



版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、名師推薦精心整理學(xué)習(xí)必備初等數(shù)學(xué)基礎(chǔ)知識一、三角函數(shù)1公式同角三角函數(shù)間的基本關(guān)系式:·平方關(guān)系:sin2( )+cos2( )=1; tan2( )+1=sec2( );cot2( )+1=csc2( )·商的關(guān)系:tan =sin /cos cot =cos /sin ·倒數(shù)關(guān)系:tan · cot ; =1sin · csc ; =1cos · sec =1三角函數(shù)恒等變形公式:·兩角和與差的三角函數(shù):cos( + )=cos · cos-sin· sin cos( - )=cos · c
2、os +sin · sin sin( ± )=sin · cos ± cos · sin tan( + )=(tan +tan -tan)/(1· tan )tan( - )=(tan -tan )/(1+tan· tan )倍角公式:sin(2 )=2sin· cos cos(2 )=cos2()-sin2( )=2cos2( -)1=1- 2sin2()tan(2 )=2tan-/1tan2( )·半角公式:sin2( /2)=(1-cos )/2cos2( /2)=(1+cos )/2tan2( /
3、2)=(1-cos )/(1+cos)tan( /2)=sin /(1+cos-cos)=(1 )/sinsin =2tan( /2)/1+tan2( /2)cos =1-tan2( /2)/1+tan2( /2)tan =2tan( /2)/1-tan2( /2)·積化和差公式:sin· cos =(1/2)sin( +-)+sin(cos · sin =(1/2)sin(- sin(+)-)名師推薦精心整理學(xué)習(xí)必備cos · cos =(1/2)cos( + )+cos(-) sin · sin-=(1/2)cos( +-)cos( - )
4、·和差化積公式:sin +sin =2sin( + )/2cos(-)/2 sin -sin =2cos( + )/2sin(- )/2cos +cos =2cos( + )/2cos(- )/2cos -cos =-2sin( + )/2sin(- )/22特殊角的三角函數(shù)值0(0)6432f ()(30 )(45 )(60 )(90 )cos13 / 22 / 21/ 20sin01/ 22 / 23 / 21tan01/313不存在cot不存在311/ 30只需記住這兩個(gè)特殊的直角三角形的邊角關(guān)系,依照三角函數(shù)的定義即可推出上面的三角值。456021214530133 誘導(dǎo)公式
5、:函數(shù)sincostgctg角 A-sin cos -tg -ctg 90°-cos sin ctg tg 90°+cos -sin -ctg -tg 180°-sin -cos -tg -ctg 180°+-sin -cos tg ctg 270°-cos -sin ctg tg 270°+-cos sin -ctg -tg 360°-sin cos -tg -ctg 360°+sin cos tg ctg 記憶規(guī)律:豎變橫不變(奇變偶不變),符號看象限(一全,二正弦割,三切,四余弦割即第一象限全是正的,第二象限
6、正弦、正割是正的,第三象限正切是正的,第四象限余弦、余割是正的)二、一元二次函數(shù)、方程和不等式b 24ac000名師推薦精心整理學(xué)習(xí)必備一元二次函數(shù)yax 2bxc(a0)x1x2有二互異實(shí)根x1 .2一元二次方程bb24ac有二相等實(shí)根 (有一根 )b無實(shí)根ax 2x1, 2bx c02ax1,22a一元(x1x2 )b二ax 2bx c0x Rxx1或 xx2x次2a不等式ax 2bx c0x1x x2xx( a0)三、因式分解與乘法公式(1)a2b2(ab)(ab)(2) a22abb2(ab) 2(3)a22abb2( ab) 2(4) a3b3( ab)(a2abb2 )(5)a3b
7、3( ab)(a2abb2 )(6) a33a2b 3ab2b3(ab)3(7) a33a2b 3ab2b3(ab) 3(8)a2b2c22ab2bc2ca(a bc)2(9) anbn(ab)(an1an2bab n2bn 1),( n 2)四、等差數(shù)列和等比數(shù)列1. 等差數(shù)列通項(xiàng)公式: ana1n1 d前 項(xiàng)和公式Snn a1 an或Snna1n n1n22d2. 等比數(shù)列 GP通項(xiàng)公式ana1qn 1an0, q0名師推薦精心整理學(xué)習(xí)必備前 項(xiàng)和公式.na11qn1Sn1qqna1q1五、常用幾何公式平面圖形名稱符號正方形a 邊長長方形a 和 b邊長三角形a,b,c 三邊長h a 邊上的
