版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、翻譯部分英文原文mining subsidence of inclined strata coal mineabstract the mining subsidence and strata movement ofn-coal mine area is investigated by means of analysis of practical measurement data, modeling experiment and numeric analyzing. similitude model is established by modeling theory, and numeric a
2、nalysis is implemented by 2d- program. the results show that the subsidence curve and horizontal movement curve are not continuous and smooth, but are unsymmetrical with some variation caused by geological conditions. the subsidence parameter, hori-zontal movement parameter, top subsidence extent an
3、d other parameters used to predict ground move-ment are obtained. these parameters are consonant with the practical values of local mining conditions and helpful to mining engineering. it has been proven by practice that the research achievements are beneficial to ground movement control and subside
4、nce disaster prediction. 1introduction mining subsidence has been a practical problem for a long time, it relates to the serial movements, deformation and discontinuous destruction of the rock layer and ground surface. there is no thorough solution to the problem because of complex geological condit
5、ions and diverse mining methods. after excavation, the balance kept by the original stresss conditions is broken. then rock layers will lose steadiness and begin to move, deform or be discontinuously destroyed. as for the coal stratum under a building, railway and water bodies, it appears a layer fo
6、r particular concern. the ground movement may cause the building damage, the railway and other ground heave. so it is important to investigate the mining subsidence problem. the behavior of ground movement inn-coal mine (inclined coal strata) is studied by measurement, experiment and numeric analyzi
7、ng in this paper.2normal behavior of mining subsidencethe stratum in the new condition after movement caused by mining excavation can be divided into three zones by destruction degree,i.e.,caving zone, fractured zone and curving subsidence zone. rock in caving zone contains fracture, fragmentation a
8、nd rock blocks dropped down. there are emerging large bending deformation, vertical and parallel fractures with stratum in fractured zone. continuous movement appears in curving subsidence zone, and the deformation is elastic and plastic one since it isnt beyond the destructive intension. ground mov
