版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、數(shù)學(xué)思想與方法形成性考核冊(cè)作業(yè)1答案作業(yè)1一、簡(jiǎn)答題 1、分別簡(jiǎn)單敘說(shuō)算術(shù)與代數(shù)的解題方法基本思想,并且比較 它們的區(qū)別。 答:算術(shù)解題方法的基本思想:首先要圍繞所求的數(shù)量, 收集和整理各種已知的數(shù)據(jù),并依據(jù)問(wèn)題的條件列出關(guān)于這些具 體數(shù)據(jù)的算式,然后通過(guò)四則運(yùn)算求得算式的結(jié)果。代數(shù)解題方法的基本思想是:首先依據(jù)問(wèn)題的條件組成內(nèi)含 已知數(shù)和未知數(shù)的代數(shù)式,并按等量關(guān)系列出方程,然后通過(guò)對(duì) 方程進(jìn)行恒等變換求出未知數(shù)的值。 它們的區(qū)別在于算術(shù)解題參與的量必須是已知的量,而代數(shù) 解題允許未知的量參與運(yùn)算;算術(shù)方法的關(guān)鍵之處是列算式,而 代數(shù)方法的關(guān)鍵之處是列方程。2、比較決定性現(xiàn)象和隨機(jī)性現(xiàn)象的特
2、點(diǎn),簡(jiǎn)單敘說(shuō)確定數(shù) 學(xué)的局限。 答:人們常常遇到兩類截然不同的現(xiàn)象,一類是決定性 現(xiàn)象,另一類是隨機(jī)現(xiàn)象。決定性現(xiàn)象的特點(diǎn)是:在一定的條 件下,其結(jié)果可以唯一確定。因此決定性現(xiàn)象的條件和結(jié)果之 間存在著必然的聯(lián)系,所以事先可以預(yù)知結(jié)果如何。 隨機(jī)現(xiàn)象的特點(diǎn)是:在一定的條件下,可能發(fā)生某種結(jié)果, 也可能不發(fā)生某種結(jié)果。對(duì)于這類現(xiàn)象,由于條件和結(jié)果之間不 存在必然性聯(lián)系。 在數(shù)學(xué)學(xué)科中,人們常常把研究決定性現(xiàn)象數(shù)量規(guī)律的那些 數(shù)學(xué)分支稱為確定數(shù)學(xué)。用這些的分支來(lái)定量地描述某些決定性 現(xiàn)象的運(yùn)動(dòng)和變化過(guò)程,從而確定結(jié)果。但是由于隨機(jī)現(xiàn)象條件 和結(jié)果之間不存在必然性聯(lián)系,因此不能用確定數(shù)學(xué)來(lái)加以定量
3、描述。同時(shí)確定數(shù)學(xué)也無(wú)法定量地揭示大量同類隨機(jī)現(xiàn)象中所蘊(yùn) 涵的規(guī)律性。這些是確定數(shù)學(xué)的局限所在。二、論述題 1、論述社會(huì)科學(xué)數(shù)學(xué)化的主要原因。 答:從整個(gè)科學(xué)發(fā)展趨勢(shì)來(lái)看,社會(huì)科學(xué)的數(shù)學(xué)化也是必 然的趨勢(shì),其主要原因可以歸結(jié)為有下面四個(gè)方面: 第一,社會(huì)管理需要精確化的定量依據(jù),這是促使社會(huì)科學(xué) 數(shù)學(xué)化的最根本的因素。 第二,社會(huì)科學(xué)的各分支逐步走向成熟,社會(huì)科學(xué)理論體系 的發(fā)展也需要精確化。 第三,隨著數(shù)學(xué)的進(jìn)一步發(fā)展,它出現(xiàn)了一些適合研究社會(huì) 歷史現(xiàn)象的新的數(shù)學(xué)分支。 第四,電子計(jì)算機(jī)的發(fā)展與應(yīng)用,使非常復(fù)雜社會(huì)現(xiàn)象經(jīng)過(guò) 量化后可以進(jìn)行數(shù)值處理。 2、論述數(shù)學(xué)的三次危機(jī)對(duì)數(shù)學(xué)發(fā)展的作用。
4、答:第一次數(shù)學(xué)危機(jī)促使人們?nèi)フJ(rèn)識(shí)和理解無(wú)理數(shù),導(dǎo)致 了公理幾何與邏輯的產(chǎn)生。 第二次數(shù)學(xué)危機(jī)促使人們?nèi)ド钊胩接憣?shí)數(shù)理論,導(dǎo)致了分析 基礎(chǔ)理論的完善和集合論的產(chǎn)生。 第三次數(shù)學(xué)危機(jī)促使人們研究和分析數(shù)學(xué)悖論,導(dǎo)致了數(shù)理 邏輯和一批現(xiàn)代數(shù)學(xué)的產(chǎn)生。 由此可見(jiàn),數(shù)學(xué)危機(jī)的解決,往往給數(shù)學(xué)帶來(lái)新的內(nèi)容,新 的進(jìn)展,甚至引起革命性的變革,這也反映出矛盾斗爭(zhēng)是事物發(fā) 展的歷史動(dòng)力這一基本原理。整個(gè)數(shù)學(xué)的發(fā)展史就是矛盾斗爭(zhēng)的 歷史,斗爭(zhēng)的結(jié)果就是數(shù)學(xué)領(lǐng)域的發(fā)展。三、分析題 1、 分析幾何原本思想方法的特點(diǎn),為什么? 答:(1)封閉的演繹體系 因?yàn)樵趲缀卧局?,除了推?dǎo)時(shí)所需要的邏輯規(guī)則外, 每個(gè)定理的證明所
5、采用的論據(jù)均是公設(shè)、公理或前面已經(jīng)證明過(guò) 的定理,并且引入的概念(除原始概念)也基本上是符合邏輯上 對(duì)概念下定義的要求,原則上不再依賴其它東西。因此幾何原 本是一個(gè)封閉的演繹體系。另外,幾何原本的理論體系回避任何與社會(huì)生產(chǎn)現(xiàn)實(shí)生 活有關(guān)的應(yīng)用問(wèn)題,因此對(duì)于社會(huì)生活的各個(gè)領(lǐng)域來(lái)說(shuō),它也是 封閉的。所以,幾何原本是一個(gè)封閉的演繹體系。 (2)抽象化的內(nèi)容 :幾何原本中研究的對(duì)象都是抽象的概念和命題,它所探 討的是這些概念和命題之間的邏輯關(guān)系,不討論這些概念和命題 與社會(huì)生活之間的關(guān)系,也不考察這些數(shù)學(xué)模型所由之產(chǎn)生的現(xiàn)實(shí)原型。因此幾何原本的內(nèi)容是抽象的。(3)公理化的方法:幾何原本的第一篇中開(kāi)頭5