8、高s周長的一半A,B,C 內(nèi)角其中 s(a+b+c)/2平行四邊形a,b 邊長h a 邊的高兩邊夾角菱形a邊長夾角D 長對角線長d短對角線長梯形a 和 b上、下底長h高m 中位線長圓r半徑d直徑扇形r 扇形半徑a 圓心角度數(shù)圓環(huán)R 外圓半徑r內(nèi)圓半徑D 外圓直徑d內(nèi)圓直徑橢圓D 長軸d短軸周長C和面積 SC 4aS a 2C 2(a+b)S abSah/2 ab/2 ·sinC s(s-a)(s-b)(s-c) 1/2a2sinBsinC/(2sinA)S ah absin S Dd/2 a2 sin S (a+b)h/2 mhC d 2r2S r2 d/4C 2r 2 r
9、5; (a/360)2S r×(a/360)S (R2 -r2 ) (D2-d 2)/4S Dd/4立方圖形名稱符號表面積 S 和體積 V名師推薦精心整理學(xué)習(xí)必備正方體a邊長S 6a2V a3長方體a長S 2(ab+ac+bc)b寬V abcc高圓柱r底半徑C2rh高S2C 底面周長底rS 側(cè)ChS 底 底面積S 表Ch+2S2S 側(cè) 側(cè)面積底= Ch+2r2VSh rS 表 表面積底圓錐r底半徑2V rh/3h高球r半徑3V 4/3 rd直徑3 d/62S= 4r2 d基本初等函數(shù)名表達(dá)式定義域圖形特性稱yC常y CR數(shù)函0x數(shù)1.8過點(diǎn) (1,1);冪y x隨 而異,但在R 上函
10、均有定義數(shù)指ya x數(shù)a 0函aR數(shù)11.6y=x3y=x1.40時(shí)在 R1.2y=x1/31單增;0.8y=x -10時(shí)在 R0.60.4y=x -2單減0.200.20.40.60.811.21.41.61.804.54xyxy0 y=a3.5y=a3過點(diǎn) 0,1 2.5a1單增20<a<11.50a 1單減1(0,1)0.5m0xamanam n aam n, am nam n-0.5o,na-2.5-2-1.5-1-0.500.511.522.5名師推薦精心整理學(xué)習(xí)必備對ylog a xR數(shù)a0函 a 1數(shù)正弦ysin xR函數(shù)余弦ycos xR函數(shù)yOy1- /2O-1y
11、1-/2O-1(1,0)/2/2yy=logxaa>1x0<a<1y=logxa3/22x3 /22x過點(diǎn) 1,0 a 1單增0 a 1單減loga a1,loga 10,M , N0logaMNloga Mloga N ,logaMlog a Mlog a N ,Nloga M pP loga M ,loga blog c bc0,1 ,log c aloga axx( x0)aloga xx( x0)奇函數(shù)T 2 y 1偶函數(shù)T 2 y 1奇函數(shù)正ytan xx k切2函k Z數(shù)余xk,切y cot xkZ函數(shù)- /2O/2xy-OxT 在每個(gè)周期內(nèi)單增奇函數(shù)T 在每個(gè)周
12、期內(nèi)單減名師推薦精心整理學(xué)習(xí)必備反正弦yarcsin x1,1函數(shù)反余1,1 y arccos x弦函數(shù)反正yarctan xR切函數(shù)反余切yarc cot xR函數(shù)極限的計(jì)算方法一、初等函數(shù):1.lim CC (C是常值函數(shù))y/2-1o1x-/2y/2-1o1xy/2ox- /2y/2ox奇函數(shù)單增y 22單減0y奇函數(shù)單增y 22單減0y若fx(即fx是有界量),(即是無窮小量),lim f x0,2.Mlim0特別 : fxClim C0若fx(即fx是有界量)limf x0,3.M特別 : fxCC0Clim04.lim CC0C005.未定式1 0 型0分子,分母含有相同的零因式,
