




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、 第五章 控制系統(tǒng)的頻域分析§5-1 頻率特性一、頻率特性的定義:在正弦輸入下,系統(tǒng)的輸出穩(wěn)態(tài)分量與輸入量的復(fù)數(shù)之比。一般用G(jw)表示。二、頻率特性的性質(zhì)1、與傳遞函數(shù)一樣,頻率特性也是一種數(shù)學(xué)模型。它描述了系統(tǒng)的內(nèi)在特性,與外界因素?zé)o關(guān)。當(dāng)系統(tǒng)結(jié)構(gòu)參數(shù)給定了,則系統(tǒng)的頻率特性也完全確定。2、頻率特性是一種穩(wěn)態(tài)響應(yīng)。系統(tǒng)穩(wěn)定的前提下求得的,對(duì)于不穩(wěn)定系統(tǒng)則無(wú)法直接觀察到這種穩(wěn)態(tài)響應(yīng)。 從理論上講,系統(tǒng)動(dòng)態(tài)過(guò)程的穩(wěn)態(tài)分量總可以分離出來(lái),而且其規(guī)律并不依賴于系統(tǒng)的穩(wěn)定性。因此,我們?nèi)钥梢杂妙l率特性來(lái)分析研究系統(tǒng),包括它的穩(wěn)定性、動(dòng)態(tài)性能、穩(wěn)態(tài)性能等。3、系統(tǒng)的穩(wěn)態(tài)輸出量與輸入量具有相
2、同的頻率當(dāng)輸入量頻率w改變,則輸出、輸入量的幅值之比A(w)和它們的相位移j(w)也隨之改變。所以 A(w)和j(w)都是w的函數(shù)。這是由于系統(tǒng)中的儲(chǔ)能元件引起的。三、頻率特性的求?。?、根據(jù)定義求取。即對(duì)已知系統(tǒng)的微分方程,把正弦輸入函數(shù)代入,求出其穩(wěn)態(tài)解,取輸出穩(wěn)態(tài)分量與輸入正弦量的復(fù)數(shù)比即可得到。2、根據(jù)傳遞函數(shù)求取。即用s=jw代入系統(tǒng)的傳遞函數(shù),即可得到。3、通過(guò)實(shí)驗(yàn)的方法直接測(cè)得。根據(jù)傳遞函數(shù)求取頻率特性傳遞函數(shù):頻率特性A(w) 幅頻特性;G(jw)的模,它等于穩(wěn)態(tài)的輸出分量與輸入分量幅值之比. j(w) 相頻特性;G(jw)的幅角,它等于穩(wěn)態(tài)輸出分量與輸入分量的相位差。U(w)
3、 實(shí)頻特性;G(jw)的實(shí)部。V(w) 虛頻特性; G(jw)的虛部。它們都是w的函數(shù),它們之間的關(guān)系用矢量圖來(lái)表示例采用正弦信號(hào)作為輸入信號(hào),當(dāng)系統(tǒng)穩(wěn)定后,其輸出稱頻率響應(yīng)系統(tǒng)對(duì)不同頻率的正弦輸入的響應(yīng)特性稱為頻率特性。頻率特性用于系統(tǒng)的分析與設(shè)計(jì),根據(jù): 一般周期性的輸入信號(hào)可以分解為付立葉(富里哀)級(jí)數(shù),它由一些不同頻率、幅值的正弦分量組成,知道了各正弦分量的響應(yīng)便知道全部的響應(yīng)(迭加)數(shù)學(xué)基礎(chǔ):付立葉(富里哀)級(jí)數(shù)、復(fù)變函數(shù)、保角變換等頻率響應(yīng)法特點(diǎn):是一種圖解分析法,可以根據(jù)開(kāi)環(huán)的頻率特性去判斷閉環(huán)性能;還可以指出改善性能的途徑,并對(duì)系統(tǒng)進(jìn)行校正;系統(tǒng)的頻率特性很容易通過(guò)實(shí)驗(yàn)獲得,用