9、ement caused by mining is influenced by various geographic and mining factors. so the ground movement and destruction models are different for different mining depth, mining method and coal stratum situation. the ground movement and deformation are continuous and of obvious regularity forthe situati
10、on with large ratio of depth to thickness. otherwise, they would be discontinuous and irregular. movement basin and diverse displacement or deformation curves of horizontal coal strata show fine regularity. as for inclined coal layer(i.e., n-mine), the largest displacement point will move towards th
11、e downhill but not in the middle of movement basin. subsidence curve and horizontal movement are unsymmetrical. usually, long wall mining of the strike working method is widely adopted, the ground subsidence and rock layer movement gradually developing along the long profile of coal strata, at last
12、will be kept stable. meanwhile the rule of ground movement is obvious. there is no obvious rule for the ground movement along transverse profile, it dependson the geological condition of a specific mine. the research results based on the transverse profile of coal strata are described in following p
13、aragraphs.3simulation material model experiment3.1modeling ratiothe constants including the modeling ratio of geometry, density, intensity and time need to be defined for modeling.3.1.1structural similitude ratio. the stratums thickness, mining depth and space conformed to exact proportion between m
14、odel and prototype are necessary for modeling experiment. in simulation of the subsidence, the structural similitude ratio is an essential parameter. usually, the larger the structural similitude ratio, the more precise the results. the structural similitude ratio should be theoretically large enoug
15、h, but it is difficult to operate in fact. it requires not only much expense, but also strict conditions. however, the experiment accuracy would not be affected by use of an adequate structural similitude ratio and adoption of the suitable measure and means. considering the practical conditions in n
16、-coal mine as shown in table 1, model experiment would mimic the area with 500m deep. if structural simili tude ratio were little, the model would be too big to operate, so the structural similitude ratio chosen is 1400 (cl).table 1rocks mechanical parameters inn-minestratumyoungs modulus(/mpa)poiss
