數(shù)學(xué)分析多元函數(shù)的極限與連續(xù)(3)課件_第1頁(yè)
數(shù)學(xué)分析多元函數(shù)的極限與連續(xù)(3)課件_第2頁(yè)
數(shù)學(xué)分析多元函數(shù)的極限與連續(xù)(3)課件_第3頁(yè)
數(shù)學(xué)分析多元函數(shù)的極限與連續(xù)(3)課件_第4頁(yè)
數(shù)學(xué)分析多元函數(shù)的極限與連續(xù)(3)課件_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、數(shù)學(xué)分析多元函數(shù)的極限與連續(xù)(3)第十六章第十六章多元函數(shù)的極限與連續(xù)多元函數(shù)的極限與連續(xù)數(shù)學(xué)分析多元函數(shù)的極限與連續(xù)(3)1 平面點(diǎn)集與多元函數(shù)數(shù)學(xué)分析多元函數(shù)的極限與連續(xù)(3) 設(shè)設(shè)),(000yxP是是xoy平平面面上上的的一一個(gè)個(gè)點(diǎn)點(diǎn), 是是某某一一正正數(shù)數(shù),與與點(diǎn)點(diǎn)),(000yxP距距離離小小于于 的的點(diǎn)點(diǎn)),(yxP的的全全體體,稱稱為為點(diǎn)點(diǎn)0P的的 鄰鄰域域,記記為為),(0 PU,0P ),(0 PU |0PPP .)()(| ),(2020 yyxxyx 數(shù)學(xué)分析多元函數(shù)的極限與連續(xù)(3)(2)區(qū)域)區(qū)域.)(的的內(nèi)內(nèi)點(diǎn)點(diǎn)為為則則稱稱,的的某某一一鄰鄰域域一一個(gè)個(gè)點(diǎn)點(diǎn)如如果

2、果存存在在點(diǎn)點(diǎn)是是平平面面上上的的是是平平面面上上的的一一個(gè)個(gè)點(diǎn)點(diǎn)集集,設(shè)設(shè)EPEPUPPE .EE 的的內(nèi)內(nèi)點(diǎn)點(diǎn)屬屬于于EP .為為開開集集則則稱稱的的點(diǎn)點(diǎn)都都是是內(nèi)內(nèi)點(diǎn)點(diǎn),如如果果點(diǎn)點(diǎn)集集EE41),(221 yxyxE例如,例如,即為開集即為開集數(shù)學(xué)分析多元函數(shù)的極限與連續(xù)(3)的邊界點(diǎn)的邊界點(diǎn)為為),則稱),則稱可以不屬于可以不屬于,也,也本身可以屬于本身可以屬于的點(diǎn)(點(diǎn)的點(diǎn)(點(diǎn)也有不屬于也有不屬于的點(diǎn),的點(diǎn),于于的任一個(gè)鄰域內(nèi)既有屬的任一個(gè)鄰域內(nèi)既有屬如果點(diǎn)如果點(diǎn)EPEEPEEPEP 的的邊邊界界的的邊邊界界點(diǎn)點(diǎn)的的全全體體稱稱為為 EE是連通的是連通的開集開集,則稱,則稱且該折線上

3、的點(diǎn)都屬于且該折線上的點(diǎn)都屬于連結(jié)起來(lái),連結(jié)起來(lái),任何兩點(diǎn),都可用折線任何兩點(diǎn),都可用折線內(nèi)內(nèi)是開集如果對(duì)于是開集如果對(duì)于設(shè)設(shè)DDDD 數(shù)學(xué)分析多元函數(shù)的極限與連續(xù)(3)連通的開集稱為區(qū)域或開區(qū)域連通的開集稱為區(qū)域或開區(qū)域.41| ),(22 yxyx例如,例如,xyo開開區(qū)區(qū)域域連連同同它它的的邊邊界界一一起起稱稱為為閉閉區(qū)區(qū)域域.41| ),(22 yxyx例如,例如,xyo數(shù)學(xué)分析多元函數(shù)的極限與連續(xù)(3)0| ),( yxyx有界閉區(qū)域;有界閉區(qū)域;無(wú)界開區(qū)域無(wú)界開區(qū)域xyo例如,例如,則則稱稱為為無(wú)無(wú)界界點(diǎn)點(diǎn)集集為為有有界界點(diǎn)點(diǎn)集集,否否成成立立,則則稱稱對(duì)對(duì)一一切切即即,不不超超過(guò)

4、過(guò)間間的的距距離離與與某某一一定定點(diǎn)點(diǎn),使使一一切切點(diǎn)點(diǎn)如如果果存存在在正正數(shù)數(shù)對(duì)對(duì)于于點(diǎn)點(diǎn)集集EEPKAPKAPAEPKE 41| ),(22 yxyx數(shù)學(xué)分析多元函數(shù)的極限與連續(xù)(3)(3)聚點(diǎn))聚點(diǎn) 設(shè)設(shè) E 是是平平面面上上的的一一個(gè)個(gè)點(diǎn)點(diǎn)集集,P 是是平平面面上上的的一一個(gè)個(gè)點(diǎn)點(diǎn),如如果果點(diǎn)點(diǎn) P 的的任任何何一一個(gè)個(gè)鄰鄰域域內(nèi)內(nèi)總總有有無(wú)無(wú)限限多多個(gè)個(gè)點(diǎn)點(diǎn)屬屬于于點(diǎn)點(diǎn)集集 E,則則稱稱 P 為為 E 的的聚聚點(diǎn)點(diǎn). 內(nèi)點(diǎn)一定是聚點(diǎn);內(nèi)點(diǎn)一定是聚點(diǎn); 邊界點(diǎn)可能是聚點(diǎn);邊界點(diǎn)可能是聚點(diǎn);10| ),(22 yxyx例例(0,0)既是既是邊界點(diǎn)也是聚點(diǎn)邊界點(diǎn)也是聚點(diǎn)數(shù)學(xué)分析多元函數(shù)的極