4、S代替jw就成了傳遞函數(shù),頻率特性是一種廣泛使用的工程方法。在控制理論中占有很重要的地位。幅相頻率特性圖 Nyquist圖 極坐標(biāo)圖在極坐標(biāo)復(fù)平面上畫出w值由零變化到無(wú)窮大時(shí)的G(j w)矢量,把矢端邊成曲線。實(shí)虛頻圖不同頻率w時(shí)和實(shí)頻特性和虛頻特性。對(duì)數(shù)頻率特性圖 Bode圖幅值相乘變?yōu)橄嗉?,?jiǎn)化作圖, 對(duì)數(shù)幅頻+對(duì)數(shù)相頻拓寬圖形所能表示的頻率范圍About Bode圖Ø =0不可能在橫坐標(biāo)上表示出來(lái);Ø 橫坐標(biāo)上表示的最低頻率由所感興趣的頻率范圍確定;Ø 只標(biāo)注的自然對(duì)數(shù)值。通常用L()簡(jiǎn)記對(duì)數(shù)幅頻特性,也稱L()為增益用j()簡(jiǎn)記對(duì)數(shù)相頻特性。§5
5、-2 典型環(huán)節(jié)的頻率特性一、頻率特性的幾種表示方法例:極坐標(biāo)表示方法直角坐標(biāo)表示方法半對(duì)數(shù)坐標(biāo)表示方法(Bode圖):兩張圖,對(duì)數(shù)幅頻特性、相頻特性二、典型環(huán)節(jié)的極坐標(biāo)圖 1.比例環(huán)節(jié) G(j)=K=U+jV = 比例環(huán)節(jié)是復(fù)平面實(shí)軸上的一個(gè)點(diǎn),它到原點(diǎn)的距離為K。伯德圖(二) 積分環(huán)節(jié) 積分環(huán)節(jié)幅相頻率特性(三) 慣性環(huán)節(jié) 對(duì)數(shù)幅頻特性曲線通常用折線近似折線近似方法:繪制慣性環(huán)節(jié)的Bode圖方法:對(duì)數(shù)幅頻特性:找出 、的部分畫0dB/dec線,延長(zhǎng)至處斜率轉(zhuǎn)折為-20dB/dec線,稱為轉(zhuǎn)折頻率相頻特性:在處為-45度、在2、5、10倍頻處的幅角,如上表,連接畫光滑曲線漸近線誤差轉(zhuǎn)角頻率處:
6、低于漸近線3dB,低于或高于轉(zhuǎn)角頻率一倍頻程處:低于漸近線1dB慣性環(huán)節(jié)極坐標(biāo)圖(四) 微分環(huán)節(jié)傳遞函數(shù)與積分環(huán)節(jié)互為倒數(shù),它們的Bode圖以實(shí)軸相互對(duì)稱;而一階微分環(huán)節(jié)則與慣性環(huán)節(jié)對(duì)稱。純微分環(huán)節(jié)幅相頻率特性(五) 振蕩環(huán)節(jié)繪制半對(duì)數(shù)頻率特性坐標(biāo)圖:由對(duì)數(shù)幅頻特性:當(dāng) 低頻段0dB/dec線,過(guò)轉(zhuǎn)折頻率w1=1/t 后,斜率變?yōu)?40dB/dec直線振蕩環(huán)節(jié)Bode 圖:幅頻特性精確曲線與z大小有關(guān);相頻特性曲線也與z大小有關(guān);在w=1/t處幅頻特性精確曲線和近似曲線誤差最大:L(w)| w=1/t = - 20lg(2 z)因此,近似曲線應(yīng)根據(jù)z值確定修正: z小漸近線誤差振蕩環(huán)節(jié)G(j)