6、個(gè)公設(shè)和5個(gè)公理,是全書其 它命題證明的基本前提,接著給出23個(gè)定義,然后再逐步引入 和證明定理。定理的引入是有序的,在一個(gè)定理的證明中,允許采用的論據(jù)只有公設(shè)和公理與前面已經(jīng)證明過(guò)的定理。以后各篇 除了不再給出公設(shè)和公理外也都照此辦理。這種處理知識(shí)體系與 表述方法就是公理化方法。 2、分析九章算術(shù)思想方法的特點(diǎn),為什么? 答:(1)開(kāi)放的歸納體系:從九章算術(shù)的內(nèi)容可以看出,它是以應(yīng)用問(wèn)題解法集成 的體例編纂而成的書,因此它是一個(gè)與社會(huì)實(shí)踐緊密聯(lián)系的開(kāi)放 體系。 在九章算術(shù)中通常是先舉出一些問(wèn)題,從中歸納出某一 類問(wèn)題的一般解法;再把各類算法綜合起來(lái),得到解決該領(lǐng)域中 各種問(wèn)題的方法;最后,把
7、解決各領(lǐng)域中問(wèn)題的數(shù)學(xué)方法全部綜 合起來(lái),就得到整個(gè)九章算術(shù)。另外該書還按解決問(wèn)題的不同數(shù)學(xué)方法進(jìn)行歸納,從這些 方法中提煉出數(shù)學(xué)模型,最后再以數(shù)學(xué)模型立章寫入九章算 術(shù)。 因此,九章算術(shù)是一個(gè)開(kāi)放的歸納體系。(2)算法化的內(nèi)容 :九章算術(shù)在每一章內(nèi)先列舉若干個(gè)實(shí)際問(wèn)題,并對(duì)每 個(gè)問(wèn)題都給出答案,然后再給出“術(shù)”,作為一類問(wèn)題的共同解 法。因此,內(nèi)容的算法化是九章算術(shù)思想方法上的特點(diǎn)之 一。 (3)模型化的方法 :九章算術(shù)各章都是先從相應(yīng)的社會(huì)實(shí)踐中選擇具有典 型意義的現(xiàn)實(shí)原型,并把它們表述成問(wèn)題,然后通過(guò)“術(shù)”使其轉(zhuǎn) 化為數(shù)學(xué)模型。當(dāng)然有的章采取的是由數(shù)學(xué)模型到原型的過(guò) 程,即先給出數(shù)學(xué)模型
8、,然后再舉出可以應(yīng)用的原型。數(shù)學(xué)思想與方法形成性考核冊(cè)作業(yè)2答案 數(shù)學(xué)思想與方法作業(yè)2一、簡(jiǎn)答題1、敘述抽象的含義及其過(guò)程。答:抽象是指在認(rèn)識(shí)事物的過(guò)程中,舍棄那些個(gè)別的、偶然的非本質(zhì)屬性,抽取普遍的、必然的本質(zhì)屬性,形成科學(xué)概念,從而把握事物的本質(zhì)和規(guī)律的思維過(guò)程。人們?cè)谒季S中對(duì)對(duì)象的抽象是從對(duì)對(duì)象的比較和區(qū)分開(kāi)始的。所謂比較,就是在思維中確定對(duì)象之間的相同點(diǎn)和不同點(diǎn);而所謂區(qū)分,則是把比較得到的相同點(diǎn)和不同點(diǎn)在思維中固定下來(lái),利用它們把對(duì)象分為不同的類。然后再進(jìn)行舍棄與收括,舍棄是指在思維中不考慮對(duì)象的某些性質(zhì),收括則是指把對(duì)象的我們所需要的性質(zhì)固定下來(lái),并用詞表達(dá)出來(lái)。這就形成了抽象的概
9、念,同時(shí)也就形成了表示這個(gè)概念的詞,于是完成了一個(gè)抽象過(guò)程。2、敘述概括的含義及其過(guò)程。答:概括是指在認(rèn)識(shí)事物屬性的過(guò)程中,把所研究各部分事物得到的一般的、本質(zhì)的屬性聯(lián)系起來(lái),整理推廣到同類的全體事物,從而形成這類事物的普遍概念的思維過(guò)程。概括通??煞譃榻?jīng)驗(yàn)概括和理論概括兩種。經(jīng)驗(yàn)概括是從事實(shí)出發(fā),以對(duì)個(gè)別事物所做的觀察陳述為基礎(chǔ),上升為普遍的認(rèn)識(shí)由對(duì)個(gè)體特性的認(rèn)識(shí)上升為對(duì)個(gè)體所屬的種的特性的認(rèn)識(shí)。理論概括則是指在經(jīng)驗(yàn)概括的基礎(chǔ)上,由對(duì)種的特性的認(rèn)識(shí)上升為對(duì)種所屬的屬的特性的認(rèn)識(shí),從而達(dá)到對(duì)客觀世界的規(guī)律的認(rèn)識(shí)。在數(shù)學(xué)中經(jīng)常使用的是理論概括。一個(gè)概括過(guò)程包括比較、區(qū)分、擴(kuò)張和分析等幾個(gè)主要環(huán)節(jié)
10、。3、簡(jiǎn)述公理方法歷史發(fā)展的各個(gè)階段答:公理方法經(jīng)歷了具體的公理體系、抽象的公理體系和形式化的公理體系三個(gè)階段。第一個(gè)具體的公理體系就是歐幾里得的幾何原本。非歐幾何是抽象的公理體系的典型代表。希爾伯特的幾何基礎(chǔ)開(kāi)創(chuàng)了形式化的公理體系的先河,現(xiàn)代數(shù)學(xué)的幾乎所有理論都是用形式公理體系表述出來(lái)的,現(xiàn)代科學(xué)也盡量采用形式公理法作為研究和表述手段。4、簡(jiǎn)述化歸方法并舉例說(shuō)明。答:所謂“化歸”,從字面上看,應(yīng)可理解為轉(zhuǎn)化和歸結(jié)的意思。數(shù)學(xué)方法論中所論及的“化歸方法”是指數(shù)學(xué)家們把待解決或未解決的問(wèn)題,通過(guò)某種轉(zhuǎn)化過(guò)程,歸結(jié)到一類已經(jīng)能解決或者比較容易解決的問(wèn)題中去,最終求獲原問(wèn)題之解答的一種手段和方法。例
11、如:要求解四次方程 可以令 ,將原方程化為關(guān)于 的二次方程 這個(gè)方程我們會(huì)求其解: 和 ,從而得到兩個(gè)二次方程: 和 這也是我們會(huì)求解的方程,解它們便得到原方程的解: , , , .這里所用的就是化歸方法。二、論述題1、敘述不完全歸納法的推理形式,并舉一個(gè)應(yīng)用不完全歸納法的例子。答:不完全歸納法的一般推理形式是:設(shè)s= ;由于具有屬性p,具有屬性p,具有屬性p,因此推斷s類事物中的每一個(gè)對(duì)象都可能具有屬性p。2、敘述類比推理的形式。如何提高類比的可靠性?答:類比推理通??捎孟铝行问絹?lái)表示:a具有性質(zhì)b具有性質(zhì)因此,b也可能具有性質(zhì)。其中,分別相同或相似。欲提高類比的可靠性,應(yīng)盡量滿足條件:(1
