步步高數(shù)學(xué)人教A版2017年13.1_第1頁(yè)
步步高數(shù)學(xué)人教A版2017年13.1_第2頁(yè)
步步高數(shù)學(xué)人教A版2017年13.1_第3頁(yè)
步步高數(shù)學(xué)人教A版2017年13.1_第4頁(yè)
步步高數(shù)學(xué)人教A版2017年13.1_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、1合情推理(1)歸納推理定義:由某類事物的部分對(duì)象具有某些特征,推出該類事物的全部對(duì)象都具有這些特征的推理,或者由個(gè)別事實(shí)概括出一般結(jié)論的推理,稱為歸納推理(簡(jiǎn)稱歸納)特點(diǎn):由部分到整體、由個(gè)別到一般的推理(2)類比推理定義:由兩類對(duì)象具有某些類似特征和其中一類對(duì)象的某些已知特征,推出另一類對(duì)象也具有這些特征的推理稱為類比推理(簡(jiǎn)稱類比)特點(diǎn):類比推理是由特殊到特殊的推理(3)合情推理歸納推理和類比推理都是根據(jù)已有的事實(shí),經(jīng)過(guò)觀察、分析、比較、聯(lián)想,再進(jìn)行歸納、類比,然后提出猜想的推理,我們把它們統(tǒng)稱為合情推理2演繹推理(1)演繹推理從一般性的原理出發(fā),推出某個(gè)特殊情況下的結(jié)論,我們把這種推理

2、稱為演繹推理簡(jiǎn)言之,演繹推理是由一般到特殊的推理(2)“三段論”是演繹推理的一般模式大前提已知的一般原理;小前提所研究的特殊情況;結(jié)論根據(jù)一般原理,對(duì)特殊情況做出的判斷【思考辨析】判斷下面結(jié)論是否正確(請(qǐng)?jiān)诶ㄌ?hào)中打“”或“×”)(1)歸納推理得到的結(jié)論不一定正確,類比推理得到的結(jié)論一定正確(×)(2)由平面三角形的性質(zhì)推測(cè)空間四面體的性質(zhì),這是一種合情推理()(3)在類比時(shí),平面中的三角形與空間中的平行六面體作為類比對(duì)象較為合適(×)(4)“所有3的倍數(shù)都是9的倍數(shù),某數(shù)m是3的倍數(shù),則m一定是9的倍數(shù)”,這是三段論推理,但其結(jié)論是錯(cuò)誤的()(5)一個(gè)數(shù)列的前三項(xiàng)

3、是1,2,3,那么這個(gè)數(shù)列的通項(xiàng)公式是ann(nN*)(×)(6)在演繹推理中,只要符合演繹推理的形式,結(jié)論就一定正確(×)1觀察下列各式:ab1,a2b23,a3b34,a4b47,a5b511,則a10b10等于()A28 B76C123 D199答案C解析從給出的式子特點(diǎn)觀察可推知,等式右端的值,從第三項(xiàng)開始,后一個(gè)式子的右端值等于它前面兩個(gè)式子右端值的和,依據(jù)此規(guī)律,a10b10123.2命題“有些有理數(shù)是無(wú)限循環(huán)小數(shù),整數(shù)是有理數(shù),所以整數(shù)是無(wú)限循環(huán)小數(shù)”是假命題,推理錯(cuò)誤的原因是()A使用了歸納推理B使用了類比推理C使用了“三段論”,但推理形式錯(cuò)誤D使用了“三段

4、論”,但小前提錯(cuò)誤答案C解析由“三段論”的推理方式可知,該推理的錯(cuò)誤原因是推理形式錯(cuò)誤3(2014·福建)已知集合a,b,c0,1,2,且下列三個(gè)關(guān)系:a2,b2,c0有且只有一個(gè)正確,則100a10bc_.答案201解析因?yàn)槿齻€(gè)關(guān)系中只有一個(gè)正確,分三種情況討論:若正確,則不正確,得到由于集合a,b,c0,1,2,所以解得ab1,c0,或a1,bc0,或b1,ac0,與互異性矛盾;若正確,則不正確,得到與互異性矛盾;若正確,則不正確,得到則符合題意,所以100a10bc201.4類比平面內(nèi)“垂直于同一條直線的兩條直線互相平行”的性質(zhì),可得出空間內(nèi)的下列結(jié)論:垂直于同一個(gè)平面的兩條直

