逆向物流:同步設計的運輸路線和返程策略畢業(yè)論文外文翻譯.doc_第1頁
逆向物流:同步設計的運輸路線和返程策略畢業(yè)論文外文翻譯.doc_第2頁
逆向物流:同步設計的運輸路線和返程策略畢業(yè)論文外文翻譯.doc_第3頁
逆向物流:同步設計的運輸路線和返程策略畢業(yè)論文外文翻譯.doc_第4頁
逆向物流:同步設計的運輸路線和返程策略畢業(yè)論文外文翻譯.doc_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、.本科生畢業(yè)設計 (論文)外 文 翻 譯原 文 標 題Reverse logistics: simultaneous design ofdelivery routes and returns strategies譯 文 標 題逆向物流:同步設計的運輸路線和返程策略略作者所在系別經(jīng)濟管理系作者所在專業(yè)物流管理作者所在班級作 者 姓 名作 者 學 號指導教師姓名指導教師職稱 完 成 時 間2012年12月北華航天工業(yè)學院教務處制*;譯文標題逆向物流:同步設計的運輸路線和返程策略原文標題Reverse logistics: simultaneous design of delivery routes

2、 and returns strategies作 者Kamlesh Mathur譯 名卡瑪拉蘇·馬圖爾國 籍印度原文出處計算機和運籌學,2007(34):598-619.逆向物流:同步設計的運輸路線和返程策略一、摘要逆向物流問題,出于血液分布的美國紅十字會,是指倉庫節(jié)點中的產(chǎn)品,在一個時期從中央處理點送到客戶又在期間內(nèi)退貨回到中心點。任何倉庫節(jié)點在之后的一段時間才配送產(chǎn)品或返程而招致的懲罰成本,主要來自經(jīng)營成本和顧客的不滿。結果是一個動態(tài)的物流規(guī)劃問題,在每一個交貨周期,車輛調(diào)度需要設計一個多臺車輛路線,同時確定在每一站??康募b箱數(shù)量。這項研究獨特之處,路線設計和返程戰(zhàn)略發(fā)展開發(fā)的

3、同時,站臺??扛怕适且阎那以谝?guī)劃的范圍之內(nèi)。啟發(fā)式程序的開發(fā)是用于優(yōu)化路線設計的戰(zhàn)略規(guī)劃問題。二、引言有很多逆向物流渠道規(guī)劃的動機。有些是經(jīng)濟環(huán)境和其他環(huán)境因素。隨著這些因素持續(xù)帶來的壓力,降低經(jīng)營成本的同時,往往產(chǎn)生額外的成本所帶來的環(huán)境限制,企業(yè)必須考慮收回他們?yōu)樯a(chǎn)產(chǎn)品耗費掉的原材料成本及產(chǎn)品材料的回收。返料的實例有:產(chǎn)品在其原來的形式返回維修或直接復用(有缺陷的產(chǎn)品和可重復使用的容器如箱和托盤);部分的產(chǎn)品拆卸后,可能有價值列入相關聯(lián)的后續(xù)產(chǎn)品(貴金屬和有價值的成分分);可循環(huán)再用的材料與產(chǎn)品(玻璃,紙,塑料,和金屬)。本研究涉及到產(chǎn)品原來的配送路線和產(chǎn)品材料的回返策略。這是出于美國

4、紅十字會血液服務中心(ARC)的血液分銷活動,血液制品是由在該地區(qū)的區(qū)域處理中心醫(yī)院提供,醫(yī)院幾乎每天都需要提供。由于血液對溫度的敏感性是極易腐壞得,全血和其衍生產(chǎn)品需要保存在絕緣的內(nèi)襯盒。該盒是可重復使用,但是比較昂貴,所以他們從醫(yī)院恢復良好經(jīng)濟意義。迅速恢復的盒是理想的醫(yī)院由于其有限的存儲空間和ABC的需要,及時返回的盒有益于將來交貨。這種盒返回所使用車的空間清除交付。日常需要送貨貨車的調(diào)度不僅考慮到車輛的??柯肪€和貨車載貨量,也考慮到了該車輛在整個路線里空間的局限性。因客戶的不滿和延遲歸還的盒子相關的有一個隱含的懲罰成本,在醫(yī)院盒被盜竊和丟失的可能性,由于延誤盒回收并增加盒的庫存。如果盒