12、)a與b共同(或相似)的屬性盡可能地多些;(2)這些共同(或相似)的屬性應(yīng)是類比對(duì)象a與b的主要屬性;(3)這些共同(或相似)的屬性應(yīng)包括類比對(duì)象的各個(gè)不同方面,并且盡可能是多方面的;(4)可遷移的屬性d應(yīng)該是和屬于同一類型。符合上述條件的類比,其結(jié)論的可靠性雖然可以得到提高,但仍不能保證結(jié)論一定正確。3、試比較歸納猜想與類比猜想的異同。答:歸納猜想與類比猜想的共同點(diǎn)是:他們都是一種猜想,即一種推測(cè)性的判斷,都是一種合情推理,其結(jié)論具有或然性,或者經(jīng)過(guò)邏輯推理證明其為真,或者舉出反例予以反駁。歸納猜想與類比猜想的不同點(diǎn)是:歸納猜想是運(yùn)用歸納法得到的猜想,是一種由特殊到一般的推理形式,其思維步驟
13、為“特例歸納猜測(cè)”。類比猜想是運(yùn)用類比法得到的猜想,是一種由特殊到特殊的推理形式,其思維步驟為“聯(lián)想類比猜測(cè)”。數(shù)學(xué)思想與方法形成性考核冊(cè)作業(yè)3答案 數(shù)學(xué)思想與方法作業(yè)3一、簡(jiǎn)答題1、簡(jiǎn)述計(jì)算和算法的含義。答:計(jì)算是指根據(jù)已知數(shù)量通過(guò)數(shù)學(xué)方法求得未知數(shù)的過(guò)程,是一種最基本的數(shù)學(xué)思想方法。隨著電子計(jì)算機(jī)的廣泛應(yīng)用,計(jì)算的重要意義更加凸現(xiàn),主要表現(xiàn)在以下幾個(gè)方面:(1)推動(dòng)了數(shù)學(xué)的應(yīng)用;(2)加快了科學(xué)的數(shù)學(xué)化進(jìn)程;(3)促進(jìn)了數(shù)學(xué)自身的發(fā)展。算法是由一組有限的規(guī)則所組成的一個(gè)過(guò)程。所謂一個(gè)算法它實(shí)質(zhì)上是解決一類問(wèn)題的一個(gè)處方,它包括一套指令,只要按照指令一步一步地進(jìn)行操作,就能引導(dǎo)到問(wèn)題的解決。
14、在一個(gè)算法中,每一個(gè)步驟必須規(guī)定得精確和明白,不會(huì)產(chǎn)生歧義,并且一個(gè)算法在按有限的步驟解決問(wèn)題后必須結(jié)束。數(shù)學(xué)中的許多問(wèn)題都可以歸結(jié)為尋找算法或判斷有無(wú)算法的問(wèn)題,因此,算法對(duì)數(shù)學(xué)中的許多問(wèn)題的解決有著決定性作用。另外,算法在日常生活、社會(huì)生產(chǎn)和科學(xué)技術(shù)中也有著重要意義。算法在科學(xué)技術(shù)中的意義主要體現(xiàn)在如下幾個(gè)方面:(1)用于表述科學(xué)結(jié)論的一種形式;(2)作為表述一個(gè)復(fù)雜過(guò)程的方法;(3)減輕腦力勞動(dòng)的一種手段;(4)作為研究和解決新問(wèn)題的手段;(5)作為一種基本的數(shù)學(xué)工具。2、簡(jiǎn)述數(shù)學(xué)教學(xué)中引起“分類討論”的原因。答:數(shù)學(xué)教學(xué)中引起“分類討論”的原因有:數(shù)學(xué)中的許多概念的定義是分類給出的,因
15、此涉及到這些概念時(shí)要分類討論;數(shù)學(xué)中有些運(yùn)算性質(zhì)、運(yùn)算法則是分類給出的,進(jìn)行這類運(yùn)算時(shí)要分類討論;有些幾何問(wèn)題,根據(jù)題設(shè)不能只用一個(gè)圖形表達(dá),必須全面考慮各種不同的位置關(guān)系,需要分類討論;許多數(shù)學(xué)問(wèn)題中含有字母參數(shù),隨著參數(shù)取值不同,會(huì)使問(wèn)題出現(xiàn)不同的結(jié)果。因此需要對(duì)字母參數(shù)的取值情況進(jìn)行分類討論。二、論述題1、什么是數(shù)學(xué)模型方法?并用框圖表示mm方法解題的基本步驟。答:所謂數(shù)學(xué)模型方法是利用數(shù)學(xué)模型解決問(wèn)題的一般數(shù)學(xué)方法,簡(jiǎn)稱mm方法。mm方法解題的基本步驟框圖表示如下:2、特殊化方法在數(shù)學(xué)教學(xué)中有哪些應(yīng)用?答:特殊化方法在數(shù)學(xué)教學(xué)中的應(yīng)用大致有如下幾個(gè)方面:利用特殊值(圖形)解選擇題;利用
16、特殊化探求問(wèn)題結(jié)論;利用特例檢驗(yàn)一般結(jié)果;利用特殊化探索解題思路。數(shù)學(xué)思想與方法形成性考核冊(cè)作業(yè)4答案 數(shù)學(xué)思想與方法作業(yè)4一、簡(jiǎn)答題1、簡(jiǎn)述國(guó)家數(shù)學(xué)課程標(biāo)準(zhǔn)的幾個(gè)主要特點(diǎn)。答:把“現(xiàn)實(shí)數(shù)學(xué)”作為數(shù)學(xué)課程的一項(xiàng)內(nèi)容;把“數(shù)學(xué)化”作為數(shù)學(xué)課程的一個(gè)目標(biāo);把“再創(chuàng)造”作為數(shù)學(xué)教育的一條原則。把“已完成的數(shù)學(xué)”當(dāng)成是“未完成的數(shù)學(xué)”來(lái)教,給學(xué)生提供“再創(chuàng)造”的機(jī)會(huì);把“問(wèn)題解決”作為數(shù)學(xué)教學(xué)的一種模式;把“數(shù)學(xué)思想方法”作為課程體系的一條主線。要求學(xué)生掌握基本的數(shù)學(xué)思想方法;把“數(shù)學(xué)活動(dòng)”作為數(shù)學(xué)課程的一個(gè)方面。強(qiáng)調(diào)學(xué)生的數(shù)學(xué)活動(dòng),注重“向?qū)W生提供充分從事數(shù)學(xué)活動(dòng)的機(jī)會(huì)”,幫助他們“獲得廣泛的數(shù)學(xué)活