5、線互相平行;垂直于同一條直線的兩條直線互相平行;垂直于同一個(gè)平面的兩個(gè)平面互相平行;垂直于同一條直線的兩個(gè)平面互相平行則正確的結(jié)論是()A BC D答案D解析顯然正確;對(duì)于,在空間中垂直于同一條直線的兩條直線可以平行,也可以異面或相交;對(duì)于,在空間中垂直于同一個(gè)平面的兩個(gè)平面可以平行,也可以相交5(教材改編)在等差數(shù)列an中,若a100,則有a1a2ana1a2a19n (n<19,nN*)成立,類比上述性質(zhì),在等比數(shù)列bn中,若b91,則b1b2b3b4bn_.答案b1b2b3b4b17n (n<17,nN*)題型一歸納推理命題點(diǎn)1與數(shù)字有關(guān)的等式的推理例1(2015·

6、陜西)觀察下列等式:1,1,1,據(jù)此規(guī)律,第n個(gè)等式可為_答案1解析等式左邊的特征:第1個(gè)等式有2項(xiàng),第2個(gè)有4項(xiàng),第3個(gè)有6項(xiàng),且正負(fù)交錯(cuò),故第n個(gè)等式左邊有2n項(xiàng)且正負(fù)交錯(cuò),應(yīng)為1;等式右邊的特征:第1個(gè)有1項(xiàng),第2個(gè)有2項(xiàng),第3個(gè)有3項(xiàng),故第n個(gè)有n項(xiàng),且由前幾個(gè)的規(guī)律不難發(fā)現(xiàn)第n個(gè)等式右邊應(yīng)為.命題點(diǎn)2與不等式有關(guān)的推理例2已知x(0,),觀察下列各式:x2,x3,x4,類比得xn1(nN*),則a_.答案nn解析第一個(gè)式子是n1的情況,此時(shí)a111;第二個(gè)式子是n2的情況,此時(shí)a224;第三個(gè)式子是n3的情況,此時(shí)a3327,歸納可知ann.命題點(diǎn)3與數(shù)列有關(guān)的推理例3古希臘畢達(dá)哥拉

7、斯學(xué)派的數(shù)學(xué)家研究過(guò)各種多邊形數(shù),如三角形數(shù)1,3,6,10,第n個(gè)三角形數(shù)為n2n,記第n個(gè)k邊形數(shù)為N(n,k)(k3),以下列出了部分k邊形數(shù)中第n個(gè)數(shù)的表達(dá)式:三角形數(shù)N(n,3)n2n,正方形數(shù) N(n,4)n2,五邊形數(shù) N(n,5)n2n,六邊形數(shù) N(n,6)2n2n可以推測(cè)N(n,k)的表達(dá)式,由此計(jì)算N(10,24)_.答案1 000解析由N(n,4)n2,N(n,6)2n2n,可以推測(cè):當(dāng)k為偶數(shù)時(shí),N(n,k)n2n,N(10,24)×100×101 1001001 000.命題點(diǎn)4與圖形變化有關(guān)的推理例4某種平面分形圖如下圖所示,一級(jí)分形圖是由一點(diǎn)

8、出發(fā)的三條線段,長(zhǎng)度均為1,兩兩夾角為120°;二級(jí)分形圖是在一級(jí)分形圖的每條線段的末端出發(fā)再生成兩條長(zhǎng)度為原來(lái)的線段,且這兩條線段與原線段兩夾角為120°,依此規(guī)律得到n級(jí)分形圖(1)n級(jí)分形圖中共有_條線段;(2)n級(jí)分形圖中所有線段長(zhǎng)度之和為_答案(1)3×2n3(2)99×n解析(1)分形圖的每條線段的末端出發(fā)再生成兩條線段,由題圖知,一級(jí)分形圖中有3(3×23)條線段,二級(jí)分形圖中有9(3×223)條線段,三級(jí)分形圖中有21(3×233)條線段,按此規(guī)律n級(jí)分形圖中的線段條數(shù)an(3×2n3) (nN*)

9、(2)分形圖的每條線段的末端出發(fā)再生成兩條長(zhǎng)度為原來(lái)的線段,n級(jí)分形圖中第n級(jí)的所有線段的長(zhǎng)度和為bn3×n1 (nN*),n級(jí)分形圖中所有線段長(zhǎng)度之和為Sn3×03×13×n13×99×n.思維升華歸納推理問(wèn)題的常見(jiàn)類型及解題策略(1)與數(shù)字有關(guān)的等式的推理觀察數(shù)字特點(diǎn),找出等式左右兩側(cè)的規(guī)律及符號(hào)可解(2)與不等式有關(guān)的推理觀察每個(gè)不等式的特點(diǎn),注意是縱向看,找到規(guī)律后可解(3)與數(shù)列有關(guān)的推理通常是先求出幾個(gè)特殊現(xiàn)象,采用不完全歸納法,找出數(shù)列的項(xiàng)與項(xiàng)數(shù)的關(guān)系,列出即可(4)與圖形變化有關(guān)的推理合理利用特殊圖形歸納推理得出結(jié)論,