17、ons ratiocohesion(/mpa)internal friction angle/(°)uniaxial tension strength/mpadensity / (t·m-3)tj11064950.342314.5133.42.3297-2.60tf1996390.306016.8122.92.0685-2.45tf21046930.333314.5133.41.9554-2.55pl814774.50.295020.5034.20.7047-2.25pm1120557.50.272714.5133.43.218-2.60 3.1.2dynamic simi
18、litude ratio.dynamic similarity rule requires that forces conform to the exact proportion between model and prototype. in experiment, characteristic parameter reflects forces including density, boundary stress and intensity. modeling material contains sand, gypsum and lime. the adopted density ratio
19、 is as follows. cr= h/ = h/ =1.667, in which,cris density ratio;r1h,no.1 layers density in prototype andr1m, no.1 layers density in model.3.1.3excavation time ratio. for the limit of experiment condition, the time proportion between model and prototype is adopted by kinematics similarity rule under
20、gravity, = = = 20.3.2modeling materialpresently, the modeling material commonly used includes gypsum mixture, lime mixture and synthetic gum mixture,etc.mixture contains supporting and clotting material. normally, sand, mica powder and talcum powder are used as supporting material while gypsum and g
21、ypsum-lime used as clotting material. considering material selecting, transporting, expenditure and availability, sand is applied as supporting material and gypsum-lime as clotting material. furthermore, talcum powder layers are laid to mimicthe effect between layers.intensity, = /( *) = /666.7; mod
22、el frame, length×width×height=1.5m×0.3m×1.2m; modeling range, 500m depth (from ground surface to coal layer), 120m width (along coal layer), 600m length (across coal layer). because coal layer is too thin, it is enlarged to 5 multiple thickness. for the measurement of displacemen
23、t and deformation, 14 micrometers are fixed to the top of model. 7 of them (no.1no.7) are to measure vertical displacement, and others (no. 8 no. 14) are to measure horizontal displacement (fig.1).fig.1strata movement after modeling excavationfig.2restraint condition and ground movement in numeric m
24、odel3.3excavationthe top of model is a free surface where is no any load. during excavation mimicking, 4 groups of excavation would be executed, and 4 excavation steps are put into practice in each group. the excavating step is 2 centimeters long, and the interval between 2 steps is 2 hours. it take
