排列組合與概率知識(shí)點(diǎn)及經(jīng)典練習(xí)題(共10頁(yè))_第1頁(yè)
排列組合與概率知識(shí)點(diǎn)及經(jīng)典練習(xí)題(共10頁(yè))_第2頁(yè)
排列組合與概率知識(shí)點(diǎn)及經(jīng)典練習(xí)題(共10頁(yè))_第3頁(yè)
排列組合與概率知識(shí)點(diǎn)及經(jīng)典練習(xí)題(共10頁(yè))_第4頁(yè)
排列組合與概率知識(shí)點(diǎn)及經(jīng)典練習(xí)題(共10頁(yè))_第5頁(yè)
已閱讀5頁(yè),還剩5頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、精選優(yōu)質(zhì)文檔-傾情為你奉上一、隨機(jī)變量. 1. 隨機(jī)試驗(yàn)的結(jié)構(gòu)應(yīng)該是不確定的.試驗(yàn)如果滿足下述條件:試驗(yàn)可以在相同的情形下重復(fù)進(jìn)行;試驗(yàn)的所有可能結(jié)果是明確可知的,并且不止一個(gè);每次試驗(yàn)總是恰好出現(xiàn)這些結(jié)果中的一個(gè),但在一次試驗(yàn)之前卻不能肯定這次試驗(yàn)會(huì)出現(xiàn)哪一個(gè)結(jié)果.它就被稱為一個(gè)隨機(jī)試驗(yàn).2. 離散型隨機(jī)變量:如果對(duì)于隨機(jī)變量可能取的值,可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.若是一個(gè)隨機(jī)變量,a,b是常數(shù).則也是一個(gè)隨機(jī)變量.一般地,若是隨機(jī)變量,是連續(xù)函數(shù)或單調(diào)函數(shù),則也是隨機(jī)變量.也就是說(shuō),隨機(jī)變量的某些函數(shù)也是隨機(jī)變量.設(shè)離散型隨機(jī)變量可能取的值為:取每一個(gè)值的概率

2、,則表稱為隨機(jī)變量的概率分布,簡(jiǎn)稱的分布列.P有性質(zhì); .注意:若隨機(jī)變量可以取某一區(qū)間內(nèi)的一切值,這樣的變量叫做連續(xù)型隨機(jī)變量.例如:即可以取05之間的一切數(shù),包括整數(shù)、小數(shù)、無(wú)理數(shù).3. 二項(xiàng)分布:如果在一次試驗(yàn)中某事件發(fā)生的概率是P,那么在n次獨(dú)立重復(fù)試驗(yàn)中這個(gè)事件恰好發(fā)生k次的概率是:其中 于是得到隨機(jī)變量的概率分布如下:我們稱這樣的隨機(jī)變量服從二項(xiàng)分布,記作B(n·p),其中n,p為參數(shù),并記.二項(xiàng)分布的判斷與應(yīng)用.二項(xiàng)分布,實(shí)際是對(duì)n次獨(dú)立重復(fù)試驗(yàn).關(guān)鍵是看某一事件是否是進(jìn)行n次獨(dú)立重復(fù),且每次試驗(yàn)只有兩種結(jié)果,如果不滿足此兩條件,隨機(jī)變量就不服從二項(xiàng)分布.當(dāng)隨機(jī)變量的總

3、體很大且抽取的樣本容量相對(duì)于總體來(lái)說(shuō)又比較小,而每次抽取時(shí)又只有兩種試驗(yàn)結(jié)果,此時(shí)可以把它看作獨(dú)立重復(fù)試驗(yàn),利用二項(xiàng)分布求其分布列.4. 幾何分布:“”表示在第k次獨(dú)立重復(fù)試驗(yàn)時(shí),事件第一次發(fā)生,如果把k次試驗(yàn)時(shí)事件A發(fā)生記為,事A不發(fā)生記為,那么.根據(jù)相互獨(dú)立事件的概率乘法分式:于是得到隨機(jī)變量的概率分布列.123kPq qp 我們稱服從幾何分布,并記,其中二.數(shù)學(xué)期望與方差.1. 期望的含義:一般地,若離散型隨機(jī)變量的概率分布為P則稱為的數(shù)學(xué)期望或平均數(shù)、均值.數(shù)學(xué)期望又簡(jiǎn)稱期望.數(shù)學(xué)期望反映了離散型隨機(jī)變量取值的平均水平.2. 隨機(jī)變量的數(shù)學(xué)期望: 當(dāng)時(shí),即常數(shù)的數(shù)學(xué)期望就是這個(gè)常數(shù)本身

4、.當(dāng)時(shí),即隨機(jī)變量與常數(shù)之和的期望等于的期望與這個(gè)常數(shù)的和.當(dāng)時(shí),即常數(shù)與隨機(jī)變量乘積的期望等于這個(gè)常數(shù)與隨機(jī)變量期望的乘積.01Pqp單點(diǎn)分布:其分布列為:. 兩點(diǎn)分布:,其分布列為:(p + q = 1)二項(xiàng)分布: 其分布列為.(P為發(fā)生的概率)幾何分布: 其分布列為.(P為發(fā)生的概率)3.方差、標(biāo)準(zhǔn)差的定義:當(dāng)已知隨機(jī)變量的分布列為時(shí),則稱為的方差. 顯然,故為的根方差或標(biāo)準(zhǔn)差.隨機(jī)變量的方差與標(biāo)準(zhǔn)差都反映了隨機(jī)變量取值的穩(wěn)定與波動(dòng),集中與離散的程度.越小,穩(wěn)定性越高,波動(dòng)越小.4.方差的性質(zhì).隨機(jī)變量的方差.(a、b均為常數(shù))01Pqp單點(diǎn)分布: 其分布列為兩點(diǎn)分布: 其分布列為:(p