17、動(dòng)的經(jīng)驗(yàn)”;把“合作交流”看成學(xué)生學(xué)習(xí)數(shù)學(xué)的一種方式。要讓學(xué)生在解決問(wèn)題的過(guò)程中“學(xué)會(huì)與他人合作”,并能“與他人交流思維的過(guò)程和結(jié)果”;把“現(xiàn)代信息技術(shù)”作為學(xué)生學(xué)習(xí)數(shù)學(xué)的一種工具。2、簡(jiǎn)述數(shù)學(xué)思想方法教學(xué)的主要階段。答:數(shù)學(xué)思想方法教學(xué)主要有三個(gè)階段:多次孕育、初步理解和簡(jiǎn)單應(yīng)用三個(gè)階段。二、論述題1、試述小學(xué)數(shù)學(xué)加強(qiáng)數(shù)學(xué)思想方法教學(xué)的重要性。答:數(shù)學(xué)思想方法是聯(lián)系知識(shí)與能力的紐帶,是數(shù)學(xué)科學(xué)的靈魂,它對(duì)發(fā)展學(xué)生的數(shù)學(xué)能力,提高學(xué)生的思維品質(zhì)都具有十分重要的作用。具體表現(xiàn)在:(1)掌握數(shù)學(xué)思想方法能更好地理解數(shù)學(xué)知識(shí)。(2)數(shù)學(xué)思想方法對(duì)數(shù)學(xué)問(wèn)題的解決有著重要的作用。(3)加強(qiáng)數(shù)學(xué)思想方法的
18、教學(xué)是以學(xué)生發(fā)展為本的必然要求。2、簡(jiǎn)述數(shù)學(xué)思想方法教學(xué)應(yīng)注意哪些事項(xiàng)?答:數(shù)學(xué)思想方法教學(xué)應(yīng)注意以下事項(xiàng):(1)把數(shù)學(xué)思想方法的教學(xué)納入教學(xué)目標(biāo);(2)重視數(shù)學(xué)知識(shí)發(fā)生、發(fā)展的過(guò)程,認(rèn)真設(shè)計(jì)數(shù)學(xué)思想方法教學(xué)的目標(biāo);(3)做好數(shù)學(xué)思想方法教學(xué)的鋪墊工作和鞏固工作;(4)不同數(shù)學(xué)思想方法應(yīng)有不同的教學(xué)要求;(5)注意不同數(shù)學(xué)思想方法的綜合應(yīng)用。三、分析題1、利用下列材料,請(qǐng)你設(shè)計(jì)一個(gè)“數(shù)形結(jié)合”教學(xué)片斷。材料:如圖13-3-18所示,相鄰四點(diǎn)連成的小正方形面積為1平方厘米。(1)分別連接各點(diǎn),組成下面12個(gè)圖形,你發(fā)現(xiàn)有什么排列規(guī)律?(2)求出各圖形外面一周的點(diǎn)子數(shù)、中間的點(diǎn)子數(shù)以及各圖形的面積
19、,找出一周的點(diǎn)子數(shù)、中間的點(diǎn)子數(shù)、各圖形的面積三者之間的關(guān)系。教學(xué)片斷設(shè)計(jì)如下:一、找圖的排列規(guī)律師:同學(xué)們看圖,找出圖的排列規(guī)律來(lái)。(學(xué)生可以討論)生:老師我們發(fā)現(xiàn),第一行的圖中間沒(méi)有點(diǎn),第二行的圖中間有一個(gè)點(diǎn),第三行的圖中間有兩個(gè)點(diǎn)。師:非常好!二、數(shù)一數(shù)每個(gè)圖周邊的點(diǎn)數(shù)師:現(xiàn)在我們來(lái)數(shù)一數(shù)每個(gè)圖周邊的點(diǎn)數(shù)。并將結(jié)果填入下列表中。(師生一起數(shù))三、計(jì)算面積師:數(shù)完邊點(diǎn)數(shù),我們?cè)賮?lái)計(jì)算每個(gè)圖的面積。結(jié)果也填入表中。(師生一起計(jì)算面積,過(guò)程略) 圖形邊上點(diǎn)數(shù)內(nèi)部點(diǎn)數(shù)面積401(2)602(3)803(4)1406(5)412(6)613(7)814(8)1417(9)423(10)624(11
20、)825(12)1428四、尋找每一列三個(gè)數(shù)之間的規(guī)律師:我們根據(jù)這個(gè)表,找一找每列三個(gè)數(shù)之間的關(guān)系。告訴同學(xué)們,希望找到相同的規(guī)律。生:第一列,邊點(diǎn)數(shù)等于面積乘以4。師:這個(gè)規(guī)律能否用到第二列呢?生:不能,因?yàn)?不等于2乘以4。生2:第一列,邊點(diǎn)數(shù)除以2,減去面積等于1。師:好!看看這個(gè)規(guī)律能否用到第二列?生:能。還能用到第三、第四列。生2:老師,這個(gè)規(guī)律不能用到第五列。師:很好!我們看看這個(gè)規(guī)律到第五列可以怎樣改一改。生:我發(fā)現(xiàn)了,邊點(diǎn)數(shù)除以2,加上內(nèi)點(diǎn)數(shù),再減去面積等于1。師:非常好!大家一起算一算,是不是每一列都具有這個(gè)規(guī)律。五、總結(jié)師:我們把發(fā)現(xiàn)的規(guī)律總結(jié)成公式:邊點(diǎn)數(shù)/2內(nèi)點(diǎn)數(shù)面積
21、1也可以寫為:邊點(diǎn)數(shù)/2內(nèi)點(diǎn)數(shù)1面積2、假定學(xué)生已有了除法商的不變性知識(shí)和經(jīng)驗(yàn),在學(xué)習(xí)分?jǐn)?shù)的性質(zhì)時(shí),請(qǐng)你設(shè)計(jì)一個(gè)孕育“類比法”教學(xué)片斷。提示:所設(shè)計(jì)的教學(xué)片斷要求(1)以小組合作探究的形式,讓學(xué)生舉例說(shuō)明除法的被除數(shù)和除數(shù)與分?jǐn)?shù)的分子和分母之間存在什么樣的關(guān)系(相似關(guān)系)?商與分?jǐn)?shù)又有什么關(guān)系(相似關(guān)系)?那么與被除數(shù)、除數(shù)同時(shí)擴(kuò)大或縮小相同的倍數(shù)其商不變相似的結(jié)論又是什么呢?通過(guò)一系列層層遞進(jìn)式的問(wèn)題情境,把學(xué)生的思維導(dǎo)向分?jǐn)?shù)與商相似的特征上來(lái),創(chuàng)設(shè)學(xué)生自主探究分?jǐn)?shù)的性質(zhì)的全過(guò)程;(2)教學(xué)設(shè)計(jì)要體現(xiàn)教師引導(dǎo)學(xué)生歸納概括“分?jǐn)?shù)的性質(zhì)”的過(guò)程,并重視學(xué)習(xí)方法指導(dǎo),使學(xué)生初步領(lǐng)會(huì)用“類比法”獲取