5、子堆積在醫(yī)院,則需要支付相關連的成本在這些盒子上。每日路線建設也需要同時規(guī)劃運輸路線,以及在每一站的路線要回收的盒子數(shù)量。 由于類似的逆向物流問題普遍發(fā)生在整個經(jīng)濟世界,因此受到了廣泛的關注。例如,企業(yè)在產(chǎn)品配送時用的托盤及托盤的回收再用。零售商店提供設備可能會把舊電器作為服務客戶。企業(yè)辦公設備的租賃和回收、翻新、再出租或出售二手設備。已出售的汽車產(chǎn)品因汽車引擎質(zhì)量問題需要返回檢驗,返工,并轉售的情況。瓶裝水可以回收其產(chǎn)品的容器,再循環(huán)利用生產(chǎn)新鮮的瓶裝水。還有一些國家,如德國,甚至頒布法律規(guī)定一些行業(yè)必須回收所有包裝材料。日本也有類似的立法,美國也有許多法律是針對固體廢物回收。通常情況下,部

6、分或全部回收材料是一并交付處理的,因為在降低運輸成本上它通常是結合皮卡配送結果被理解而不是處理每一個單獨的路線和車輛。這些作者在以前的研究中,重點主要是對的返料整合策略發(fā)展 ,沒有考慮到配送路徑的影響。本文的研究現(xiàn)在擴展到更復雜的情況下的整合策略的集成與配送路線設計。(一)問題、適用范圍和局限性問題的精確描述如下,一個單一的倉庫(配送中心,碼頭,工廠等),地理位置上多個分散的供應站。在某一期間開始(例如某一天),停止發(fā)出訂單,要求一定的數(shù)量的產(chǎn)品配送到車廠。原材料與配送的產(chǎn)品相關聯(lián)的,并且與原來的產(chǎn)品具有相同的尺寸,經(jīng)過一段時間的停止后再返回到倉庫稱為返料。在每個周期開始到停止其能力有限的送貨

7、車派遣,在作出這個周期內(nèi)多站的的調(diào)度決策前其數(shù)量是不確定的。當返回到倉庫的材料可以滿足在這之后一段時間內(nèi)交貨時,所有產(chǎn)品要求停止配送。在倉庫空間允許的情況下,返回的材料可以裝載到運輸工具運回到倉庫。否則,他們的皮卡必須推遲到以后期間處罰成本。在每個周期路線規(guī)劃的初期需要確定配送站的順序及在每一配送站的返料數(shù)量。返料的接收的截止時間為公司調(diào)度自備車輛配送后,不能推遲到后期的其他來源。例如,客戶在緊急情況下可能會選擇其他承運公司,如出租車或快遞送貨。在任何情況下,本公司自備車輛必須收集所有返回的材料,也可以在之后的一時期開始后配送。因此,為了保證當天發(fā)貨,有兩種送貨方式可供選擇(一種是由本公司的自

8、備車輛送貨和另一種租賃車輛送貨)。今后一個時期,配送站都停止發(fā)貨的概率是已知的并在每個周期是相同的。為了便于論述,我們假設每個配送站的隨機變量是獨立的,但是,當所有的結果和本文方法仍然是有效時,則配送站配送站的隨機變量是相互依賴相互聯(lián)合的。它也是假設有足夠的公司自備車輛來處理所有需求的能力,在公司自有車輛收到需求后來進行車輛運輸規(guī)劃。有時候,收到的實際需求可能會超過車輛運載能力,在處理這些需求時,應該儲備一些備用車輛或尋找替代運載工具,這種情況是本研究的范圍之外。在這項研究中,只有在單一車輛的情況下才會被認為是。如ARC血液分銷服務:是基于地理或其他方面的考慮所作出的假設,該紅十字會血液服務中