7、(六)、一階微分環(huán)節(jié)幅相頻率特性一階微分環(huán)節(jié)對(duì)數(shù)頻率特性慣性環(huán)節(jié)一階微分頻率特性互為倒數(shù)時(shí):對(duì)數(shù)幅頻特性曲線關(guān)于零分貝線對(duì)稱;相頻特性曲線關(guān)于零度線對(duì)稱。(七)、二階微分環(huán)節(jié)幅相頻率特性二階微分環(huán)節(jié)對(duì)數(shù)頻率特性二階微分環(huán)節(jié)與振蕩環(huán)節(jié)的頻率特性互為倒數(shù)二階微分環(huán)節(jié)與振蕩環(huán)節(jié)的對(duì)數(shù)幅頻特性曲線關(guān)于0dB線對(duì)稱,相頻特性曲線關(guān)于零度線對(duì)稱(八)、延滯環(huán)節(jié)幅相頻率特性、延滯環(huán)節(jié)對(duì)數(shù)頻率特性§5-3 系統(tǒng)開(kāi)環(huán)頻率特性的繪制一 系統(tǒng)開(kāi)環(huán)對(duì)數(shù)頻率特性的繪制系統(tǒng)開(kāi)環(huán)頻率特性大都是典型環(huán)節(jié)串聯(lián)起來(lái)的前式兩邊取對(duì)數(shù)再乘20,得這樣,系統(tǒng)的對(duì)數(shù)幅頻特性、相頻特性分別是典型 環(huán)節(jié)的對(duì)數(shù)幅頻特性、相頻特性相加
8、系統(tǒng)分為三個(gè)環(huán)節(jié):一個(gè)比例環(huán)節(jié)、兩個(gè)慣性環(huán)節(jié)低頻為 0dB/dec直線,在w=1/T1處轉(zhuǎn)折為 - 20dB/dec的直線低頻為 0dB/dec直線,在w=1/T2處轉(zhuǎn)折為 - 20dB/dec的直線分析:系統(tǒng)開(kāi)環(huán)傳函由三個(gè)典型環(huán)節(jié)組成,其對(duì)數(shù)幅頻 特性的近似特性由三段組成;轉(zhuǎn)折處頻率就是兩個(gè)慣性環(huán)節(jié)的轉(zhuǎn)折頻率(w=1/T);經(jīng)過(guò)一個(gè)慣性環(huán)節(jié)轉(zhuǎn)折頻率后,對(duì)數(shù)幅頻 特性的近似特性的斜率增加 -20dB/dec;三條相加如圖中紅的折線所示根據(jù)上述分析,繪制系統(tǒng)開(kāi)環(huán)對(duì)數(shù)幅頻特性的近似特性步驟如下:畫高度為20lgK的直線,從0w®1(最小的轉(zhuǎn)折頻率)作為系統(tǒng)對(duì)數(shù)幅頻 特性近似特性的低頻段
9、在w>w1后,斜率變?yōu)?20dB/dec,因?yàn)樵撧D(zhuǎn)折處頻率是慣性環(huán)節(jié)的轉(zhuǎn)折頻率(振蕩環(huán)節(jié)則-40dB/dec) ,隨w的增加,每經(jīng)過(guò)一個(gè)轉(zhuǎn)折頻率,幅頻特性的斜率改變一次繪制系統(tǒng)相頻特性曲線方法:根據(jù)系統(tǒng)相頻特性表達(dá)式計(jì)算描點(diǎn);計(jì)算特征點(diǎn)(0、轉(zhuǎn)折頻率)的值,需要的點(diǎn)再計(jì)算求值,再用光滑曲線連接。解:該系統(tǒng)由5個(gè)典型環(huán)節(jié)組成1、比例環(huán)節(jié)K=4,20lgK=12dB2、積分環(huán)節(jié),幅頻特性-20lgw 是一條過(guò)w=1,斜率-20dB/dec的直線,相頻特性 -90°3、慣性環(huán)節(jié) 轉(zhuǎn)折頻率 w1=1/2=0.5(1/sec)幅頻特性經(jīng)過(guò)w1斜率增加-20dB/dec;相頻特性 w:0&
10、#174; w1 ® ¥分別為0°, -45°,-90°4、一階微分環(huán)節(jié) 轉(zhuǎn)折頻率 w2=1/0.5=2(1/sec),幅頻特性經(jīng)過(guò)w2斜率增加 +20dB/dec ;相頻特性 w:0® w2 ® ¥分別為0°, +45°,+90°頻率范圍:最小 w1=0.5,最大 w3=8; 橫坐標(biāo) w范圍大約從0.05 到 80按w1 、w2 、w3 分w軸成三段過(guò)L(1)=12dB處畫-20dB/dec斜率的直線作為低頻段,直線經(jīng)過(guò)w1 斜率增加-20dB/dec(= -40dB/dec)直線經(jīng)