13、消去零因式A.等價(jià)無窮小替換(常用xB.sin x x,e 1 x,ln x 1 x)名師推薦精心整理學(xué)習(xí)必備洛必達(dá)法則:要求fx , g x存在,且fx 存在,此時(shí), limf xfxC.limxg xlimxgg2型A.忽略掉分子 , 分母中可以忽略掉的較低階的無窮大, 保留最高階的無窮大, 再化簡計(jì)算B.分子 , 分母同除以最高階無窮大后, 再化簡計(jì)算 .C.洛必達(dá)法則 .3 型通過分式通分或無理函數(shù)有理化,轉(zhuǎn)化為 "0"型或 ""型0140轉(zhuǎn)化為00 01 0500 型求對數(shù)060 型求對數(shù)0171 型通過 lim 1 x xx 0e 或求對數(shù)來
14、計(jì)算 .二、分段函數(shù): 分段點(diǎn)的極限用左, 右極限的定義來求解 .1切線方程 為: yy0f (x0 )( xx0 )法線方程 為 yy0( xx0 )f ( x0 )基本初等函數(shù)的導(dǎo)數(shù)公式(1)(C )0,C是常數(shù)(2)( x)x1(3)(a x )a x ln a ,特別地,當(dāng) ae 時(shí),(ex) ex(4)(log a x)1, 特別地,當(dāng) ae 時(shí),( ln x )1x ln ax(5)(sin x)cos x(6)(cos x)sin x(7)(tan x)1sec2 x(8)(cot x)1csc2 xcos2 xsin 2x(9)(sec x)(sec x) tan x(10)(
15、csc x)(csc x) cot x(11)(arcsin x)1(12)(arccosx)1x21 x 21(13)(arctan x)1(14)(arccot x)1x21 x21函數(shù)的和、差、積、商的求導(dǎo)法則名師推薦精心整理學(xué)習(xí)必備函數(shù) uu(x) 及 v v( x) 都在點(diǎn) x 可導(dǎo) , u( x) 及 v( x)的和、差、商 ( 除分母為 0 的點(diǎn)外 ) 都在點(diǎn) x 可導(dǎo) ,(1) u(x)v(x)u ( x) v ( x)(2) u(x)v(x)u ( x)v( x)u( x)v (x)(3)u( x)u (x)v( x)u( x)v ( x) ( v( x) 0 )v( x)v
16、2 ( x)基本初等函數(shù)的微分公式(1)、 dc0( c 為常數(shù) );(2)、 d( x)x 1dx(為任意常數(shù) );(3)、 d( ax )axln adx ,特別地,當(dāng) ae 時(shí), d (ex ) ex dx ;(4)、 d(log a x)1dx ,特別地,當(dāng) ae 時(shí), d (ln x)1 dx ;x ln ax(5)、 d(sin x)cos xdx ;(6)、 d(cos x)sin xdx ;(7)、 d(tan x)sec2 xdx ;(8)、 d(cot x)csc2 xdx ;(9)、 d(sec x)secx tan xdx ;(10)、 d (csc x)csc xco
17、t xdx ;(11)、 d (arcsin x)1dx ;1x2(12)、 d (arccosx)1dx ;1 x212 dx;(13)、 d (arctan x)x1(14)、 d ( arc cot x)1dx 21 x曲線的切線方程yy0 f '(x0 )( xx0 )冪指函數(shù)的導(dǎo)數(shù)v xv xuxu x' u xv x ln u x v xxu極限、可導(dǎo)、可微、連續(xù)之間的關(guān)系極限連續(xù)名師推薦精心整理學(xué)習(xí)必備可導(dǎo)可微條件條件條件ABA條件條件條件B,A A ,A B,A為 B 的充分條件為 B 的必要條件和 B 互為充分必要條件邊際分析邊際成本MC = C (q) ;邊
18、際收益MR = R (q) ;邊際利潤ML = L (q) , L (q)R (q)C (q) = MR MC彈性分析Eyx0 y ( x0 )y f ( x) 在點(diǎn) x0處的彈性,Ex x x0y0p D ( p)特別的,需求價(jià)格彈性:EDEpD羅爾定理若函數(shù) f ( x) 滿足: (1)在閉區(qū)間 a, b 連續(xù);(2) 在開區(qū)間 ( a, b) 可導(dǎo);(3)f (a)f (b) ,則在 ( a,b) 內(nèi)至少存在一點(diǎn),使 f ( )0 拉格朗日定理設(shè)函數(shù) f ( x) 滿足 :(1)在閉區(qū)間 a,b 連續(xù);(2)在開區(qū)間 ( a,b) 可導(dǎo),則在 ( a, b) 上至少存在一點(diǎn),使得 f (