9、心已分割為多個部門,每個部門由一個單一的車輛提供。布倫斯等研究者提供了一個良好的調(diào)查逆向物流部門的設計模型。這個問題被認為是在一個多階段規(guī)劃范圍內(nèi)的問題。這就提出了一個問題:在不同的時期內(nèi)是使用不同的路線還是停止使用相同路線。為了便于實施,一些車輛調(diào)度一般每天都是有固定路線。固定路線的優(yōu)點是提高服務的規(guī)范性和提高車輛駕駛員對路線的熟悉。除非另有說明,否則同一時期某一條配送路線的車輛一旦確定一般情況下是不會改變的。在一定時期內(nèi),即使在沒有產(chǎn)品配送甚至是只有一些物料返回,該公司也不會撤銷這條路線。這種額外的決定增加了另一個層次上已經(jīng)很困難的問題的復雜性。為了保持問題易于處理,我們假定每個配送站的配

10、送時間。此外,在ARC血液分銷服務這個例子中,所有的醫(yī)院都會有一個積極要求的時間段。因此,在制定策略方案時,應該緊扣這一假設,但在實際業(yè)務操作上,如果沒有需求可以簡單地跳過。對于一個固定的車輛路線,逆向物流戰(zhàn)略將取決于離開返料倉庫的成本。返回的原材料和額外的材料(例如,包裝盒等,容器,和托盤)需要交付由于延誤返回的成本。本文研究的問題是一個戰(zhàn)略性的規(guī)劃,現(xiàn)在可以被準確描述為:在需求量確定的情況下,由公司自有車輛以及租賃車輛,根據(jù)已設計的車輛調(diào)度路線,公司按照每一天的退貨量來指派自有車輛運輸返回材料(這是在過去的時期配送的項目),目的是盡量減少規(guī)劃次數(shù),綜合成本,空載路線和未及時返料的預期懲罰成

11、本。(二)背景直到最近,逆向物流已經(jīng)成為研究關注是我一個話題。以前大部分的研究是探索性的,強調(diào)逆向物流的必要性和重要性的問題。直到最近,研究人員已經(jīng)考慮在逆向物流有關的各種問題使用定量化技術。弗萊舍曼等研究者提供的一項關于重點布局規(guī)劃、庫存管理和生產(chǎn)規(guī)劃的調(diào)查。布盧姆霍等研究者研究的問題如逆向物流系統(tǒng)的回收點位置分布。賈亞拉曼等研究者確定了01混合整數(shù)周期的確定性模型,通過分銷和再制造地點的開設和車輛路線的規(guī)劃,把產(chǎn)品從一個開放的設施配送給客戶,然后從客戶開放的設施回收物料。最近一本由德克爾等人撰寫的書中提到收集和分配、網(wǎng)絡設計、庫存控制和在逆向物流(閉環(huán))系統(tǒng)路線等問題。隱藏在逆向物流系統(tǒng)設

12、計的問題是有關產(chǎn)品配送和回程路徑車輛服務的地點設置。布倫斯等研究者討論并收集在逆向物流系統(tǒng)中車輛路線問題,他們列出了各種功能的逆向物流系統(tǒng),使現(xiàn)有的規(guī)范性的車輛調(diào)度模型一般都不適用。例如,經(jīng)典的求解車輛路徑問題(CVRP)只考慮產(chǎn)品的配送和回程,但不是相結合的入站和出站流量。一些研究人員考慮混合負載(車輛路徑問題的混合配送和回程(VRPM),以及車輛路線問題(VRPPD)在車站前可完成所有的配送,并且,區(qū)別于這些模型的特點,(VRPB),(VRPM)和(VRPD)假設一個時期內(nèi)的需求是確定性和規(guī)劃范圍,在周期性車輛路線問題(PVRP)是多個時期但需求是確定的。最后,在目前的產(chǎn)品配送路線和返料之