10、并用賦值檢驗(yàn)法驗(yàn)證其真?zhèn)涡?1)觀察下圖,可推斷出“x”處應(yīng)該填的數(shù)字是_(2)如圖,有一個(gè)六邊形的點(diǎn)陣,它的中心是1個(gè)點(diǎn)(算第1層),第2層每邊有2個(gè)點(diǎn),第3層每邊有3個(gè)點(diǎn),依此類推,如果一個(gè)六邊形點(diǎn)陣共有169個(gè)點(diǎn),那么它的層數(shù)為()A6 B7 C8 D9答案(1)183(2)C解析(1)由前兩個(gè)圖形發(fā)現(xiàn):中間數(shù)等于四周四個(gè)數(shù)的平方和,“x”處應(yīng)填的數(shù)字是325272102183.(2)由題意知,第1層的點(diǎn)數(shù)為1,第2層的點(diǎn)數(shù)為6,第3層的點(diǎn)數(shù)為2×6,第4層的點(diǎn)數(shù)為3×6,第5層的點(diǎn)數(shù)為4×6,第n(n2,nN*)層的點(diǎn)數(shù)為6(n1)設(shè)一個(gè)點(diǎn)陣有n(n2,n

11、N*)層,則共有的點(diǎn)數(shù)為166×26(n1)1×(n1)3n23n1,由題意得3n23n1169,即(n7)·(n8)0,所以n8,故共有8層題型二類比推理例5已知數(shù)列an為等差數(shù)列,若ama,anb(nm1,m,nN*),則amn.類比等差數(shù)列an的上述結(jié)論,對(duì)于等比數(shù)列bn(bn>0,nN*),若bmc,bnd(nm2,m,nN*),則可以得到bmn_.答案解析設(shè)數(shù)列an的公差為d,數(shù)列bn的公比為q.因?yàn)閍na1(n1)d,bnb1qn1,amn,所以類比得bmn.思維升華(1)進(jìn)行類比推理,應(yīng)從具體問(wèn)題出發(fā),通過(guò)觀察、分析、聯(lián)想進(jìn)行類比,提出猜想其中

12、找到合適的類比對(duì)象是解題的關(guān)鍵(2)類比推理常見(jiàn)的情形有平面與空間類比;低維的與高維的類比;等差數(shù)列與等比數(shù)列類比;數(shù)的運(yùn)算與向量的運(yùn)算類比;圓錐曲線間的類比等在平面上,設(shè)ha,hb,hc是三角形ABC三條邊上的高,P為三角形內(nèi)任一點(diǎn),P到相應(yīng)三邊的距離分別為Pa,Pb,Pc,我們可以得到結(jié)論:1.把它類比到空間,則三棱錐中的類似結(jié)論為_答案1解析設(shè)ha,hb,hc,hd分別是三棱錐ABCD四個(gè)面上的高,P為三棱錐ABCD內(nèi)任一點(diǎn),P到相應(yīng)四個(gè)面的距離分別為Pa,Pb,Pc,Pd,于是可以得出結(jié)論:1.題型三演繹推理例6數(shù)列an的前n項(xiàng)和記為Sn,已知a11,an1Sn (nN*)證明:(1)

13、數(shù)列是等比數(shù)列;(2)Sn14an.證明(1)an1Sn1Sn,an1Sn,(n2)Snn(Sn1Sn),即nSn12(n1)Sn.2·,又10,(小前提)故是以1為首項(xiàng),2為公比的等比數(shù)列(結(jié)論)(大前提是等比數(shù)列的定義,這里省略了)(2)由(1)可知4·(n2),Sn14(n1)·4··Sn14an(n2),(小前提)又a23S13,S2a1a21344a1,(小前提)對(duì)于任意正整數(shù)n,都有Sn14an.(結(jié)論)(第(2)問(wèn)的大前提是第(1)問(wèn)的結(jié)論以及題中的已知條件)思維升華演繹推理是由一般到特殊的推理,常用的一般模式為三段論,演繹推理的

14、前提和結(jié)論之間有著某種蘊(yùn)含關(guān)系,解題時(shí)要找準(zhǔn)正確的大前提,一般地,若大前提不明確時(shí),可找一個(gè)使結(jié)論成立的充分條件作為大前提某國(guó)家流傳這樣的一個(gè)政治笑話:“鵝吃白菜,參議員先生也吃白菜,所以參議員先生是鵝”結(jié)論顯然是錯(cuò)誤的,是因?yàn)?)A大前提錯(cuò)誤 B小前提錯(cuò)誤C推理形式錯(cuò)誤 D非以上錯(cuò)誤答案C解析因?yàn)榇笄疤岬男问健谤Z吃白菜”,不是全稱命題,大前提本身正確,小前提“參議員先生也吃白菜”本身也正確,但不是大前提下的特殊情況,鵝與人不能類比,所以不符合三段論推理形式,所以推理形式錯(cuò)誤10高考中的合情推理問(wèn)題典例1傳說(shuō)古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家經(jīng)常在沙灘上畫點(diǎn)或用小石子表示數(shù)他們研究過(guò)如圖所示的三角形