11、過(guò)w2 斜率增加 +20dB/dec(= -20dB/dec)直線經(jīng)過(guò)w3 斜率增加 -40dB/dec(= -60dB/dec)相頻特性如圖5、振蕩環(huán)節(jié) 轉(zhuǎn)折頻率 w3=1/0.125=8(1/sec) 幅頻特性經(jīng)過(guò)w3斜率增加 -40dB/dec相頻特性 w:0® w2 ® ¥分別為0°, -90°, -180° 2zT=0.05® z =0.2幅頻特性應(yīng)修正 20lg2 z =8dBBode定理一 線性最小相位系統(tǒng),L(w)與f(w)關(guān)系唯一Bode定理二 線性最小相位系統(tǒng),L(w)的斜率與f(w)有對(duì)應(yīng)關(guān)系:斜率為N
12、*(±20dB/dec)對(duì)應(yīng)相角N*(±90°);系統(tǒng)的相角當(dāng)然由整個(gè)頻率范圍內(nèi)的各斜率決定,但某頻率下的相角主要由該頻率下的斜率決定,其余斜率的影響越遠(yuǎn)越小。三 系統(tǒng)頻率特性極坐標(biāo)圖(奈奎斯特曲線)的繪制典型環(huán)節(jié)頻率特性極坐標(biāo)圖的大致走向系統(tǒng)奈奎斯特曲線(開(kāi)環(huán)頻率特性極坐標(biāo)圖)的繪制方法:按照各個(gè)典型環(huán)節(jié)頻率特性在各個(gè)頻率下的大小迭加而成。它是一條大致的曲線,需要準(zhǔn)確的地方,如:和負(fù)實(shí)軸相交的地方, 才需要準(zhǔn)確計(jì)算0型系統(tǒng)(v = 0)只包含慣性環(huán)節(jié)的0型系統(tǒng)Nyquist圖 I型系統(tǒng)(v = 1)只包含慣性環(huán)節(jié)的I型系統(tǒng)Nyquist圖II型系統(tǒng)(v = 2)
13、只包含慣性環(huán)節(jié)的II型系統(tǒng)Nyquist圖 開(kāi)環(huán)含有v個(gè)積分環(huán)節(jié)系統(tǒng),Nyquist曲線起自幅角為v90°的無(wú)窮遠(yuǎn)處。系統(tǒng)奈奎斯特曲線(開(kāi)環(huán)頻率特性極坐標(biāo)圖)的繪制要點(diǎn):奈氏曲線在 w=0 到 0+ 的變化隨系統(tǒng)的不同而差別很大:“0”型系統(tǒng):奈氏曲線從實(shí)軸(幅值=K處)開(kāi)始1”型系統(tǒng):奈氏曲線從實(shí)軸(幅值=處)開(kāi)始, w=0+ 就轉(zhuǎn)過(guò)-90°到負(fù)虛軸附近;是在第三或第四象限,應(yīng)比較w=0+ 時(shí)各零點(diǎn)的相角之和與各極點(diǎn)相角之和哪個(gè)大,前者大則在第四象限,否則第三象限,“2”型系統(tǒng):奈氏曲線也是從實(shí)軸(幅值=處)開(kāi)始, w=0+ 就轉(zhuǎn)過(guò)-180°到負(fù)實(shí)軸;是在第二或
