山西省忻州市高考數(shù)學(xué) 專題 函數(shù)概念1復(fù)習(xí)課件_第1頁
山西省忻州市高考數(shù)學(xué) 專題 函數(shù)概念1復(fù)習(xí)課件_第2頁
山西省忻州市高考數(shù)學(xué) 專題 函數(shù)概念1復(fù)習(xí)課件_第3頁
山西省忻州市高考數(shù)學(xué) 專題 函數(shù)概念1復(fù)習(xí)課件_第4頁
山西省忻州市高考數(shù)學(xué) 專題 函數(shù)概念1復(fù)習(xí)課件_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、12問題引入問題引入初中函數(shù)初中函數(shù): : 如何更準確的描述自變量如何更準確的描述自變量x x與因變量與因變量y y之間的關(guān)系呢?之間的關(guān)系呢?65, 322xxyxy21,5xyxy3函數(shù)概念函數(shù)概念1.1.傳統(tǒng)定義:傳統(tǒng)定義: 2.2.近代定義:近代定義:設(shè)設(shè)A A、B B是非空數(shù)集,如果按照某種確定的是非空數(shù)集,如果按照某種確定的對應(yīng)關(guān)系對應(yīng)關(guān)系 ,使對于集合,使對于集合A A中的任意一個數(shù)中的任意一個數(shù) ,在集合,在集合B B中都有唯一確定的數(shù)中都有唯一確定的數(shù) 和它對應(yīng),那么就稱和它對應(yīng),那么就稱 為從為從集合集合A A到集合到集合B B的一個函數(shù),記作的一個函數(shù),記作 其中其中 自

2、變量,自變量, 的取值范圍的取值范圍AA定義域定義域 函數(shù)值,函數(shù)值的取值集合函數(shù)值,函數(shù)值的取值集合 函數(shù)函數(shù)的值域,的值域, BAf:| )(AxxfyxfAxxfy),(xyxBAxxf | )(4函數(shù)概念解讀函數(shù)概念解讀1.A1.A、B B為非空數(shù)集:為非空數(shù)集:定義域(值域)為空集的定義域(值域)為空集的 函數(shù)不存在;函數(shù)不存在; 2.2.符號符號 : 表示表示A A中任意一個數(shù),中任意一個數(shù), 表示對表示對應(yīng)關(guān)系,可以是解析式、表格、圖象,應(yīng)關(guān)系,可以是解析式、表格、圖象, 表示表示B B中與中與 對應(yīng)的數(shù);對應(yīng)的數(shù);3.3.函數(shù)的三要素:函數(shù)的三要素:定義域、值域、對應(yīng)關(guān)系定義域

3、、值域、對應(yīng)關(guān)系. .)(xfx)(xfxf5區(qū)間的概念區(qū)間的概念 設(shè)設(shè) ,我們規(guī)定:,我們規(guī)定:(1 1)滿足不等式)滿足不等式 的實數(shù)的實數(shù) 的集合叫做閉區(qū)間,記的集合叫做閉區(qū)間,記作作 . .(2 2)滿足不等式滿足不等式 的實數(shù)的實數(shù) 的集合叫做開區(qū)間,記的集合叫做開區(qū)間,記作作 . .(3 3)滿足不等式滿足不等式 的實數(shù)的實數(shù) 的集合叫做半的集合叫做半開半閉區(qū)間,記作開半閉區(qū)間,記作 . .(4 4)實數(shù)集)實數(shù)集R R可以表示為可以表示為 , 可以分別表示為可以分別表示為bxabxbxaxax,baRba且,baxxxbxa),(babxabxa或),(,(),baba),(,(

4、),(),bbaa6典例解析典例解析例例1.1.求下列函數(shù)的定義域和值域:求下列函數(shù)的定義域和值域: (1 1) (2 2) 312xxy1xy7典例解析典例解析例例2.2.(1 1)集合)集合 用區(qū)間表示用區(qū)間表示為為_._. (2 2)函數(shù))函數(shù) 的的定義域為定義域為_. _. 0) 1(32211xxxxy251 |xxx或8典例解析典例解析例例3.3.已知函數(shù)已知函數(shù) , , 求求 , . . 11)(xxf2)(xxg)2(),2(),2(),2(gfffgf)(),3(),2(),2(xgfxfggfg9典例解析典例解析例例4.4.判斷下列對應(yīng)是否為函數(shù)判斷下列對應(yīng)是否為函數(shù): : (1) (1)(2 2) , 對任意對任意 (3 3) ,對任意,對任意 RBRyxyxA,| ),(yxyxAyx),( ,),(NBARxxxx, 0,2|3|,xxAx10小結(jié)小結(jié)1.1.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論