13、間不存在任何關系,而在我們研究中,產(chǎn)品配送和以后的返料有著非常密切的關系。運輸商問題(TSP)是已知的NP完全問題,所以增加回報功能后,隨之而來的問題是難以計算的。因此,它并不是合理解決聯(lián)合路線和返程問題的最好的方法。或者,一個合理的啟發(fā)式方法是首先設計一個程序,在一個給定的路線找到一個最優(yōu)或接近最優(yōu)的策略。然后把該程序納入一個迭代算法,尋求一個良好的路線組合策略。用這種方法,我們對早期有關固定的返程路線問題探討,可以制定一個產(chǎn)品配送和返程路線策略。結果發(fā)現(xiàn),一些簡單的規(guī)劃策略可以為某些特殊情況處理返回的材料。例如,人們發(fā)現(xiàn)當在一個非遞增的順序停止單位懲罰成本并抑制推遲返料的上升,最好的策略是

14、在每一配送站現(xiàn)有車輛空間允許的情況下盡可能多的裝載運送返料,與運輸成本相比懲罰成本是微不足道的,懲罰成本相較來說很容易計算,它決定了車輛調(diào)度路線和回料成本金額。如果日后所有的配送站和??空臼鞘孪纫阎?,那么返料策略可以通過改變整體路線規(guī)劃,簡化為一個關于運輸?shù)挠嬎銌栴}。最后,對于一般情況下的停止單位懲罰成本,提出了一種啟發(fā)式算法。在本文中,艾莎拉尼等研究者提出并使用更全面發(fā)展的啟發(fā)式算法。在二部分中,以這些早期工作成果的總結為基礎來處理共同配送路線設計和戰(zhàn)略問題,這是本文研究問題的重點。三、返程問題在本部分中,主要介紹了三個特殊情況下的最佳返程策略:(一)不提高服務優(yōu)先給出一個固定的配送路線和

15、以客戶提供平等的服務優(yōu)先,短期最優(yōu)策略是:在現(xiàn)有車輛可利用裝載空間允許的情況下,盡可能將返料運回倉庫。(二)動態(tài)路線動態(tài)路線其成本是微不足道的(因此,在每一個時期,可以訪問在不同的路線的倉庫)。在每一個周期中,如果返回到倉庫的懲罰成本遠遠大于路線成本,車輛可以停在任何需要裝載運輸?shù)膫}庫,其目的是為了降低拖延原料返回倉庫的成本。(三)未來的需求是已知的情形下確定裝載車輛在開始規(guī)劃路線范圍和裝載車輛數(shù)量時未來需求量是已知的。這包括公司自備車輛以及運輸運營商。這個問題重要的是在其自己的權利,但是,這一特殊情況背后的主要動機是,它可以用來評估任何啟發(fā)式程序開發(fā)的一般隨機問題。對于任何實際的隨機問題,為

16、解決其相關的確定性問題(假定未來所有要求是在該時期內(nèi)是已知的)提供了一個下界。四、產(chǎn)品路線和返程策略修改或選擇算法的組合算法,對于一個給定車輛路線的情況的問題。一個良好的車輛路線的考慮不能只有運輸成本而忽略延遲返料的懲罰成本,反之亦然。理想情況下,我們希望找到最優(yōu)車輛路線,最大限度地減少總路線的懲罰成本。一種可能的解決方法是列舉所有可能的車輛路線,并找到最佳的一個。這種做法令人望而卻步的即使只考慮運輸成本,時間的計算會進一步尋找最優(yōu)路線的時間和人力成本,從而增加整個加權矢量。出于這個原因,啟發(fā)式方法的提出,可以在合理的時間內(nèi)產(chǎn)生一個很好的解決方案。 此問題已獲得了研究人員的極大關注,并且在各大

17、文獻中提出了很多研究成果。這里實施的算法是一個復合算法,在運行的車輛任意插入一種程序,通過這種程序,尋找到最優(yōu)的路線,并計算出相應路線的運輸成本以及返料的懲罰成本。一個更好地了解這種類型的程序是邊緣交換算法,邊緣交換程序稱為r-opt,其中r邊在一個運行的車輛運輸交換為邊緣不在,只要結果仍然是一個可行的車輛的運輸成本降低。隨著r的增大,啟發(fā)式的解決方案其代價是增加了計算時間。通常在實踐中使用的2-opt和3 - opt算法。or-opt ,它是3-opt程序的變形,在這項研究中使用,用來提高初始車輛路線。or-opt是眾所周知的運行得相當不錯,雖然它需要一小部分的交流,它將被視為一個常規(guī)的3