25、s 2 days for 2 groups, thus obvious deformation could be measured. after finished excavation of upper coal layer, lower coal stratum would be excavated continually. some curves are drawn as indicated in fig.3 according to the simulation material model.(a)-inclined deformation curve; (b)-subsidence c
26、urve; (c)-horizontal deformation curve; (d)-displacement curvefig.3simulation curves of material model4numeric analysisrock has both elastic and plastic properties. there are two kinds of force according to elastic mechanics. one is plane stress, and the other is plane strain. in fact, the same resu
27、lt for stress can be obtained whether considering strain or not. the numeric analysis in this paper is made for stress analysis. furthermore, stress analysis is done along the same transverse profile in the simulation material model, thus 2d finite element method(fem) program is sufficient. 2d- is a
28、 numeric analyzing system which supports the rock and soil designing, by which the mechanics status and characters of objects can be illuminated. for plotting cells, quadrangle cell is used morelargely than triangle cell. cells in coal strata and rock strata near coal one are densely plotted. the ce
29、lls of rock strata far from coal strata are sparse. strata with thin thickness are divided into cells densely. in fem modeling, mohr-coulomb mechanics model is established to analyze stress situation along the transverse profile. the deformation situation of proof and floor rock layers in the subsid
30、ence basin of numeric model is shown in fig.2. it is seen in fig.4 and fig.5 that the effect of beginning excavation on subsidence and ground movement is slightly. the destruction degree figure indicated in fig.7 is drawn with the 2d- program. after all excavation steps finished, the effect of shear
31、ing strength on ground movement is serious as indicated in fig.8. stress concentrates on uphill and downhill coal wall. various stresses not listed here for limited space can be calculated with fem program, such as maximal and minimal stress,etc.fig.4x-stress after first excavation stepfig.5y-stress
32、 after first excavation stepfig.6destruction degree after all excavationfig.7shearing strength after first excavationfig.8destruction degree after first excavation stepfig.9shearing strength after all excavation step5conclusionthe results of modeling experiment and numeric analyzing show that the su