14、第三象限,也是比較w=0+ 時(shí)各零點(diǎn)的相角之和與各極點(diǎn)相角之和,前者大則第三象限,否則第二象限奈氏曲線w =處是原點(diǎn),切入方向根據(jù)零、極點(diǎn)確定,即:N(-90°) +M(90°),求奈氏曲線與實(shí)軸的交點(diǎn):令虛部為零,得到w代入實(shí)部而得系統(tǒng)開(kāi)環(huán)頻率特性的繪制小結(jié):繪制系統(tǒng)開(kāi)環(huán)對(duì)數(shù)頻率特性曲線(Bode圖):有兩張圖,都是按典型環(huán)節(jié)相加,開(kāi)環(huán)對(duì)數(shù)幅頻特性曲線通??梢允褂媒铺匦?,繪制時(shí)根據(jù)傳遞系數(shù)、環(huán)節(jié)的轉(zhuǎn)折頻率和斜率一步就可以畫出繪制系統(tǒng)頻率特性極坐標(biāo)圖(奈奎斯特曲線) :抓住曲線頭尾的特征,曲線與實(shí)軸的交點(diǎn)計(jì)算而得繪制系統(tǒng)頻率幅相圖(尼柯?tīng)査箞D線) :先畫Bode圖,再對(duì)應(yīng)
15、描點(diǎn)繪制例題6:繪制的幅相曲線。例7:含遲后環(huán)節(jié)的極坐標(biāo)圖解: G(j)可寫為: 其幅值與相角分別為:由于幅值是從1開(kāi)始單調(diào)減小,相角也是單調(diào)減小,所以該傳遞函數(shù)的極坐標(biāo)圖是一條螺旋線 曲線如圖所示:開(kāi)環(huán)幅相曲線的繪制§5-4 乃奎斯特穩(wěn)定性判據(jù)和系統(tǒng)的相對(duì)穩(wěn)定性一、幅角原理S1代入F(S) 得F(S1), S2代入F(S)得F(S2); S沿s連續(xù)變化一周(不穿過(guò)F(S) 的極點(diǎn)), 則F(S)沿 封閉曲線F連續(xù)變化一周 s包圍一個(gè)F(s)的零點(diǎn),當(dāng)S1沿s順時(shí)針連續(xù)變化一周,(S-Zi)的相角積 累 -2,或者說(shuō), F順時(shí)針繞F平面零點(diǎn)一周s不包圍F(s)的零點(diǎn),當(dāng)S1沿s順時(shí)針
16、連續(xù)變化一周,(S-Zi)不積累角度s包圍 Z個(gè)F(s)的零點(diǎn),當(dāng)S1沿s順時(shí)針連續(xù)變化一周,(S-Zi) 的相角積 累Z * (-2) ,或者說(shuō), F順時(shí)針繞F平面零點(diǎn)Z圈如果:s包圍一個(gè)F(s)的極點(diǎn),當(dāng)S1沿s順時(shí)針連續(xù)變化一周,因?yàn)镻i 映射到F(s)上是在無(wú)窮遠(yuǎn),因此,F(xiàn)逆時(shí)針繞F平面零點(diǎn)一周;( S-Pi )的相角積累是2角度s包圍P個(gè)F(s)的極點(diǎn),當(dāng)S1沿s順時(shí)針連續(xù)變化一周,S-Pi 積累的相角為2*P,或者說(shuō), F逆時(shí)針繞F平面零點(diǎn)P周s包圍P個(gè)F(s)的極點(diǎn),又包圍Z個(gè)F(s)的零點(diǎn),當(dāng)S1沿s順時(shí)針連續(xù)變化一周后, F順時(shí)針繞F平面零點(diǎn)(Z-P)周,或:F逆時(shí)針繞F平面
17、零點(diǎn)(P- Z )=N周幅角原理:設(shè)F(s)除平面上的有限個(gè)奇點(diǎn)外,為單值解析函數(shù),若在S平面上任選一條封閉曲線s ,并使它不通過(guò)F(s)的奇點(diǎn),則 s 映射到F(s) 平面上仍為一條封閉曲線F ;當(dāng)解析點(diǎn)S1沿s順時(shí)針連續(xù)變化一周時(shí),則從F平面原點(diǎn)指向F 上對(duì)應(yīng)點(diǎn)的向量F(s1)按逆時(shí)針?lè)较蛐D(zhuǎn)周數(shù)N等于S包含F(xiàn)(s)的極點(diǎn)數(shù)目P與零點(diǎn)數(shù)目Z之差,即N=P-Z當(dāng)P>Z則N>0, F逆時(shí)針包圍零點(diǎn)N圈當(dāng)P<Z則N<0 ,F(xiàn)順時(shí)針包圍零點(diǎn)N圈當(dāng)P=Z則N=0 ,F(xiàn)不包圍零點(diǎn)二、乃奎斯特穩(wěn)定性判據(jù)乃奎斯特穩(wěn)定性判據(jù)思路根據(jù)系統(tǒng)閉環(huán)特征根的位置可以判定系統(tǒng)的穩(wěn)定性:如果根平面