18、- opt算法。 (一)停止與平等的服務優(yōu)先權對于這種情況,在前面也進行了相關討論,對于一個固定的車輛路徑的最佳調(diào)度規(guī)劃策略是每輛車在所經(jīng)過的運輸路線盡可能多的裝載和運輸返程物料。然而,對于這四種每個都有可能的路線,每個交換在or-opt算法,模擬來估算延遲返程所需的預期刑罰成本。在這一部分,一些啟發(fā)式程序的有效性目的是為了在沒有降低結果的質(zhì)量的情況下降低計算量。(二)停止與不平等的服務優(yōu)先權對于一般情況下的停止與不平等的優(yōu)先權,倉庫的延遲返程時間所帶來的的懲罰成本。前文中所討論的,對于一個給定的路線,加權策略提供了一個有效的啟發(fā)式規(guī)則的回報率的決定。艾莎拉尼等人的研究結果表明,這種策略上,平

19、均,結果平均在8以內(nèi)的罰款成本。因此,在or-opt算法要評價一個新的路線,是使用加權均衡啟發(fā)式這種方法。然而,這需要一個昂貴的模擬為基礎的搜索來確定每個站的權重。由于每個交換需要評估四條路線,這就使得基本算法望而卻步。正如前面提出的情況,各倉庫具有相同的懲罰成本,評估也被認為是只有一個方向,而不是兩個方向上的這種情況。一個廣泛的計算研究表明,只使用一個方向的評估降低了約50%且不影響最終結果的質(zhì)量。不過,計算所需的工作量仍然是不切實際的問題,平均需要10小時的計算時間在1.8吉赫,奔騰4電腦,以確定最佳的路線,并停止對所需的回報策略權重的計算時間。五、結論逆向物流涉及到很多問題,隨著經(jīng)濟環(huán)境

20、、客戶服務、降低成本等問題日益突出,逆向物流涉在供應鏈中的重要性得到提高。一個反向物流問題是物流管理回報產(chǎn)生交付了傳遞路線。確定每一條路線及沿線的各個倉庫節(jié)點返回的材料的數(shù)量一直是研究的重點。以往在配送路線及返程策略制定的規(guī)劃范圍方面的研究上,這些作者以前關于配送路線及返程策略的研究,路線是已知的和固定的。它產(chǎn)生了一些有趣的且實用的規(guī)則。然而在這項研究中,計算更加困難的發(fā)展問題,在一個規(guī)劃范圍提供的路線的同時,確定最佳配送路線及返程策略一個計劃是解決。這集成和動態(tài)的規(guī)劃問題的計算是相當繁瑣的,所以對于實際啟發(fā)式程序的開發(fā)涉及一個加權返程策略的決定。該算法是一種改性or-opt程序。然而,據(jù)觀察

21、,一個簡單的關于or-opt程序應用研究的計算將是令人望而卻步的,甚至是少于10站的問題。在本文中介紹了幾種啟發(fā)式規(guī)則和策略,提出的算法使得在不降低解決方案質(zhì)量的情況下算法更加簡單可行。- 7 -指 導 教 師 評 語 外文翻譯成績:指導教師簽字: 年 月 日注:1. 指導教師對譯文進行評閱時應注意以下幾個方面:翻譯的外文文獻與畢業(yè)設計(論文)的主題是否高度相關,并作為外文參考文獻列入畢業(yè)設計(論文)的參考文獻;翻譯的外文文獻字數(shù)是否達到規(guī)定數(shù)量(3 000字以上);譯文語言是否準確、通順、具有參考價值。 2. 外文原文應以附件的方式置于譯文之后。附件:外文翻譯原文Reverse logist

22、ics: simultaneous design of delivery routes and returns strategies1AbstractA reverse logistics problem, motivated by blood distribution of the American Red Cross, is examined where containers in which products are delivered from a central processing point to customers (stops) in one period are avail

23、able for return to the central point in the following period. Any container not picked up in the period following its delivery incurs a penalty cost resulting primarily from operating costs and customer dissatisfaction. The result is a dynamic logistics planning problem where in each delivery period