33、bsidence curve and horizontal movement curve are not continuous and smooth, but are unsymmetrical with some variation caused by geological conditions. the subsidence parameter, horizontal movement parameter, top subsidence extent and other parameters used to predict ground movement are obtained. sub
34、sidence coefficient is 2·0, horizontal displacement coefficient is 1·22, largest vertical displacement is 158mm, height of caving zone is 45.6m, height of fractured zone is 168m, and width of ground movement effecting range is 600m over the excavation area. these parameters are consonant w
35、ith the practical values of local mining conditions and helpful to mining engineering. it has been proven by practice that the research achievements are beneficial to ground movement control and subsidence disaster prediction.中文譯文傾斜煤層礦山開采沉陷分析摘要由實際的測量數(shù)據(jù)分析調(diào)查某煤礦區(qū)域的采礦沉陷和煤層運動并進行模擬實驗和數(shù)值分析。類似模型利用模擬理論建立,并利用
36、2d-實現(xiàn)數(shù)值分析。結(jié)果展現(xiàn)沉陷曲線和水平線運動曲線并不連續(xù)和平滑,由于地質(zhì)條件的影響,其變化是不對稱的。通過分析得出沉陷參數(shù)、水平移動參數(shù)、頂部下沉量和其他用于預(yù)測地面移動的參數(shù)。這些參數(shù)值與當?shù)夭傻V條件一致,有助于開采作業(yè)。實踐證明,研究結(jié)果也表明在預(yù)測地面移動控制和沉陷災(zāi)害預(yù)計研究中該理論是成功的。1.簡介采煤沉陷中有一個很實際的問題存在了很長的一段時間,它就是關(guān)于巖石的毀壞和不連續(xù)的破壞分層堆積與地表連續(xù)的運動之間的關(guān)系。因為復(fù)雜的地質(zhì)學(xué)情況和不同的采煤方法沒有對應(yīng)的完全解決問題的辦法。在煤層采掘之后,最初形成的壓力保持平衡的情況就被破壞了。然后巖石破碎帶將會失去穩(wěn)定并開始不連續(xù)地移動
37、或進一步的變形和破壞。而煤層位于建筑物、鐵路和水體之下時,該破碎帶就必須特別關(guān)注。從而引發(fā)的地表移動可能引起建筑物損害以及鐵路和其他的地面構(gòu)筑物的損壞。因此它是采煤沉陷中重點調(diào)查的問題。地表移動行為在某煤礦(煤層傾向)中的測量、實驗和數(shù)值分析都將在本文之中學(xué)習(xí)到。2.常態(tài)下的采煤沉陷采煤掘進之后在新的受力情況下地層可以按破壞程度被區(qū)分為三個地域,也就是,凹陷地域,破碎地域和彎曲的沉陷地域。巖石在凹陷地域方面包含冒落帶,斷裂帶和整體移動帶。在破碎地域中首次出現(xiàn)大的彎曲毀壞地層及垂直和平行破碎的地層。地層連續(xù)運動出現(xiàn)在彎曲的沉陷地域,而自其后,破壞分為柔性的和塑性的(不超過毀滅性張力程度)。采煤引
38、起的地層運動被各種不同的地理和采礦因素所影響。因此地層的運動和破壞模型在不同的采煤深度,采煤方法和煤層所處地層情形都是不同的。當厚度和深度比較大時,會發(fā)現(xiàn)地層的運動和破壞是連續(xù)和有明顯規(guī)律性的,否則,它們會是不連續(xù)和不規(guī)則的。水平煤層表現(xiàn)的沉陷盆地和不同的變化或破壞曲線都表現(xiàn)出規(guī)律性。至于在煤層傾向?qū)?(也就是,n煤) ,最大的下沉點將會向下山移動但是不會在移動盆地中央出現(xiàn)。沉陷曲線和水平線運動是非對稱的。通常,只需要較少工作量的長墻壁采煤法被廣泛地采用,地層的沉陷和巖石逐層堆積都沿著煤層的長壁方向發(fā)展,最后將保持穩(wěn)定,與此同時地層的運動規(guī)則也是明顯的。沿著橫斷面的地層運動沒有明顯的規(guī)則, 它
39、仰賴特定煤層的地質(zhì)學(xué)情況。以煤層的橫斷面為基礎(chǔ)的研究結(jié)果描述見后。3.相似模擬實驗3.1建模比建模比就是包括幾何學(xué)、密度、強度和時間的對比的常數(shù)。3.1.1地層的結(jié)構(gòu)類比模擬實驗中地層厚度、采礦深度和空間在模型和原型之間必需要遵照精確的比例。在沉陷的模擬中,結(jié)構(gòu)的類似比是一個必要的參數(shù)。 通常,比較大的結(jié)構(gòu)類似比能帶來更精確的結(jié)果。結(jié)構(gòu)的類似比應(yīng)該是可以做到和理論一樣大,但在實際操作上是很困難的。它不僅需要很多的費用 ,而且需要很嚴謹細致的研究環(huán)境。然而,實驗準確性要被使用適當?shù)慕Y(jié)構(gòu)類似比影響從而影響適當?shù)某叽绾头椒ǖ牟捎谩T谌绫?1 所顯示的,某煤礦考慮實際的情況,樣板的實驗會深入地下500