18、的右半面有閉環(huán)根,則系統(tǒng)閉環(huán)不穩(wěn)定;在根平面上作一條閉合曲線包圍整個(gè)右半面,根據(jù)幅角原理,在F(s)平面 上含有右半面零、極點(diǎn)個(gè)數(shù)的信息,利用乃氏曲線和開(kāi)、閉環(huán)零、極點(diǎn)的關(guān)系就可以判定系統(tǒng)的穩(wěn)定性這里要解決兩個(gè)問(wèn)題:1、包圍整個(gè)右半平面的曲線映射在F(s)平面上形狀如何?2、幅角原理只能判別 (P-Z) ,如何求出P?1、順時(shí)針包圍整個(gè)右半面曲線,S從0®jw ®j(正虛軸),然后,順時(shí)針繞過(guò)p到 -j(負(fù)虛軸) ® -jw ® 0 另外,該封閉曲線“包圍F(s)的原點(diǎn)”=“ 包圍 G(jw)平面的(-1,j0)點(diǎn)”例:畫出乃氏曲線如圖,負(fù)頻特性以實(shí)軸對(duì)
19、稱由于F(s)=1+G(s),所以,映射在F(s)平面上的曲線只要將縱坐標(biāo)左移一個(gè)單位,如圖所以,該封閉曲線就是包圍S平面右半平面的封閉曲線在F(s)平面上的映射另外,該封閉曲線“包圍F(s)的原點(diǎn)”=“ 包圍 G(jw)平面的(-1,j0)點(diǎn)”在S從0®jw ®j變化時(shí),F(xiàn)(s)|s=jw=F(jw)=1+G(jw)在S從0®jw ®j變化時(shí),F(xiàn)(s)|s=jw=F(jw)=1+G(jw)將乃氏曲線偏移一個(gè)單位就成在S從-j ®-jw ® 0變化時(shí),F(xiàn)(s)|s=-jw=F(jw)=1+G(-jw),它與F(jw)共軛在S從j
20、174;-j 變化時(shí), G(-jw)= G(jw)=0, 在F(jw)=1點(diǎn)上也就是幅角原理修改為:乃氏曲線當(dāng)w 從- ® 0® 變化,按逆時(shí)針?lè)较虬鼑?1,j0)點(diǎn)的圈數(shù)等于F(s)的極點(diǎn)數(shù)目P與零點(diǎn)數(shù)目Z之差,即N=P-Z在G(jw)圖中,曲線沒(méi)有包圍(-1,j0)點(diǎn), N=0,可知F(s)的零、極點(diǎn)在右半面上的個(gè)數(shù)相等??梢?jiàn),F(xiàn)(s)的零點(diǎn)就是閉環(huán)極點(diǎn),而F(s)的極點(diǎn)就是開(kāi)環(huán)極點(diǎn)。所以,公式 N=P-Z 應(yīng)用如下:1、根據(jù)系統(tǒng)開(kāi)環(huán)傳函,可知 P 值(在右半平面的開(kāi)環(huán)極點(diǎn)個(gè)數(shù))2、繪制乃氏曲線,w從-到+,判別逆時(shí)針包圍(-1,j0)點(diǎn)的次數(shù)N也就知道包圍零、極點(diǎn)個(gè)