5、 + q = 1)二項(xiàng)分布:幾何分布: 5. 期望與方差的關(guān)系.如果和都存在,則設(shè)和是互相獨(dú)立的兩個(gè)隨機(jī)變量,則期望與方差的轉(zhuǎn)化: (因?yàn)闉橐怀?shù))一.特殊元素和特殊位置優(yōu)先策略例1.由0,1,2,3,4,5可以組成多少個(gè)沒(méi)有重復(fù)數(shù)字五位奇數(shù).解:由于末位和首位有特殊要求,應(yīng)該優(yōu)先安排,以免不合要求的元素占了這兩個(gè)位置. 先排末位共有 然后排首位共有 最后排其它位置共有 由分步計(jì)數(shù)原理得二.相鄰元素捆綁策略例2. 7人站成一排 ,其中甲乙相鄰且丙丁相鄰, 共有多少種不同的排法.解:可先將甲乙兩元素捆綁成整體并看成一個(gè)復(fù)合元素,同時(shí)丙丁也看成一個(gè)復(fù)合元素,再與其它元素進(jìn)行排列,同時(shí)對(duì)相鄰元素內(nèi)部

6、進(jìn)行自排。由分步計(jì)數(shù)原理可得共有種不同的排法三.不相鄰問(wèn)題插空策略例3.一個(gè)晚會(huì)的節(jié)目有4個(gè)舞蹈,2個(gè)相聲,3個(gè)獨(dú)唱,舞蹈節(jié)目不能連續(xù)出場(chǎng),則節(jié)目的出場(chǎng)順序有多少種?解:分兩步進(jìn)行第一步排2個(gè)相聲和3個(gè)獨(dú)唱共有種,第二步將4舞蹈插入第一步排好的6個(gè)元素中間包含首尾兩個(gè)空位共有種不同的方法,由分步計(jì)數(shù)原理,節(jié)目的不同順序共有 種四.定序問(wèn)題倍縮空位插入策略例4.7人排隊(duì),其中甲乙丙3人順序一定共有多少不同的排法解: (空位法)設(shè)想有7把椅子讓除甲乙丙以外的四人就坐共有種方法,其余的三個(gè)位置甲乙丙共有 1種坐法,則共有種方法。 思考:可以先讓甲乙丙就坐嗎? (插入法)先排甲乙丙三個(gè)人,共有1種排法

7、,再把其余4四人依次插入共有 幾種方法五.重排問(wèn)題求冪策略例5.把6名實(shí)習(xí)生分配到7個(gè)車間實(shí)習(xí),共有多少種不同的分法解:完成此事共分六步:把第一名實(shí)習(xí)生分配到車間有 7 種分法.把第二名實(shí)習(xí)生分配到車間也有7種分依此類推,由分步計(jì)數(shù)原理共有種不同的排法六.多排問(wèn)題直排策略例6.8人排成前后兩排,每排4人,其中甲乙在前排,丙在后排,共有多少排法解:8人排前后兩排,相當(dāng)于8人坐8把椅子,可以把椅子排成一排.個(gè)特殊元素有種,再排后4個(gè)位置上的特殊元素丙有種,其余的5人在5個(gè)位置上任意排列有種,則共有種 七.排列組合混合問(wèn)題先選后排策略例7.有5個(gè)不同的小球,裝入4個(gè)不同的盒內(nèi),每盒至少裝一個(gè)球,共有

8、多少不同的裝法.解:第一步從5個(gè)球中選出2個(gè)組成復(fù)合元共有種方法.再把4個(gè)元素(包含一個(gè)復(fù)合元素)裝入4個(gè)不同的盒內(nèi)有種方法,根據(jù)分步計(jì)數(shù)原理裝球的方法共有八.元素相同問(wèn)題隔板策略例8.有10個(gè)運(yùn)動(dòng)員名額,分給7個(gè)班,每班至少一個(gè),有多少種分配方案? 解:因?yàn)?0個(gè)名額沒(méi)有差別,把它們排成一排。相鄰名額之間形成個(gè)空隙。在個(gè)空檔中選個(gè)位置插個(gè)隔板,可把名額分成份,對(duì)應(yīng)地分給個(gè)班級(jí),每一種插板方法對(duì)應(yīng)一種分法共有種分法。九.正難則反總體淘汰策略例9.從0,1,2,3,4,5,6,7,8,9這十個(gè)數(shù)字中取出三個(gè)數(shù),使其和為不小于10的偶數(shù),不同的 取法有多少種?解:這問(wèn)題中如果直接求不小于10的偶數(shù)很困難,可用總體淘汰法。這十個(gè)數(shù)字中有5個(gè)偶數(shù)5個(gè)奇數(shù),所取的三個(gè)數(shù)含有3個(gè)偶數(shù)的取法有,只含有1個(gè)偶數(shù)的取法有,和為偶數(shù)的取法共有。再淘汰和小于10的偶數(shù)共9種,符合條件的取法共有十. 合理分類與分步策略例10.在一次演唱會(huì)上共10名演員,其中8人能能唱歌,5人會(huì)跳舞,現(xiàn)要演出一個(gè)2人唱歌2人伴

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論