)給速率,研磨深度,在次研究中電氣磨床被假定為四個(gè)因素,指定為從a到d(見表1實(shí)驗(yàn)因素和水平)。三個(gè)層次的因素涵蓋了不同的范圍特征,并用了數(shù)字1、2、3標(biāo)明。挑選三類磨料,即碳化硅,白色氧化鋁,粉紅氧化鋁來研究. 這三個(gè)數(shù)值的大小取決于每個(gè)因素實(shí)驗(yàn)結(jié)果。選定l18型正交矩陣進(jìn)行實(shí)驗(yàn),進(jìn)而研究四三級(jí)因素的球形研磨過程。表1實(shí)驗(yàn)因素和水平因素水平123a.碳化硅白色氧化鋁粉紅氧化鋁b.50100200c.研磨深度
55、(m)205080d.1200018000240003.2數(shù)據(jù)分析的界定 工程設(shè)計(jì)問題,可以分為較小而好的類型,象征性最好類型,大而好類型,目標(biāo)取向類型等。 信噪比(s/n)的比值,常作為目標(biāo)函數(shù)來優(yōu)化產(chǎn)品或者工藝設(shè)計(jì)。 被加工面的表面粗糙度值經(jīng)過適當(dāng)?shù)亟M合磨削參數(shù),應(yīng)小于原來的未加工表面。 因此,球面研磨過程屬于工程問題中的小而好類型。這里的信噪比(s/n),按下列公式定義: =10 log 平方等于質(zhì)量特性=10 log (1)這里,y不同噪聲條件下所觀察的質(zhì)量特性n實(shí)驗(yàn)次數(shù)從每個(gè)l18型正交實(shí)驗(yàn)得到的信噪比(s/n)數(shù)據(jù),經(jīng)計(jì)算后,運(yùn)用差異分析技術(shù)(變異)和殲比檢驗(yàn)來測(cè)定每一個(gè)主要的因素。 優(yōu)化小而好類型的工程問題問題更是盡量使最大而定。各級(jí)選擇的最大化將對(duì)最終的因素有重大影響。 最優(yōu)條件可視研磨球而待定。四、實(shí)驗(yàn)工作和結(jié)果這項(xiàng)研究使用的材料是pds5工具鋼(相當(dāng)于艾西塑膠模具), 它常用于大型注塑模具產(chǎn)品在國內(nèi)汽車零件領(lǐng)域和國內(nèi)設(shè)備。
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《Dreamweaver CS5網(wǎng)頁設(shè)計(jì)與制作實(shí)例教程》課件-第1章 概述
- 2025年全球及中國應(yīng)急響應(yīng)無人機(jī)行業(yè)頭部企業(yè)市場(chǎng)占有率及排名調(diào)研報(bào)告
- 2025年全球及中國用于光學(xué)應(yīng)用的超透鏡行業(yè)頭部企業(yè)市場(chǎng)占有率及排名調(diào)研報(bào)告
- 2025年全球及中國單相柵極驅(qū)動(dòng)器IC行業(yè)頭部企業(yè)市場(chǎng)占有率及排名調(diào)研報(bào)告
- 2025年全球及中國臺(tái)式激光二極管驅(qū)動(dòng)儀行業(yè)頭部企業(yè)市場(chǎng)占有率及排名調(diào)研報(bào)告
- 2025-2030全球高山輸送機(jī)行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025年全球及中國柵網(wǎng)型離子源行業(yè)頭部企業(yè)市場(chǎng)占有率及排名調(diào)研報(bào)告
- 2025-2030全球大麻含量分析儀行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025-2030全球藥品和食品防偽技術(shù)行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025-2030全球立式高溫反應(yīng)釜行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 江蘇省蘇州市2024-2025學(xué)年高三上學(xué)期1月期末生物試題(有答案)
- 銷售與銷售目標(biāo)管理制度
- 2025年第一次工地開工會(huì)議主要議程開工大吉模板
- 第16課抗日戰(zhàn)爭(zhēng)課件-人教版高中歷史必修一
- 對(duì)口升學(xué)語文模擬試卷(9)-江西省(解析版)
- 糖尿病高滲昏迷指南
- 【公開課】同一直線上二力的合成+課件+2024-2025學(xué)年+人教版(2024)初中物理八年級(jí)下冊(cè)+
- 南京信息工程大學(xué)《教師領(lǐng)導(dǎo)力》2021-2022學(xué)年第一學(xué)期期末試卷
- (正式版)HGT 22820-2024 化工安全儀表系統(tǒng)工程設(shè)計(jì)規(guī)范
- 社區(qū)獲得性肺炎的護(hù)理查房
- 體育賽事策劃與管理第八章體育賽事的利益相關(guān)者管理課件
評(píng)論
0/150
提交評(píng)論