24、 the vehicle dispatcher needs to design a multi-stop vehicle route while determining the container quantities to be picked up at each stop. This research is unique in that route design and pickup strategies are developed simultaneously, where stop volumes are known only probabilistically over a plan

25、ning horizon. A heuristic procedure is developed for treating the route design-pickup strategy planning problem.2IntroductionThere are many motivations for planning the reverse logistics channel. Some are economic and others are environmental. With continuing pressures to reduce operating costs whil

26、e often incurring additional costs brought about by environmental restrictions, firms must be concerned with the costs of returning materials associated with the products that they deliver. Examples of returning materials are products in their original form returned for repair or direct reuse (defec

27、tive products and reusable containers such as boxes and pallets);portions of a product after disassembly that may have value for inclusion in subsequent products (precious metals and valuable components);and materials associated with a product that may be recycled (glass, paper, plastics, and metals

28、).This research concerns returning materials that are associated with products delivered previously on a route. It is motivated by the blood distribution activity of the American Red Cross: Blood Services (ARC). Blood products are delivered from regional processing centers to hospitals in the area o

29、n a daily or nearly daily basis. Because blood is perishable due to temperature sensitivity, whole blood and its derivative products are delivered in insulation-lined boxes. The boxes are reusable and moderately expensive, so recovering them from hospitals makes good economic sense. Prompt return of

30、 the boxes is desired by the hospitals due to their limited storage space and the ARCs need to have boxes for future deliveries. Box returns use the space on the vans cleared by deliveries. Daily dispatching of the delivery vans requires not only planning the stop sequence but planning the pickups a

31、s well, considering the space limitations of the vans throughout the route. There is an implied penalty cost due to customer dissatisfaction associated with delay in the return of the boxes, the possibility of box theft and loss at hospitals, and increased box inventory due to delays in box recyclin

32、g. If boxes accumulate at hospitals, special trips may have to be made, with the associated costs, to recover the boxes. Daily route construction requires simultaneous planning of the delivery routes along with the box quantities to be recovered at each stop on the route.Similar reverse logistics pr

33、oblems occur throughout the economy and therefore are of wide concern. For example, firms delivering products on pallets recover the pallets for reuse. Retail stores delivering appliances may take away old appliances as a service to their customers. Firms leasing office equipment may pickup and recy

34、cle used equipment to be refurbished and leased again or sold. Products previously sold and delivered may need to be returned for inspection, rework, and resale as in the case of auto engines that experience quality problems. Bottlers may recover the container portion of their products at the time d

35、eliveries of the fresh product are made. Some countries, such as Germany, have gone as far as to legislate that some industries must take back all sales packaging materials. Japan has similar legislation and the United States has numerous laws on solid waste reclamation. Frequently, some or all reco

36、vered materials are handled in conjunction with deliveries, since it is generally understood that combining pickups with deliveries results in lower transportation costs than handling each on separate routes and vehicles.In previous research by these authors, the focus was primarily on developing th

37、e pickup strategies for the returning materials without considering the impact on delivery routing. The work in this paper is now extended to the more complicated situation where pickup strategies are integrated with delivery route design.1.1 Problem, scope, and limitationsA precise description of t

38、he problem follows. A single depot (distribution center, terminal, plant, etc.) serves a number of geographically dispersed stops. At the beginning of a period (for example, a day),the stops place orders requesting certain quantities (stop volume) of a product to be delivered from the depot. Materia

39、ls associated with the delivered products and having the same dimensions as the original products, called returning materials, are recovered from the stops at some later time and returned to the depot.A delivery vehicle with limited capacity is dispatched at the beginning of each period to stops who

40、se volumes are uncertain until the time of the multi-stop dispatch decision. All products required by a stop are delivered when the stop is reached and returning materials are available for return to the depot in the beginning of the period following delivery. Returning materials may be loaded onto

41、the delivery vehicle, as space permits, for return to the depot; otherwise, their pickup must be postponed to subsequent periods with a penalty cost. Route planning at the beginning of each period requires determining the sequence of delivery stops and the quantities to be picked up at each stop dur