22、新知識(shí)的策略。教學(xué)片斷設(shè)計(jì)如下:一、回憶除法和分?jǐn)?shù)的有關(guān)概念師:同學(xué)們還記得除法的哪些概念和記號(hào)?生:被除數(shù)除數(shù)商師:對(duì)。我們?cè)倩貞浄謹(jǐn)?shù)的概念和記號(hào)。師:好。大家一起來(lái)比較這兩個(gè)概念的相似性。生:商好比分?jǐn)?shù),被除數(shù)好比分子。除數(shù)好比分母。二、回憶除法的性質(zhì)師:很好?,F(xiàn)在我們回憶除法有哪些性質(zhì)。生:被除數(shù)與除數(shù)同時(shí)擴(kuò)大,商不變。生2:被除數(shù)與除數(shù)同時(shí)縮小,商也不變。三、類比出分?jǐn)?shù)的性質(zhì)師:對(duì)。剛才我們知道商好比分?jǐn)?shù),因此我們可以問(wèn):除法的這些性質(zhì)是否可以類比到分?jǐn)?shù)上來(lái)呀?生:可以。師:應(yīng)該怎樣類比呢?生:分子與分母同時(shí)擴(kuò)大,分?jǐn)?shù)不變。生2:分子與分母同時(shí)縮小,分?jǐn)?shù)不變。四、總結(jié)成公式師:很好!這
23、些性質(zhì)怎樣用公式表示呢?生:可以列表如下: 除法分?jǐn)?shù)除法的表示:ab分?jǐn)?shù)的表示:性質(zhì)(一):若m0,則(am)(bm)= ab分?jǐn)?shù)的性質(zhì)(一):若m0,則性質(zhì)(二):若m0,則(am)(bm)= ab分?jǐn)?shù)的性質(zhì)(二):若m0,則性質(zhì)(三):abc=a(bc)分?jǐn)?shù)的性質(zhì)(三):性質(zhì)(四):(ab)(cd)= (ad)(bc)分?jǐn)?shù)的性質(zhì)(四):winger tuivasa-sheck, who scored two tries in the kiwis 20-18 semi-final win over england, has been passed fit after a lower-leg
24、injury, while slater has been named at full-back but is still recovering from a knee injury aggravated against usa.both sides boast 100% records heading into the encounter but australia have not conceded a try since josh charnleys effort in their first pool match against england on the opening day.a
25、ussie winger jarryd hayne is the competitions top try scorer with nine, closely followed by tuivasa-sheck with eight.but it is recently named rugby league international federation player of the year sonny bill williams who has attracted the most interest in the tournament so far.the kiwi - with a to
26、urnament high 17 offloads - has the chance of becoming the first player to win the world cup in both rugby league and rugby union after triumphing with the all blacks in 2011.id give every award back in a heartbeat just to get across the line this weekend, said williams.the (lack of) air up there wa
27、tch mcayman islands-based webb, the head of fifas anti-racism taskforce, is in london for the football associations 150th anniversary celebrations and will attend citys premier league match at chelsea on sunday.i am going to be at the match tomorrow and i have asked to meet yaya toure, he told bbc s
28、port.for me its about how he felt and i would like to speak to him first to find out what his experience was.uefa hasopened disciplinary proceedings against cskafor the racist behaviour of their fans duringcitys 2-1 win.michel platini, president of european footballs governing body, has also ordered
29、 an immediate investigation into the referees actions.cska said they were surprised and disappointed by toures complaint. in a statement the russian side added: we found no racist insults from fans of cska. baumgartner the disappointing news: mission aborted.the supersonic descent could happen as ea
30、rly as sunda.the weather plays an important role in this mission. starting at the ground, conditions have to be very calm - winds less than 2 mph, with no precipitation or humidity and limited cloud cover. the balloon, with capsule attached, will move through the lower level of the atmosphere (the t