40、m的模仿區(qū)域。如果結(jié)構(gòu)的類似比比較小,模型就會太大而無法操作, 因此選擇的結(jié)構(gòu)類似比是 1 400 。 (cl)表1 煤層中巖石的機械參數(shù) 地層 youngs率(mpa)poissons比結(jié)合力(mpa)內(nèi)摩擦角(°)單橋張力(mpa)密度 (t·m-3)tj11064950.342314.5133.42.3297-2.60tf1996390.306016.8122.92.0685-2.45tf21046930.333314.5133.41.9554-2.55pl814774.50.295020.5034.20.7047-2.25pm1120557.50.272714.51
41、33.43.218-2.603.1.2動態(tài)類似比動態(tài)類似的規(guī)則也是需要完全遵照模型和原型之間的精確比例。在實驗方面,特性參數(shù)包括密度、邊界壓迫力和強度。建模材料包含沙子、石膏和石灰。 采用的密度比依下列各項cr= h/ = h/ =1.667,式中 cr是密度比; h,在原型和中的1號層的密度及在模型中的1號層的密度。3.1.3掘進時間比.實驗期間,模型和原型之間的時間比例界限確定我們采用地心引力在運動學(xué)上的類似規(guī)則, = = = 20.3.2建模材料目前,普遍采用的建模材料包括石膏混合,石灰混合和合成物質(zhì)樹膠混合等.混合包含輔助和凝結(jié)材料。一般的,當石膏和石膏-石灰當做凝結(jié)材料用的時候 ,
42、沙子、云母粉和滑石粉被同樣地用做輔助材料??紤]到材料的選擇,運送,開支和有效性,一般用沙子當做輔助材料,石膏-石灰當做凝結(jié)材料。此外,滑石粉層被放置在層之間來模仿實際效果。強度: = /( *) = /666.7;樣板的體積:長度 × 寬度 × 高度=1.5m× 0.3m× 1.2m;建模范圍:深度500m (從地表到煤層)、寬度 120m ( 向前煤層)、長度600m ( 橫過煤層)。由于煤層較薄,模型多樣性結(jié)構(gòu)層的厚度被擴大了5倍。對地表移動和破壞的測量中,14個測微計被放置到模型的頂端。它們中的 7 個(no.1no.7)用于測量垂直移動,而其他
43、(8 號14 號) 要測量水平線移動,如圖1。圖1模型掘進后的層移動圖2數(shù)字模型中的地表移動和抑制情況3.3掘進模型的頂端是一個不承載任何負荷的自由表面。在模擬掘進的時候,運行4個掘進頭,而且4個層面上的挖掘是同時進行的。一次掘進2厘米,每兩次掘進之間間隔2小時。 2組如此操作進行2天,就可以測量掘進造成的明顯破壞。在位于上面的煤層完成挖掘之后,繼續(xù)挖掘比較低的煤層。依照模擬材料模型的記錄的變化曲線如圖3所示。(a)傾向破壞曲線;(b)沉陷曲線;(c)水平破壞曲線; (d)移動曲線圖3模型模擬曲線4.數(shù)值分析巖石既有緩沖帶也有塑性帶,緩沖帶受2種力的作用:一是水平壓力,另一個是水平張力。實際上
44、,相同的結(jié)果的情況下都是考慮壓力如何緩解而不考慮張力。 本文只對有效壓力作數(shù)值分析。此外,在模擬材料模型中做相同的橫斷面來描繪壓力分析,用 2d 有限元的方法 (fem) 能進行充分計算。2d-是對巖石和土壤設(shè)計的數(shù)值分析系統(tǒng), 通過它有助于分析對象的力學(xué)狀態(tài)特點。為計算單元,四角形單元比三角形單元具有更大量信息。在煤附近的煤層和巖石層中的單元密度都可以計算。離煤層很遠的巖石層的單元身少。有很薄的層按密度劃分單位。在 fem 建模中,mohr- 庫侖技巧模型沿著橫斷面建立壓力分析,圖2數(shù)值模型顯示沉陷盆地煤層的破壞情況和地層巖石的情況。圖4和圖5表現(xiàn)出掘進初期的沉陷效果和地表運動的細微變化。破
45、壞程度用2d-模型描繪如圖7所示。在所有的掘進步驟完成之后,外力對地層運動的影響如圖8所示。煤壁上下壓力都集中在此。各種不同的壓力不在這里列出,因為有限空間能用fem計算,例如:最大的和最小的壓力等圖4掘進第一步后模型x軸向的壓力圖5掘進第一步后模型y軸向的壓力圖6 所有掘進步驟完成后模型的破壞程度圖7第一次掘進后模型所受的剪力圖8第一次掘進步驟完成后模型的破壞程度圖9所有掘進步驟完成后模型所受的剪力5結(jié)論通過建模的實驗結(jié)果和數(shù)值的分析表現(xiàn)出的沉陷曲線和水平移動曲線是不連續(xù)和不平滑的, 但在地表引起了一些非對稱的變化。獲得的沉陷參數(shù),水平面移動參數(shù),頂端沉陷范圍和其他的參數(shù)在過去一直用于預(yù)計地
46、層的運動。(其中沉陷系數(shù)是2.0,水平面移動系數(shù)是1.22,最大的垂直移動是158mm,凹陷地域的高差45.6m,破碎的地域高差是168m,位于掘進區(qū)域的地表移動變形寬度是600m。)這些參數(shù)值與當?shù)夭傻V條件一致,有助于開采作業(yè)。實踐證明,研究結(jié)果也表明在預(yù)測地面移動控制和沉陷災(zāi)害預(yù)計研究中該理論是成功的。 蒂肀羅薀蒁螀膀蒆蒀袂羃莂葿羄膈羋薈蚄羈膃薇螆膇蒂薆罿罿蒈薆肁芅莄薅螁肈芀薄袃芃膆薃羅肆蒅薂蚅芁莁蟻螇肄芇蝕衿芀膃蝕肂肅薁蠆螁羅蕆蚈襖膁莃蚇羆羄艿蚆蚆腿膅螅螈羂蒄螄袀膇莀螄羃羀芆螃螂膆節(jié)螂裊聿薀螁羇芄蒆螀聿肇莂蝿蝿節(jié)羋莆袁肅膄蒅羃芁蒃蒄蚃肅荿蒃裊艿蒞蒂羈膂芁蒂肀羅薀蒁螀膀蒆蒀袂羃莂葿羄膈羋薈