5、限與連續(xù)(3) 點(diǎn)集點(diǎn)集E的聚點(diǎn)可以屬于的聚點(diǎn)可以屬于E,也可以不屬于,也可以不屬于E10| ),(22 yxyx例如例如,(0,0) 是聚點(diǎn)但不屬于集合是聚點(diǎn)但不屬于集合1| ),(22 yxyx例如例如,邊界上的點(diǎn)都是聚點(diǎn)也都屬于集合邊界上的點(diǎn)都是聚點(diǎn)也都屬于集合數(shù)學(xué)分析多元函數(shù)的極限與連續(xù)(3)(4)n維空間維空間 設(shè)設(shè)n為取定的一個(gè)自然數(shù),我們稱為取定的一個(gè)自然數(shù),我們稱n元數(shù)組元數(shù)組),(21nxxx的全體為的全體為n維空間,而每個(gè)維空間,而每個(gè)n元數(shù)元數(shù)組組),(21nxxx稱為稱為n維空間中的一個(gè)點(diǎn),數(shù)維空間中的一個(gè)點(diǎn),數(shù)ix稱為該點(diǎn)的第稱為該點(diǎn)的第i個(gè)坐標(biāo)個(gè)坐標(biāo). n維空間的記

6、號(hào)為維空間的記號(hào)為;nR n維空間中兩點(diǎn)間距離公式維空間中兩點(diǎn)間距離公式 數(shù)學(xué)分析多元函數(shù)的極限與連續(xù)(3),(21nxxxP),(21nyyyQ.)()()(|2222211nnxyxyxyPQ n維空間中鄰域、區(qū)域等概念維空間中鄰域、區(qū)域等概念 nRPPPPPU ,|),(00 特殊地當(dāng)特殊地當(dāng) 時(shí),便為數(shù)軸、平面、時(shí),便為數(shù)軸、平面、空間兩點(diǎn)間的距離空間兩點(diǎn)間的距離3, 2, 1 n內(nèi)點(diǎn)、邊界點(diǎn)、區(qū)域、聚點(diǎn)等概念也可定義內(nèi)點(diǎn)、邊界點(diǎn)、區(qū)域、聚點(diǎn)等概念也可定義鄰域:鄰域:設(shè)兩點(diǎn)為設(shè)兩點(diǎn)為數(shù)學(xué)分析多元函數(shù)的極限與連續(xù)(3) 設(shè)設(shè)D是平面上的一個(gè)點(diǎn)集,如果對(duì)于每個(gè)點(diǎn)是平面上的一個(gè)點(diǎn)集,如果對(duì)于

7、每個(gè)點(diǎn)DyxP ),(,變量,變量z按照一定的法則總有確定的按照一定的法則總有確定的值和它對(duì)應(yīng),則稱值和它對(duì)應(yīng),則稱z是變量是變量yx,的二元函數(shù),記為的二元函數(shù),記為),(yxfz (或記為(或記為)(Pfz ). .(5)二元函數(shù)的定義)二元函數(shù)的定義當(dāng)當(dāng)2 n時(shí)時(shí),n元元函函數(shù)數(shù)統(tǒng)統(tǒng)稱稱為為多多元元函函數(shù)數(shù). 多多元元函函數(shù)數(shù)中中同同樣樣有有定定義義域域、值值域域、自自變變量量、因因變變量量等等概概念念.類似地可定義三元及三元以上函數(shù)類似地可定義三元及三元以上函數(shù)數(shù)學(xué)分析多元函數(shù)的極限與連續(xù)(3)例例1 1 求求 的定義域的定義域222)3arcsin(),(yxyxyxf 解解 013

8、222yxyx 22242yxyx所求定義域?yàn)樗蠖x域?yàn)?, 42| ),(222yxyxyxD 數(shù)學(xué)分析多元函數(shù)的極限與連續(xù)(3)(6) 二元函數(shù)二元函數(shù) 的圖形的圖形),(yxfz 設(shè)設(shè)函函數(shù)數(shù)),(yxfz 的的定定義義域域?yàn)闉镈,對(duì)對(duì)于于任任意意取取定定的的DyxP ),(,對(duì)對(duì)應(yīng)應(yīng)的的函函數(shù)數(shù)值值為為),(yxfz ,這這樣樣,以以x為為橫橫坐坐標(biāo)標(biāo)、y為為縱縱坐坐標(biāo)標(biāo)、z為為豎豎坐坐標(biāo)標(biāo)在在空空間間就就確確定定一一點(diǎn)點(diǎn)),(zyxM,當(dāng)當(dāng)x取取遍遍D上上一一切切點(diǎn)點(diǎn)時(shí)時(shí),得得一一個(gè)個(gè)空空間間點(diǎn)點(diǎn)集集),(),(| ),(Dyxyxfzzyx ,這這個(gè)個(gè)點(diǎn)點(diǎn)集集稱稱為為二二元元函函數(shù)數(shù)的的圖圖形形.(如下頁(yè)圖)(如下頁(yè)圖)數(shù)學(xué)分析多元函數(shù)的極限與連續(xù)(3)二元函數(shù)的圖形

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論