21、數(shù)和(P-Z)3、公式 N=P-Z 求出Z,Z=0則系統(tǒng)穩(wěn)定,否則不穩(wěn)定上述結(jié)論無(wú)法判斷系統(tǒng)的穩(wěn)定情況。由閉環(huán)特征方程乃奎斯特穩(wěn)定性判據(jù)閉環(huán)系統(tǒng)穩(wěn)定的充要條件是:當(dāng)w從- 到+變化時(shí),系統(tǒng)的開(kāi)環(huán)頻率特性G(j w)H(j w)按逆時(shí)針?lè)较虬鼑?1,j0)點(diǎn)P圈。若P=0(即,系統(tǒng)開(kāi)環(huán)穩(wěn)定)時(shí),上述條件簡(jiǎn)化為 當(dāng)w從-到+變化時(shí),系統(tǒng)的開(kāi)環(huán)頻率特性G(j w)H(j w)不包圍(-1,j0)點(diǎn)。比如:上例中,若已知系統(tǒng)開(kāi)環(huán)穩(wěn)定(P=0)而頻率特性不包圍(-1,j0)點(diǎn)(N=0),N=P-Z得Z=0,所以該系統(tǒng)閉環(huán)穩(wěn)定,如果:提高系統(tǒng)增益,曲線就可能包圍(-1, j0)點(diǎn)(N0), N=P-Z得
22、Z 0,所以該系統(tǒng)閉環(huán)變成不穩(wěn)定三、虛軸上有開(kāi)環(huán)極點(diǎn)時(shí)的乃奎斯特穩(wěn)定性判據(jù)虛軸上有開(kāi)環(huán)極點(diǎn)時(shí),S平面上做封閉曲線時(shí)通過(guò)了極點(diǎn),映射到F(s)平面后曲線不會(huì)封閉,因此,應(yīng)作修正:虛軸上有開(kāi)環(huán)極點(diǎn)時(shí),S平面上做一個(gè)小半圓繞過(guò)原點(diǎn)Ø Nyquist穩(wěn)定判據(jù)穿越法穿越:指開(kāi)環(huán)Nyquist曲線穿過(guò) (-1, j0 ) 點(diǎn)左邊實(shí)軸時(shí)的情況。正穿越:增大時(shí),Nyquist曲線由上而下穿過(guò)-1 -段實(shí)軸。正穿越時(shí)相當(dāng)于Nyquist曲線正向包圍(-1, j0 )點(diǎn)一圈。負(fù)穿越:增大時(shí),Nyquist曲線由下而上穿過(guò)-1 -段實(shí)軸。負(fù)穿越相當(dāng)于Nyquist曲線反向包圍(-1, j0 )點(diǎn)一圈。半次
23、穿越:G(j)H (j) 軌跡起始或終止于(-1,j0)點(diǎn)以左的負(fù)實(shí)軸。四、乃氏曲線和Bode圖的對(duì)應(yīng)關(guān)系五、相對(duì)穩(wěn)定性和穩(wěn)定裕度例如:某最小相位系統(tǒng)的乃氏圖如右:由圖可知:1、 若P=0,則該系統(tǒng)是穩(wěn)定的(N=0)1)在w=wc處,|G(jw)|=1,若系統(tǒng)穩(wěn)定 q=180+f(jw)應(yīng)>03、增加K值時(shí),曲線往左擴(kuò)張,K>Kf時(shí)包圍(-1, j0)點(diǎn),使系統(tǒng)不穩(wěn)定4、在K=Kf時(shí),曲線通過(guò)(-1, j0)點(diǎn),這時(shí)系統(tǒng)處于臨界穩(wěn)定可見(jiàn):曲線在(-1,j0)點(diǎn)右側(cè)穿越負(fù)實(shí)軸,系統(tǒng)穩(wěn)定,離該點(diǎn)越遠(yuǎn),相對(duì)越穩(wěn)定,相對(duì)穩(wěn)定性問(wèn)題相對(duì)穩(wěn)定性用兩個(gè)參數(shù)來(lái)衡量2)在w=wg處, f(jw) =