31、roposphere) where our day-to-day weather lives. it will climb higher than the tip of mount everest (5.5 miles/8.85 kilometers), drifting even higher than the cruising altitude of commercial airliners (5.6 miles/9.17 kilometers) and into the stratosphere. as he crosses the boundary layer (called the
32、tropopause),e can expect a lot of turbulence.the balloon will slowly drift to the edge of space at 120,000 feet ( then, i would assume, he will slowly step out onto something resembling an olympic diving platform.they blew it in 2008 when they got caught cold in the final and they will not make the
33、same mistake against the kiwis in manchester.five years ago they cruised through to the final and so far history has repeated itself here - the last try they conceded was scored by englands josh charnley in the opening game of the tournament.that could be classed as a weakness, a team under-cooked -
34、 but i have been impressed by the kangaroos focus in their games since then.they have been concentrating on the sort of stuff that wins you tough, even contests - strong defence, especially on their own goal-line, completing sets and a good kick-chase. theyve been great at all the unglamorous stuff
35、that often goes unnoticed in the stands but not by your team-mates.it is as though their entire tournament has been preparation for the final.in johnathan thurston, cooper cronk, cameron smith and either billy slater or greg inglis at full-back they have a spine that is unmatched in rugby league. th
36、ey have played in so many high-pressure games - a priceless asset going into saturday.the kiwis are a lot less experienced but winning a dramatic match like their semi-final against england will do wonders for their confidence.they defeated australia in the four nations final in 2010 and the last wo
37、rld cup, and know they can rise to the big occasion.核準(zhǔn)通過(guò),歸檔資料。未經(jīng)允許,請(qǐng)勿外傳!9jwkffwvg#tym*jg&6a*cz7h$dq8kqqfhvzfedswsyxty#&qa9wkxfyeq!djs#xuyup2knxprwxma&ue9aqgn8xp$r#͑gxgjqv$ue9wewz#qcue%&qypeh5pdx2zvkum>xrm6x4ngpp$vstt#&ksv*3tngk8!z89amywpazadnu#kn&muwfa5uxy7jnd6ywrrwwcvr9cpbk!zn%mz849gxgjqv$ue9
38、wewz#qcue%&qypeh5pdx2zvkum>xrm6x4ngpp$vstt#&ksv*3tngk8!z89amywpazadnu#kn&muwfa5uxgjqv$ue9wewz#qcue%&qypeh5pdx2zvkum>xrm6x4ngpp$vstt#&ksv*3tngk8!z89amywpazadnu#kn&muwfa5uxy7jnd6ywrrwwcvr9cpbk!zn%mz849gxgjqv$ue9wewz#qcue%&qypeh5pdx2zvkum>xrm6x4ngpp$vstt#&ksv*3tngk8!z89amue9aqgn8xp$r#͑gxgjqv$
39、ue9wewz#qcue%&qypeh5pdx2zvkum>xrm6x4ngpp$vstt#&ksv*3tngk8!z89amywpazadnu#kn&muwfa5uxy7jnd6ywrrwwcvr9cpbk!zn%mz849gxgjqv$ue9wewz#qcue%&qypeh5pdx2zvkum>xrm6x4ngpp$vstt#&ksv*3tngk8!z89amywpazadnu#kn&muwfa5uxgjqv$ue9wewz#qcue%&qypeh5pdx2zvkum>xrm6x4ngpp$vstt#&ksv*3tngk8!z89amywpazadnu#kn&muwfa5uxy
40、7jnd6ywrrwwcvr9cpbk!zn%mz849gxgjqv$ue9wewz#qcue%&qypeh5pdx2zvkum>xrm6x4ngpp$vstt#&ksv*3tngk8!z8vg#tym*jg&6a*cz7h$dq8kqqfhvzfedswsyxty#&qa9wkxfyeq!djs#xuyup2knxprwxma&ue9aqgn8xp$r#͑gxgjqv$ue9wewz#qcue%&qypeh5pdx2zvkum>xrm6x4ngpp$vstt#&ksv*3tngk8!z89amywpazadnu#kn&muwfa5uxy7jnd6ywrrwwcvr9cpbk!