19、 )f (b)f ( a)ba基本積分公式(1)0 dxC(2)kdxkxCk為常數(shù)特別地:dx xC(3)x dxx1C11(4)1 dxln | x |C(有時(shí)絕對值符號也可忽略不寫)x(5)a x dxa xCln a(6)ex dxexC名師推薦精心整理學(xué)習(xí)必備(7)cos xdxsin xC(8)sin xdxcos xC(9)dxsec2xdxtan xCcos2 x(10)dxxcsc2xdxcot xCsin 2(11)secx tan xdxsecxC(12)csc x cot xdxcsc xC(13)dxarctan xC (或dxarc cot xC )1x 2x21(
20、14)dxarcsinxC(或dxx C )1x21arccosx 2(15)tan xdxln | cos x |C ,(16)cot xdxln | sin x |C ,(17)secxdxln | secxtan x |C ,(18)cot xdxln | csc xcot x |C ,(19)dx1arctanxC , (a0),a 2x2aa(20)dx1 ln xaC , (a0) ,a 2x22axa(21)dxarcsin xC , (a0) ,a2x2a(22)dxln xx 2a 2C , (a 0) x 2a 2常用湊微分公式(1)、 dx1 daxba, b為常數(shù) ,
21、且 a0a(2)、 xdx1d x22(3)、 12dxd1xx(4)、 1dx2dxx(5)、 1 dxd ln xx(6)、 ex dxde x(7)、 sin xdxdcosx名師推薦(8)、 cos xdxd sin x(9)、 sec2xdxd tan x(10)、 csc2 xdxd cot x(11)、1dx d arcsin x1x2(12)、1dxd arctan x1x2dy一階線性非齊次微分方程P( x) y Q (x) dx平面圖形面積的計(jì)算公式1)區(qū)域 D 由連續(xù)曲線yf (x), yg (x)和直線 x=a,x=b 圍成 ,其中f ( x)g(x)(ax b)(右圖
22、)bD的面積 Ag ( x)f (x) dxa2)區(qū)域 D 由連續(xù)曲線x( y), x( y)和直線 x=c,x=d 圍成 ,其中( y)( y) c yddD的面積A( y)( y) dyc平面圖形繞旋轉(zhuǎn)軸旋轉(zhuǎn)得到的旋轉(zhuǎn)體體積公式1 、繞 x 軸的旋轉(zhuǎn)體體積(右圖)b2 ( x) dxVxfa精心整理學(xué)習(xí)必備P( x ) dxP ( x) dx的通解為 y eQ( x)edx Cyyg (x)yf ( x)0abxydx( y)x( y)(右圖)c0x注意:此時(shí)的曲邊梯形必須緊貼旋轉(zhuǎn)軸2、繞名師推薦y 軸的旋轉(zhuǎn)體體積(右圖)精心整理學(xué)習(xí)必備d2 ( y)dyVygc注意:此時(shí)的曲邊梯形必須緊貼旋轉(zhuǎn)軸由邊際函數(shù)求總函數(shù)q(C0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 質(zhì)量控制計(jì)劃
- 2025年旅游景區(qū)管理服務(wù)項(xiàng)目合作計(jì)劃書
- 重磅!2025年中國儲熱行業(yè)發(fā)展前景及市場空間預(yù)測報(bào)告(智研咨詢)
- 2021青島版小學(xué)科學(xué)三年級下冊教案(精修版)
- 廣東省惠州市2024-2025學(xué)年高一上學(xué)期期末考試語文試題 含解析
- 2025年節(jié)能、高效果蔬保鮮裝置項(xiàng)目發(fā)展計(jì)劃
- 高效率辦公解決方案實(shí)踐手冊
- 農(nóng)具租賃合同
- 肖像權(quán)使用許可協(xié)議
- 農(nóng)業(yè)行業(yè)物聯(lián)網(wǎng)技術(shù)在種植管理中的應(yīng)用方案
- 2024寧波交通投資集團(tuán)有限公司校園招聘筆試參考題庫附帶答案詳解
- 幼兒園春季開學(xué)教職工安全培訓(xùn)內(nèi)容
- 儲油罐安全操作規(guī)程培訓(xùn)
- 情緒障礙跨診斷治療的統(tǒng)一方案
- 《萬以內(nèi)數(shù)的認(rèn)識》大單元整體設(shè)計(jì)
- 中醫(yī)護(hù)理質(zhì)量敏感指標(biāo)的構(gòu)建
- 聚焦幼兒作品分析的游戲觀察與評價(jià)
- WJ30059-2024軍事工業(yè)爆炸物品設(shè)計(jì)安全標(biāo)準(zhǔn)
- 創(chuàng)傷性腦疝查房
- 《政府管制基本理論》課件
- 農(nóng)村常見傳染病預(yù)防知識講座
評論
0/150
提交評論