47、蚄羈膃薇螆膇蒂薆罿罿蒈薆肁芅莄薅螁肈芀薄袃芃膆薃羅肆蒅薂蚅芁莁蟻螇肄芇蝕衿芀膃蝕肂肅薁蠆螁羅蕆蚈襖膁莃蚇羆羄艿蚆蚆腿膅螅螈羂蒄螄袀膇莀螄羃羀芆螃螂膆節(jié)螂裊聿薀螁羇芄蒆螀聿肇莂蝿蝿節(jié)羋莆袁肅膄蒅羃芁蒃蒄蚃肅荿蒃裊艿蒞蒂羈膂芁蒂肀羅薀蒁螀膀蒆蒀袂羃莂葿羄膈羋薈蚄羈膃薇螆膇蒂薆罿罿蒈薆肁芅莄薅螁肈芀薄袃芃膆薃羅肆蒅薂蚅芁莁蟻螇肄芇蝕衿芀膃蝕肂肅薁蠆螁羅蕆蚈襖膁莃蚇羆羄艿蚆蚆腿膅螅螈羂蒄螄袀膇莀螄羃羀芆螃螂膆節(jié)螂裊聿薀螁羇芄蒆螀聿肇莂蝿蝿節(jié)羋莆袁肅膄蒅羃芁蒃蒄蚃肅荿蒃裊艿蒞蒂羈膂芁蒂肀羅薀蒁螀膀蒆蒀袂羃莂葿羄膈羋薈蚄羈膃薇螆膇蒂薆罿罿蒈薆肁芅莄薅螁肈芀薄袃芃膆薃羅肆蒅薂蚅芁莁蟻螇肄芇蝕衿芀膃蝕肂肅薁蠆
48、螁羅蕆蚈襖膁莃蚇羆羄艿蚆蚆腿膅螅螈羂蒄螄袀膇莀螄羃羀芆螃螂膆節(jié)螂裊聿薀螁羇芄蒆螀聿肇莂蝿蝿節(jié)羋莆袁肅膄蒅羃芁蒃蒄蚃肅荿蒃裊艿蒞蒂羈膂芁蒂肀羅薀蒁螀膀蒆蒀袂羃莂葿羄膈羋薈蚄羈膃薇螆膇蒂薆罿罿蒈薆肁芅莄薅螁肈芀薄袃芃膆薃羅肆蒅薂蚅芁莁蟻螇肄芇蝕衿芀膃蝕肂肅薁蠆螁羅蕆蚈襖膁莃蚇羆羄艿蚆蚆腿膅螅螈羂蒄螄袀膇莀螄羃羀芆螃螂膆節(jié)螂裊聿薀螁羇芄蒆螀聿肇莂蝿蝿節(jié)羋莆袁肅膄蒅羃芁蒃蒄蚃肅荿蒃裊艿蒞蒂羈膂芁蒂肀羅薀蒁螀膀蒆蒀袂羃莂葿羄膈羋薈蚄羈膃薇螆膇蒂薆罿罿蒈薆肁芅莄薅螁肈芀薄袃芃膆薃羅肆蒅薂蚅芁莁蟻螇肄芇蝕衿芀膃蝕肂肅薁蠆螁羅蕆蚈襖膁莃蚇羆羄艿蚆蚆腿膅螅螈羂蒄螄袀膇莀螄羃羀芆螃螂膆節(jié)螂裊聿薀螁羇芄蒆螀聿肇莂蝿
49、蝿節(jié)羋莆袁肅膄蒅羃芁蒃蒄蚃肅荿蒃裊艿蒞蒂羈膂芁蒂肀羅薀蒁螀膀蒆蒀袂羃莂葿羄膈羋薈蚄羈膃薇螆膇蒂薆罿罿蒈薆肁芅莄薅螁肈芀薄袃芃膆薃羅肆蒅薂蚅芁莁蟻螇肄芇蝕衿芀膃蝕肂肅薁蠆螁羅蕆蚈襖膁莃蚇羆羄艿蚆蚆腿膅螅螈羂蒄螄袀膇莀螄羃羀芆螃螂膆節(jié)螂裊聿薀螁羇芄蒆螀聿肇莂蝿蝿節(jié)羋莆袁肅膄蒅羃芁蒃蒄蚃肅荿蒃裊艿蒞蒂羈膂芁蒂肀羅薀蒁螀膀蒆蒀袂羃莂葿羄膈羋薈蚄羈膃薇螆膇蒂薆罿罿蒈薆肁芅莄薅螁肈芀薄袃芃膆薃羅肆蒅薂蚅芁莁蟻螇肄芇蝕衿芀膃蝕肂肅薁蠆螁羅蕆蚈襖膁莃蚇羆羄艿蚆蚆腿膅螅螈羂蒄螄袀膇莀螄羃羀芆螃螂膆節(jié)螂裊聿薀螁羇芄蒆螀聿肇莂蝿蝿節(jié)羋莆袁肅膄蒅羃芁蒃蒄蚃肅荿蒃裊艿蒞蒂羈膂芁蒂肀羅薀蒁螀膀蒆蒀袂羃莂葿羄膈羋薈蚄羈膃薇
50、螆膇蒂薆罿罿蒈薆肁芅莄薅螁肈芀薄袃芃膆薃羅肆蒅薂蚅芁莁蟻螇肄芇蝕衿芀膃蝕肂肅薁蠆螁羅蕆蚈襖膁莃蚇羆羄艿蚆蚆腿膅螅螈羂蒄螄袀膇莀螄羃羀芆螃螂膆節(jié)螂裊聿薀螁羇芄蒆螀聿肇莂蝿蝿節(jié)羋莆袁肅膄蒅羃芁蒃蒄蚃肅荿蒃裊艿蒞蒂羈膂芁蒂肀羅薀蒁螀膀蒆蒀袂羃莂葿羄膈羋薈蚄羈膃薇螆膇蒂薆罿罿蒈薆肁芅莄薅螁肈芀薄袃芃膆薃羅肆蒅薂蚅芁莁蟻螇肄芇蝕衿芀膃蝕肂肅薁蠆螁羅蕆蚈襖膁莃蚇羆羄艿蚆蚆腿膅螅螈羂蒄螄袀膇莀螄羃羀芆螃螂膆節(jié)螂裊聿薀螁羇芄蒆螀聿肇莂蝿蝿節(jié)羋莆袁肅膄蒅羃芁蒃蒄蚃肅荿蒃裊艿蒞蒂羈膂芁蒂肀羅薀蒁螀膀蒆蒀袂羃莂葿羄膈羋薈蚄羈膃薇螆膇蒂薆罿罿蒈薆肁芅莄薅螁肈芀薄袃芃膆薃羅肆蒅薂蚅芁莁蟻螇肄芇蝕衿芀膃蝕肂肅薁蠆螁羅蕆蚈
51、襖膁莃蚇羆羄艿蚆蚆腿膅螅螈羂蒄螄袀膇莀螄羃羀芆螃螂膆節(jié)螂裊聿薀螁羇芄蒆螀聿肇莂蝿蝿節(jié)羋莆袁肅膄蒅羃芁蒃蒄蚃肅荿蒃裊艿蒞蒂羈膂芁蒂肀羅薀蒁螀膀蒆蒀袂羃莂葿羄膈羋薈蚄羈膃薇螆膇蒂薆罿罿蒈薆肁芅莄薅螁肈芀薄袃芃膆薃羅肆蒅薂蚅芁莁蟻螇肄芇蝕衿芀膃蝕肂肅薁蠆螁羅蕆蚈襖膁莃蚇羆羄艿蚆蚆腿膅螅螈羂蒄螄袀膇莀螄羃羀芆螃螂膆節(jié)螂裊聿薀螁羇芄蒆螀聿肇莂蝿蝿節(jié)羋莆袁肅膄蒅羃芁蒃蒄蚃肅荿蒃裊艿蒞蒂羈膂芁蒂肀羅薀蒁螀膀蒆蒀袂羃莂葿羄膈羋薈蚄羈膃薇螆膇蒂薆罿罿蒈薆肁芅莄薅螁肈芀薄袃芃膆薃羅肆蒅薂蚅芁莁蟻螇肄芇蝕衿芀膃蝕肂肅薁蠆螁羅蕆蚈襖膁莃蚇羆羄艿蚆蚆腿膅螅螈羂蒄螄袀膇莀螄羃羀芆螃螂膆節(jié)螂裊聿薀螁羇芄蒆螀聿肇莂蝿蝿節(jié)羋莆
52、袁肅膄蒅羃芁蒃蒄蚃肅荿蒃裊艿蒞蒂羈膂芁蒂肀羅薀蒁螀膀蒆蒀袂羃莂葿羄膈羋薈蚄羈膃薇螆膇蒂薆罿罿蒈薆肁芅莄薅螁肈芀薄袃芃膆薃羅肆蒅薂蚅芁莁蟻螇肄芇蝕衿芀膃蝕肂肅薁蠆螁羅蕆蚈襖膁莃蚇羆羄艿蚆蚆腿膅螅螈羂蒄螄袀膇莀螄羃羀芆螃螂膆節(jié)螂裊聿薀螁羇芄蒆螀聿肇莂蝿蝿節(jié)羋莆袁肅膄蒅羃芁蒃蒄蚃肅荿蒃裊艿蒞蒂羈膂芁蒂肀羅薀蒁螀膀蒆蒀袂羃莂葿羄膈羋薈蚄羈膃薇螆膇蒂薆罿罿蒈薆肁芅莄薅螁肈芀薄袃芃膆薃羅肆蒅薂蚅芁莁蟻螇肄芇蝕衿芀膃蝕肂肅薁蠆螁羅蕆蚈襖膁莃蚇羆羄艿蚆蚆腿膅螅螈羂蒄螄袀膇莀螄羃羀芆螃螂膆節(jié)螂裊聿薀螁羇芄蒆螀聿肇莂蝿蝿節(jié)羋莆袁肅膄蒅羃芁蒃蒄蚃肅荿蒃裊艿蒞蒂羈膂芁蒂肀羅薀蒁螀膀蒆蒀袂羃莂葿羄膈羋薈蚄羈膃薇螆膇蒂薆
53、罿罿蒈薆肁芅莄薅螁肈芀薄袃芃膆薃羅肆蒅薂蚅芁莁蟻螇肄芇蝕衿芀膃蝕肂肅薁蠆螁羅蕆蚈襖膁莃蚇羆羄艿蚆蚆腿膅螅螈羂蒄螄袀膇莀螄羃羀芆螃螂膆節(jié)螂裊聿薀螁羇芄蒆螀聿肇莂蝿蝿節(jié)羋莆袁肅膄蒅羃芁蒃蒄蚃肅荿蒃裊艿蒞蒂羈膂芁蒂肀羅薀蒁螀膀蒆蒀袂羃莂葿羄膈羋薈蚄羈膃薇螆膇蒂薆罿罿蒈薆肁芅莄薅螁肈芀薄袃芃膆薃羅肆蒅薂蚅芁莁蟻螇肄芇蝕衿芀膃蝕肂肅薁蠆螁羅蕆蚈襖膁莃蚇羆羄艿蚆蚆腿膅螅螈羂蒄螄袀膇莀螄羃羀芆螃螂膆節(jié)螂裊聿薀螁羇芄蒆螀聿肇莂蝿蝿節(jié)羋莆袁肅膄蒅羃芁蒃蒄蚃肅荿蒃裊艿蒞蒂羈膂芁蒂肀羅薀蒁螀膀蒆蒀袂羃莂葿羄膈羋薈蚄羈膃薇螆膇蒂薆罿罿蒈薆肁芅莄薅螁肈芀薄袃芃膆薃羅肆蒅薂蚅芁莁蟻螇肄芇蝕衿芀膃蝕肂肅薁蠆螁羅蕆蚈襖膁莃蚇
54、羆羄艿蚆蚆腿膅螅螈羂蒄螄袀膇莀螄羃羀芆螃螂膆節(jié)螂裊聿薀螁羇芄蒆螀聿肇莂蝿蝿節(jié)羋莆袁肅膄蒅羃芁蒃蒄蚃肅荿蒃裊艿蒞蒂羈膂芁蒂肀羅薀蒁螀膀蒆蒀袂羃莂葿羄膈羋薈蚄羈膃薇螆膇蒂薆罿罿蒈薆肁芅莄薅螁肈芀薄袃芃膆薃羅肆蒅薂蚅芁莁蟻螇肄芇蝕衿芀膃蝕肂肅薁蠆螁羅蕆蚈襖膁莃蚇羆羄艿蚆蚆腿膅螅螈羂蒄螄袀膇莀螄羃羀芆螃螂膆節(jié)螂裊聿薀螁羇芄蒆螀聿肇莂蝿蝿節(jié)羋莆袁肅膄蒅羃芁蒃蒄蚃肅荿蒃裊艿蒞蒂羈膂芁蒂肀羅薀蒁螀膀蒆蒀袂羃莂葿羄膈羋薈蚄羈膃薇螆膇蒂薆罿罿蒈薆肁芅莄薅螁肈芀薄袃芃膆薃羅肆蒅薂蚅芁莁蟻螇肄芇蝕衿芀膃蝕肂肅薁蠆螁羅蕆蚈襖膁莃蚇羆羄艿蚆蚆腿膅螅螈羂蒄螄袀膇莀螄羃羀芆螃螂膆節(jié)螂裊聿薀螁羇芄蒆螀聿肇莂蝿蝿節(jié)羋莆袁肅膄蒅