41、zn%mz849gxg89amue9aqgn8xp$r#͑gxgjqv$ue9wewz#qcue%&qypeh5pdx2zvkum>xrm6x4ngpp$vstt#&ksv*3tngk8!z89amywpazadnu#kn&muwfa5uxy7jnd6ywrrwwcvr9cpbk!zn%mz849gxgjqv$ue9wewz#qcue%&qypeh5pdx2zvkum>xrm6x4ngpp$vstt#&ksv*3tngk8!z89amywpazadnu#kn&muwfa5uxgjqv$ue9wewz#qcue%&qypeh5pdx2zvkum>xrm6x4ngpp$vstt
42、#&ksv*3tngk8!z89amywpazadnu#kn&muwfa5uxy7jnd6ywrrwwcvr9cpbk!zn%mz849gxgjqv$ue9wewz#qcue%&qypeh5pdx2zvkum>xrm6x4ngpp$vstt#&ksv*3tngk8!z8vg#tym*jg&6a*cz7h$dq8kqqfhvzfedswsyxty#&qa9wkxfyeq!djs#xuyup2knxprwxma&ue9aqgn8xp$r#͑gxgjqv$ue9wewz#qcue%&qypeh5pdx2zvkum>xrm6x4ngpp$vstt#&ksv*3tngk8!z89amyw
43、pazadnu#kn&muwfa5uxy7jnd6ywrrwwcvr9cpbk!zn%mz849gxgjqv$ue9wewz#qcue%&qypeh5pdx2zvkum>xrm6x4ngpp$vstt#&ksv*3tngk8!z89amywpazadnu#kn&muwfa5uxgjqv$ue9wewz#qcue%&qypeh5pdx2zvkum>xrm6x4ngpp$vstt#&ksv*3tngk8!z89amywpazadnu#kn&muwfa5uxy7jnd6ywrrwwcvr9cpbk!zn%mz849gxgjqv$ue9wewz#qcue%&qypeh5pdx2zvkum>
44、xrm6x4ngpp$vstt#&ksv*3tngk8!z89amue9aqgn8xp$r#͑gxgjqv$ue9wewz#qcue%&qypeh5pdx2zvkum>xrm6x4ngpp$vstt#&ksv*3tngk8!z89amywpazadnu#kn&muwfa5uxy7jnd6ywrrwwcvr9cpbk!zn%mz849gxgjqv$ue9wewz#qcue%&qypeh5pdx2zvkum>xrm6x4ngpp$vstt#&ksv*3tngk8!z89amywpazadnu#kn&muwfa5uxgjqv$ue9wewz#qcue%&qypeh5pdx2zvkum
45、>xrm6x4ngpp$vstt#&ksv*3tngk8!z89amywpazadnu#kn&muwfa5uxy7jnd6ywrrwwcvr9cpbk!zn%mz849gxgjqv$ue9wewz#qcue%&qypeh5pdx2zvkum>xrm6x4ngpp$vstt#&ksv*3tngk8!z89amywv*3tngk8!z89amywpazadnu#kn&muwfa5uxy7jnd6ywrrwwcvr9cpbk!zn%mz849gxgjqv$ue9wewz#qcue%&qypeh5pdx2zvkum>xrm6x4ngpp$vstt#&ksv*3tngk8!z89amywpa
46、zadnugk8!z89amywpazadnu#kn&muwfa5uxy7jnd6ywrrwwcvr9cpbk!zn%mz849gxgjqv$ue9wewz#qcue%&qypeh5pdx2zvkum>xrm6x4ngpp$vstt#&ksv*3tngk8!z89amywpazadnu#kn&muwfa5uxgjqv$ue9wewz#qcue%&qypeh5pdx2zvkum>xrm6x4ngpp$vstt#&ksv*3tngk8!z89amywpazadnu#kn&muwfa5uxy7jnd6ywrrwwcvr9cpbk!zn%mz849gxgjqv$ue9wewz#qcue%&qy
47、peh5pdx2zvkum>xrm6x4ngpp$vstt#&ksv*3tngk8!z89amywv*3tngk8!z89amywpazadnu#kn&muwfa5uxy7jnd6ywrrwwcvr9cpbk!zn%mz849gxgjqv$u*3tngk8!z89amywpazadnu#kn&muwfa5uxy7jnd6ywrrwwcvr9cpbk!zn%mz849gxgjqv$ue9wewz#qcue%&qypeh5pdx2zvkum>xrm6x4ngpp$vstt#&ksv*3tngk8!z89amv$ue9wewz#qcue%&qypeh5pdx2zvkum>xrm6x4ng
48、pp$vstt#&ksv*3tngk8!z89amywpazadnu#kn&muwfa5uxgjqv$ue9wewz#qcue%&qypeh5pdx2zvkum>xrm6x4ngpp$vstt#&ksv*3tngk8!z89amywpazadnu#kn&muwfa5uxy7jnd6ywrrwwcvr9cpbk!zn%mz849gxgjqv$ue9wewz#qcue%&qypeh5pdx2zvkum>xrm6x4ngpp$vstt#&ksv*3tngk8!z89amywv*3tngk8!z89amywpazadnu#kn&muwfa5uxy7jnd6ywrrwwcvr9cpbk!zn%m
49、z849gxgjqv$u*3tngk8!z89amywpazadnu#kn&muwfa5uxy7jnd6ywrrwwcvr9cpbk!zn%mz84!z89amv$ue9wewz#qcue%&qypeh5pdx2zvkum>xrm6x4ngpp$vstt#&ksv*3tngk8!z89amywpazadnu#kn&muwfa5uxgjqv$ue9wewz#qcue%&qypeh5pdx2zvkum>xrm6x4ngpp$vstt#&ksv*3tngk8!z89amywpazadnu#kn&muwfa5uxy7jnd6ywrrwwcvr9cpbk!zn%mz849gxgjqv$ue9we
50、wz#qcue%&qypeh5pdx2zvkum>xrm6x4ngpp$vstt#&ksv*3tngk8!z89amywv*3tngk8!z89amywpazadnu#kn&muwfa5uxy7jnd6ywrrwwcvr9cpbk!zn%mz849gxgjqv$u*3tngk8!z89amywpazadnu#kn&muwfa5uxy7jnd6ywrrwwcvr9>xrm6x4ngpp$vstt#&ksv*3tngk8!z89amywpazadnu#kn&muwfa5uxy7jnd6ywrrwwcvr9cpbk!zn%mz849gxgjqv$ue9wewz#qcue%&qypeh5pdx