42、ing the period. Stop volumes that are received after the closing time for planning company-owned vehicle deliveries and that which cannot be postponed to a later period are handled by other sources (referred to as for-hire in the subsequent discussion). For example, customers themselves may pickup t

43、hese late or emergency orders or an outside carrier such as taxis or courier delivery may be used. In any case, the company-owned vehicles must collect all returning materials that also become available at the beginning of the period following delivery. Thus, there are two kinds of stop volumes (one

44、 delivered by the company-owned vehicle and the other by a for-hire vehicle), which are known only for the day of delivery. For future periods, the probabilistic behavior of both stop volumes is known and is the same in each period. For the ease of exposition, it is assumed that the two random varia

45、bles for each stop are independent; however, all the results and the methodology of this paper are still valid when their behavior has a dependent joint distribution. It is also assumed that there is adequate company-owned vehicle capacity to handle all demand received before the closing time for pl

46、anning company-owned vehicle deliveries. The case where the demand may exceed the vehicle capacity, requiring a decision as to which demand should be satisfied by some alternate source, is beyond the scope of this research.In this research, only the single vehicle case is considered. As was the case

47、 with the ARC: Blood Services, it is assumed, that based on geographical or other considerations, the stops have been partitioned into sectors. Each sector is served by a single vehicle. Beullens et al. provide an excellent survey of sector design models in reverse logistics.The problem is considere

48、d within a multi-period planning horizon. This raises the question of whether to use a different stop routing sequence each period or to use the same stop sequence. For ease of implementation, some dispatchers prefer a fixed daily stop routing sequence. Fixed routing has the advantage of enhancing r

49、egularity of service and increasing driver performance through familiarity. Unless stated otherwise, the sequence of visited stops by a vehicle, once determined, is assumed to be the same each period. Also in a given period, one may choose not to visit a stop when there is no delivery volume even if

50、 there are some materials to be returned. This additional decision adds another level of complexity to an already difficult problem. To keep the problem tractable, it is assumed that each stop is visited every period. Moreover, in the motivating example (ARC), all hospitals have a positive demand on

51、 most days. Hence for making the strategic policy, it is believed that not much is lost with this assumption. Operationally, one can simply skip a stop that has no demand. For a given vehicle route, the reverse logistics strategy will depend on the cost of leaving returning materials at stops. Obvio

52、us examples of explicit factors are the direct charge at a stop for holding returning materials and the extra materials (for example, packing materials such as boxes, containers, and pallets) needed for delivery due to delays in their return.1.2 BackgroundOnly recently, reverse logistics has become

53、a topic of research concern. Much of the previous work has been exploratory, emphasizing the need and importance of reverse logistics issues. General frameworks have been provided. Only recently, researchers have considered the use of quantitative techniques to various issues related to reverse logi

54、stics. Fleischmann et al. offer a survey focused on distribution planning, inventory management, and production planning. Bloemhof-Ruward et al. examined distribution issues such as location of collection points in a reverse logistic system. Jayaraman et al. developed a 01 mixed integer single-perio

55、d deterministic model for determining the distribution/remanufacturing locations to open, the quantities to stock, the quantities of product to ship from an open facility to customers, and the quantities of recovered materials to ship from customers to open facilities. Designing vehicle routes was n

56、ot considered.A recent book by Dekker et al. provides a compilation of recent research that considers issues like collection and distribution, network design, inventory control, and routing in a reverse logistics (closed-loop) systems context.Imbedded in reverse logistics system design is the proble

57、m of routing vehicles to serve a set of locations for both delivery and backhaul of products. Beullens et al. discuss the collection and vehicle routing issues in a reverse logistics systems. They list various features of reverse logistic systems that make the existing normative vehicle routing mode

58、ls generally inapplicable. For example, the classical capacitated vehicle routing problem (CVRP) considers only deliveries or only backhauls but not the combination of inbound and outbound flow, The models of the vehicle routing problem with backhauling (VRPB) combining deliveries and pickups assume that the backhaul points are visited only after all deliveries are made, A few researchers consider mixed loads (vehicle routing problem with mixed deliveries and collection (VRPM), and vehicle routing problem with pickup and delivery (VRPPD) where pickups can be ma

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論