24、 -180,若系統(tǒng)穩(wěn)定 Kg=1/A(w)應(yīng)>1q稱為相角穩(wěn)定裕度(q越大相對(duì)穩(wěn)定性越好),Kg稱為幅值穩(wěn)定裕度( Kg越大相對(duì)穩(wěn)定性越好)2、該系統(tǒng)最簡(jiǎn)的傳函是:穩(wěn)定系統(tǒng)正增益裕量正相位裕量正相位裕量正增益裕量不穩(wěn)定系統(tǒng)負(fù)相位裕量負(fù)增益裕量負(fù)增益裕量負(fù)相位裕量由上述,相對(duì)穩(wěn)定性是用兩個(gè)參數(shù)來(lái)衡量的,也就是說(shuō),穩(wěn)定性度大,必須兩個(gè)參數(shù)都要大在Bode圖中,穩(wěn)定裕度描述如圖:系統(tǒng) g>0, GM>0,閉環(huán)是穩(wěn)定的系統(tǒng)閉環(huán)不穩(wěn)定:g<0, GM<0(A(w)>1 ,GM=20lgKg= -20lgA(w)<0)角裕度q用g表示。因?yàn)?,在?duì)數(shù)幅頻特性圖中,縱坐標(biāo)是用增益刻度,所以,幅值穩(wěn)定裕度Kg用GM= 20lg(1/A(w)來(lái)表示,因此,GM越大,則相對(duì)穩(wěn)定裕度就越大例9:系統(tǒng)開(kāi)環(huán)傳遞函數(shù)穩(wěn)定性裕量Nyquist圖與Bode圖的對(duì)應(yīng)關(guān)系原點(diǎn)為圓心的單位圓 0 分貝線。單位圓以外L()>0的部分;單位圓內(nèi)部-L()<0的部分。Nyquist曲線的輔助線相連j(0+) +v 90°線,起始點(diǎn)j (0+) ,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 黑龍江護(hù)理高等??茖W(xué)校《環(huán)境學(xué)科前沿知識(shí)》2023-2024學(xué)年第二學(xué)期期末試卷
- 南京中醫(yī)藥大學(xué)《家具設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷
- 黑龍江農(nóng)業(yè)工程職業(yè)學(xué)院《制造類產(chǎn)品創(chuàng)業(yè)實(shí)踐》2023-2024學(xué)年第二學(xué)期期末試卷
- 杭州科技職業(yè)技術(shù)學(xué)院《概率論與數(shù)據(jù)統(tǒng)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷
- 第1課 北京的春節(jié) 課件
- 上海應(yīng)用技術(shù)大學(xué)《工程力學(xué)(下)》2023-2024學(xué)年第二學(xué)期期末試卷
- 上海政法學(xué)院《工程熱力學(xué)C》2023-2024學(xué)年第二學(xué)期期末試卷
- 雨季基礎(chǔ)施工方案
- 湖南電子科技職業(yè)學(xué)院《大學(xué)寫作》2023-2024學(xué)年第二學(xué)期期末試卷
- 湖北國(guó)土資源職業(yè)學(xué)院《老年社會(huì)學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- GB/T 43700-2024滑雪場(chǎng)所的運(yùn)行和管理規(guī)范
- 魯迅《社戲》原文+賞析
- 部編版道德與法治三年級(jí)下冊(cè)教案全冊(cè)
- 幼兒教師之《幼兒游戲與指導(dǎo)》考試題庫(kù)(通用版)
- 中國(guó)建設(shè)銀行養(yǎng)老金融模式發(fā)展問(wèn)題研究
- 關(guān)于布郎芬布倫納發(fā)展心理學(xué)生態(tài)系統(tǒng)理論
- 我們身邊的法律故事課件
- 執(zhí)行律師服務(wù)方案
- GB 24544-2023墜落防護(hù)速差自控器
- 2023年11月上海市教育委員會(huì)教育技術(shù)裝備中心公開(kāi)招考3名工作人員筆試歷年高頻考點(diǎn)(難、易錯(cuò)點(diǎn)薈萃)附帶答案詳解
- 煤礦違章行為及預(yù)防
評(píng)論
0/150
提交評(píng)論