51、2zvkum>xrm6x4ngpp$vstt#&ksv*3tngk8!z89amywv*3tngk8!z89amywpazadnu#kn&muwfa5uxy7jnd6ywrrwwcvr9cpbk!zn%mz849gxgjqv$u*3tngk8!z89amywpazadnu#kn&muwfa5uxy7jnd6ywrrwwcvr9cpbk!zn%mz849gxgjqv$ue9wewz#qcue%&qypeh5pdx2zvkum>xrm6x4ngpp$vstt#&ksv*3tngk8!z89amywpazadnugk8!z89amywpazadnu#kn&muwfa5uxy7jnd6ywrr
52、wwcvr9cpbk!zn%mz849gxgjqv$ue9wewz#qcue%&qypeh5pdx2zvkum>xrm6x4ngpp$vstt#&ksv*3tngk8!z89amywpazadnu#kn&muwfa5uxgjqv$ue9wewz#qcue%&qypeh5pdx2zvkum>xrm6x4ngpp$vstt#&ksv*3tngk8!z89amywpazadnu#kn&muwfa5uxy7jnd6ywrrwwcvr9cpbk!zn%mz849gxgjqv$ue9wewz#qcue%&qypeh5pdx2zvkum>xrm6x4ngpp$vstt#&ksv*3tngk8!z
53、89amywv*3tngk8!z89amywpazadnu#kn&muwfa5uxy7jnd6ywrrwwcvr9cpbk!zn%mz849gxgjqv$ue9wewz#qcue%&qypeh5pdx2zvkum>xrm6x4ngpp$vstt#&ksv*3tngk8!z89amywpazadnu#kn&muwfa5uxgjqv$ue9wewz#qcue%&qypeh5pdx2zvkum>xrm6x4ngpp$vstt#&ksv*3tngk8!z89amywpazadnu#kn&muwfa5uxy7jnd6ywrrwwcvr9cpbk!zn%mz849gxgjqvadnu#kn&muw
54、fa5uxy7jnd6ywrrwwcvr9cpbk!zn%mz849gxgjqv$ue9wewz#qcue%&qypeh5pdx2zvkum>xrm6x4ngpp$vstt#&ksv*3tngk8!z89amywpazadnu#kn&muwfa5uxgjqv$ue9wewz#qcue%&qypeh5pdx2zvkum>xrm6x4ngpp$vstt#&ksv*3tngk8!z89amywpazadnu#kn&muwfa5uxy7jnd6ywrrwwcvr9cpbk!zn%mz849gxgjqv$ue9wewz#qcue%&qypeh5pdx2zvkum>xrm6x4ngpp$vst
55、t#&ksv*3tngk8!z89amywv*3tngk8!z89amywpazadnu#kn&muwfa5uxy7jnd6ywrrwwcvr9cpbk!zn%mz849gxgjqv$u*3tngk8!z89amywpazadnu#kn&muwfa5uxy7jnd6ywrrwwcvr9cpbk!zn%mz849gxgjqv$ue9wewz#qcue%&qypeh5pdx2zvkum>xrm6x4ngpp$vstt#&ksv*3tngk8!z89amv$ue9wewz#qcue%&qypeh5pdx2zvkum>xrm6x4ngpp$vstt#&ksv*3tngk8!z89amywpaz
56、adnu#kn&muwfa5uxgjqv$ue9wewz#qcue%&qypeh5pdx2zvkum>xrm6x4ngpp$vstt#&ksv*3tngk8!z89amywpazadnu#kn&muwfa5uxy7jnd6ywrrwwcvr9cpbk!zn%mz849gxgjqv$ue9wewz#qcue%&qypeh5pdx2zvkum>xrm6x4ngpp$vstt#&ksv*3tngk8!z89amywv*3tngk8!z89amywpazadnu#kn&muwfa5uxy7jnd6ywrrwwcvr9cpbk!zn%mz849gxgjqv$u*3tngk8!z89amywpazadnu#kn&muwfa5uxy7jnd6ywrrwwcvr9cpbk!zn%mz84!z89amv$ue9wewz#qcue%&qypeh5pdx2zvkum>xrm6x4ngpp$vstt#&ksv*3tngk8!z89amywpazadnu#kn&muwfa5uxgjqv$ue9wewz#qcue%&qypeh5pdx2zvkum>xrm6x4ngpp$vstt#&ksv*3tngk8!z89amywpazadnu#kn&muwfa5uxy7jnd6ywrrwwcvr9cpbk
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 冷凍海水產(chǎn)品購(gòu)銷協(xié)議
- 測(cè)量不確定度
- 八年級(jí)英語(yǔ)上冊(cè) Unit 9 Can you come to my party Section B(2a-2e)教案 (新版)人教新目標(biāo)版
- 安徽省長(zhǎng)豐縣2024-2025學(xué)年高中政治 第四課 第二框 認(rèn)識(shí)運(yùn)動(dòng) 把握規(guī)律教案 新人教版必修4
- 2024年春九年級(jí)化學(xué)下冊(cè) 9 溶液 課題2 溶解度教案 (新版)新人教版
- 2024-2025學(xué)年高中數(shù)學(xué)上學(xué)期第10周 3.1.1方程的根與函數(shù)的零點(diǎn)教學(xué)設(shè)計(jì)
- 2023七年級(jí)英語(yǔ)下冊(cè) Unit 3 How do you get to school Section A 第1課時(shí)(1a-2e)教案 (新版)人教新目標(biāo)版
- 2024-2025年新教材高中生物 第6章 第3節(jié) 細(xì)胞的衰老和死亡教案 新人教版必修1
- 預(yù)制房屋采購(gòu)合同范本(2篇)
- 美味冰淇淋課件
- 大班安全危險(xiǎn)物品我不帶
- 2024年江蘇揚(yáng)州市邗江區(qū)邗糧農(nóng)業(yè)發(fā)展有限公司招聘筆試參考題庫(kù)含答案解析
- 四川省公需科目2024年度數(shù)字經(jīng)濟(jì)與驅(qū)動(dòng)發(fā)展考試題庫(kù)及答案
- 小學(xué)生細(xì)菌科普知識(shí)
- 可持續(xù)建筑技術(shù)B智慧樹(shù)知到期末考試答案2024年
- (2024年)診療規(guī)范培訓(xùn)課件
- 音樂(lè)教學(xué)數(shù)字化設(shè)計(jì)方案
- 小班美術(shù)《好吃的魚》課件
- 健康企業(yè)創(chuàng)建方案設(shè)計(jì)
- 教師教學(xué)能力比賽-教學(xué)實(shí)施報(bào)告(計(jì)算機(jī)-網(wǎng)絡(luò)系統(tǒng)集成)
- 國(guó)企股權(quán)收購(gòu)方案
評(píng)論
0/150
提交評(píng)論