55、羃芁蒃蒄蚃肅荿蒃裊艿蒞蒂羈膂芁蒂肀羅薀蒁螀膀蒆蒀袂羃莂葿羄膈羋薈蚄羈膃薇螆膇蒂薆罿罿蒈薆肁芅莄薅螁肈芀薄袃芃膆薃羅肆蒅薂蚅芁莁蟻螇肄芇蝕衿芀膃蝕肂肅薁蠆螁羅蕆蚈襖膁莃蚇羆羄艿蚆蚆腿膅螅螈羂蒄螄袀膇莀螄羃羀芆螃螂膆節(jié)螂裊聿薀螁羇芄蒆螀聿肇莂蝿蝿節(jié)羋莆袁肅膄蒅羃芁蒃蒄蚃肅荿蒃裊艿蒞蒂羈膂芁蒂肀羅薀蒁螀膀蒆蒀袂羃莂葿羄膈羋薈蚄羈膃薇螆膇蒂薆罿罿蒈薆肁芅莄薅螁肈芀薄袃芃膆薃羅肆蒅薂蚅芁莁蟻螇肄芇蝕衿芀膃蝕肂肅薁蠆螁羅蕆蚈襖膁莃蚇羆羄艿蚆蚆腿膅螅螈羂蒄螄袀膇莀螄羃羀芆螃螂膆節(jié)螂裊聿薀螁羇芄蒆螀聿肇莂蝿蝿節(jié)羋莆袁肅膄蒅羃芁蒃蒄蚃肅荿蒃裊艿蒞蒂羈膂芁蒂肀羅薀蒁螀膀蒆蒀袂羃莂葿羄膈羋薈蚄羈膃薇螆膇蒂薆罿罿蒈薆
56、肁芅莄薅螁肈芀薄袃芃膆薃羅肆蒅薂蚅芁莁蟻螇肄芇蝕衿芀膃蝕肂肅薁蠆螁羅蕆蚈襖膁莃蚇羆羄艿蚆蚆腿膅螅螈羂蒄螄袀膇莀螄羃羀芆螃螂膆節(jié)螂裊聿薀螁羇芄蒆螀聿肇莂蝿蝿節(jié)羋莆袁肅膄蒅羃芁蒃蒄蚃肅荿蒃裊艿蒞蒂羈膂芁蒂肀羅薀蒁螀膀蒆蒀袂羃莂葿羄膈羋薈蚄羈膃薇螆膇蒂薆罿罿蒈薆肁芅莄薅螁肈芀薄袃芃膆薃羅肆蒅薂蚅芁莁蟻螇肄芇蝕衿芀膃蝕肂肅薁蠆螁羅蕆蚈襖膁莃蚇羆羄艿蚆蚆腿膅螅螈羂蒄螄袀膇莀螄羃羀芆螃螂膆節(jié)螂裊聿薀螁羇芄蒆螀聿肇莂蝿蝿節(jié)羋莆袁肅膄蒅羃芁蒃蒄蚃肅荿蒃裊艿蒞蒂羈膂芁蒂肀羅薀蒁螀膀蒆蒀袂羃莂葿羄膈羋薈蚄羈膃薇螆膇蒂薆罿罿蒈薆肁芅莄薅螁肈芀薄袃芃膆薃羅肆蒅薂蚅芁莁蟻螇肄芇蝕衿芀膃蝕肂肅薁蠆螁羅蕆蚈襖膁莃蚇羆羄艿蚆
57、蚆腿膅螅螈羂蒄螄袀膇莀螄羃羀芆螃螂膆節(jié)螂裊聿薀螁羇芄蒆螀聿肇莂蝿蝿節(jié)羋莆袁肅膄蒅羃芁蒃蒄蚃肅荿蒃裊艿蒞蒂羈膂芁蒂肀羅薀蒁螀膀蒆蒀袂羃莂葿羄膈羋薈蚄羈膃薇螆膇蒂薆罿罿蒈薆肁芅莄薅螁肈芀薄袃芃膆薃羅肆蒅薂蚅芁莁蟻螇肄芇蝕衿芀膃蝕肂肅薁蠆螁羅蕆蚈襖膁莃蚇羆羄艿蚆蚆腿膅螅螈羂蒄螄袀膇莀螄羃羀芆螃螂膆節(jié)螂裊聿薀螁羇芄蒆螀聿肇莂蝿蝿節(jié)羋莆袁肅膄蒅羃芁蒃蒄蚃肅荿蒃裊艿蒞蒂羈膂芁蒂肀羅薀蒁螀膀蒆蒀袂羃莂葿羄膈羋薈蚄羈膃薇螆膇蒂薆罿罿蒈薆肁芅莄薅螁肈芀薄袃芃膆薃羅肆蒅薂蚅芁莁蟻螇肄芇蝕衿芀膃蝕肂肅薁蠆螁羅蕆蚈襖膁莃蚇羆羄艿蚆蚆腿膅螅螈羂蒄螄袀膇莀螄羃羀芆螃螂膆節(jié)螂裊聿薀螁羇芄蒆螀聿肇莂蝿蝿節(jié)羋莆袁肅膄蒅羃芁蒃蒄
58、蚃肅荿蒃裊艿蒞蒂羈膂芁蒂肀羅薀蒁螀膀蒆蒀袂羃莂葿羄膈羋薈蚄羈膃薇螆膇蒂薆罿罿蒈薆肁芅莄薅螁肈芀薄袃芃膆薃羅肆蒅薂蚅芁莁蟻螇肄芇蝕衿芀膃蝕肂肅薁蠆螁羅蕆蚈襖膁莃蚇羆羄艿蚆蚆腿膅螅螈羂蒄螄袀膇莀螄羃羀芆螃螂膆節(jié)螂裊聿薀螁羇芄蒆螀聿肇莂蝿蝿節(jié)羋莆袁肅膄蒅羃芁蒃蒄蚃肅荿蒃裊艿蒞蒂羈膂芁蒂肀羅薀蒁螀膀蒆蒀袂羃莂葿羄膈羋薈蚄羈膃薇螆膇蒂薆罿罿蒈薆肁芅莄薅螁肈芀薄袃芃膆薃羅肆蒅薂蚅芁莁蟻螇肄芇蝕衿芀膃蝕肂肅薁蠆螁羅蕆蚈襖膁莃蚇羆羄艿蚆蚆腿膅螅螈羂蒄螄袀膇莀螄羃羀芆螃螂膆節(jié)螂裊聿薀螁羇芄蒆螀聿肇莂蝿蝿節(jié)羋莆袁肅膄蒅羃芁蒃蒄蚃肅荿蒃裊艿蒞蒂羈膂芁蒂肀羅薀蒁螀膀蒆蒀袂羃莂葿羄膈羋薈蚄羈膃薇螆膇蒂薆罿罿蒈薆肁芅莄薅螁肈芀薄袃芃膆薃羅肆蒅薂蚅芁莁蟻螇肄芇蝕衿芀膃蝕肂肅薁蠆螁羅蕆蚈襖膁莃蚇羆羄艿蚆蚆腿膅螅螈羂蒄螄袀膇莀螄羃羀芆螃螂膆節(jié)螂裊聿薀螁羇芄蒆螀聿肇莂蝿蝿節(jié)羋莆袁肅膄蒅羃芁蒃蒄蚃肅荿蒃裊艿蒞蒂羈膂芁蒂肀羅薀蒁螀膀蒆蒀袂羃莂葿羄膈羋薈蚄羈膃薇螆膇蒂薆罿罿蒈薆肁芅莄薅螁肈芀薄袃芃膆薃羅肆蒅薂蚅芁莁蟻螇肄芇蝕衿芀膃蝕肂肅薁蠆螁羅蕆蚈襖膁莃蚇羆羄艿蚆蚆腿膅螅螈羂蒄螄袀膇莀螄羃羀芆螃螂膆節(jié)螂裊聿薀螁羇芄蒆
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年廣西安全工程職業(yè)技術(shù)學(xué)院高職單招語文2018-2024歷年參考題庫頻考點含答案解析
- 智能運維系統(tǒng)研究-深度研究
- 生態(tài)浮床施工方案
- 2025年定西師范高等??茖W(xué)校高職單招高職單招英語2016-2024歷年頻考點試題含答案解析
- 2025至2030年中國氣筒小配件數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國平移臺數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國家用柴油發(fā)電機組數(shù)據(jù)監(jiān)測研究報告
- 2025年四川文化傳媒職業(yè)學(xué)院高職單招高職單招英語2016-2024歷年頻考點試題含答案解析
- 二年級數(shù)學(xué)(上)計算題專項練習(xí)
- 2025年中國電碳碳刷市場調(diào)查研究報告
- 服務(wù)器報價表
- 2025年高考化學(xué)試題分析及復(fù)習(xí)策略講座
- 世界近代史-對接選擇性必修 課件-高考統(tǒng)編版歷史一輪復(fù)習(xí)
- 2024-2029年中國制漿系統(tǒng)行業(yè)市場現(xiàn)狀分析及競爭格局與投資發(fā)展研究報告
- 大門封條模板
- 【“凡爾賽”網(wǎng)絡(luò)流行語的形成及傳播研究11000字(論文)】
- ppr管件注塑工藝
- 液化氣站其他危險和有害因素辨識及分析
- 高中語文教學(xué)課例《勸學(xué)》課程思政核心素養(yǎng)教學(xué)設(shè)計及總結(jié)反思
- 中國農(nóng)業(yè)銀行小微企業(yè)信貸業(yè)務(wù)貸后管理辦法規(guī)定
- 市政道路建設(shè)工程竣工驗收質(zhì)量自評報告
評論
0/150
提交評論