15、數(shù):將三角形數(shù)1,3,6,10,記為數(shù)列an,將可被5整除的三角形數(shù)按從小到大的順序組成一個(gè)新數(shù)列bn,可以推測(cè):(1)b2 014是數(shù)列an的第_項(xiàng);(2)b2k1_.(用k表示)解析(1)an12n,b1a4,b2a5,b3a9,b4a10,b5a14,b6a15,b2 014a5 035.(2)由(1)知b2k1.答案(1)5 035(2)典例2設(shè)S,T是R的兩個(gè)非空子集,如果存在一個(gè)從S到T的函數(shù)yf(x)滿足:(1)Tf(x)|xS;(2)對(duì)任意x1,x2S,當(dāng)x1<x2時(shí),恒有f(x1)<f(x2)那么稱這兩個(gè)集合“保序同構(gòu)”以下集合對(duì)不是“保序同構(gòu)”的是()AAN*,

16、BNBAx|1x3,Bx|x8或0<x10CAx|0<x<1,BRDAZ,BQ解析對(duì)選項(xiàng)A,取f(x)x1,xN*,所以AN*,BN是“保序同構(gòu)”的,應(yīng)排除A;對(duì)選項(xiàng)B,取f(x)所以Ax|1x3,Bx|x8或0<x10是“保序同構(gòu)”的,應(yīng)排除B;對(duì)選項(xiàng)C,取f(x)tan(x)(0<x<1),所以Ax|0<x<1,BR是“保序同構(gòu)”的,應(yīng)排除C.選D.答案D溫馨提醒(1)解決歸納推理問(wèn)題,常因條件不足,了解不全面而致誤應(yīng)由條件多列舉一些特殊情況再進(jìn)行歸納(2)解決類比問(wèn)題,應(yīng)先弄清所給問(wèn)題的實(shí)質(zhì)及已知結(jié)論成立的緣由,再去類比另一類問(wèn)題方法與技巧

17、1合情推理的過(guò)程概括為2演繹推理是從一般的原理出發(fā),推出某個(gè)特殊情況的結(jié)論的推理方法,是由一般到特殊的推理,常用的一般模式是三段論數(shù)學(xué)問(wèn)題的證明主要通過(guò)演繹推理來(lái)進(jìn)行失誤與防范1合情推理是從已知的結(jié)論推測(cè)未知的結(jié)論,發(fā)現(xiàn)與猜想的結(jié)論都要經(jīng)過(guò)進(jìn)一步嚴(yán)格證明2演繹推理是由一般到特殊的證明,它常用來(lái)證明和推理數(shù)學(xué)問(wèn)題,注意推理過(guò)程的嚴(yán)密性,書寫格式的規(guī)范性3合情推理中運(yùn)用猜想時(shí)不能憑空想象,要有猜想或拓展依據(jù)A組專項(xiàng)基礎(chǔ)訓(xùn)練(時(shí)間:35分鐘)1下列推理是歸納推理的是()AA,B為定點(diǎn),動(dòng)點(diǎn)P滿足|PA|PB|2a>|AB|,則P點(diǎn)的軌跡為橢圓B由a11,an3n1,求出S1,S2,S3,猜想出

18、數(shù)列的前n項(xiàng)和Sn的表達(dá)式C由圓x2y2r2的面積r2,猜想出橢圓1的面積SabD科學(xué)家利用魚的沉浮原理制造潛艇答案B解析從S1,S2,S3猜想出數(shù)列的前n項(xiàng)和Sn,是從特殊到一般的推理,所以B是歸納推理,故應(yīng)選B.2正弦函數(shù)是奇函數(shù),f(x)sin(x21)是正弦函數(shù),因此f(x)sin(x21)是奇函數(shù),以上推理()A結(jié)論正確 B大前提不正確C小前提不正確 D全不正確答案C解析f(x)sin(x21)不是正弦函數(shù),所以小前提錯(cuò)誤3平面內(nèi)有n條直線,最多可將平面分成f(n)個(gè)區(qū)域,則f(n)的表達(dá)式為()An1 B2nC. Dn2n1答案C解析1條直線將平面分成11個(gè)區(qū)域;2條直線最多可將平

19、面分成1(12)4個(gè)區(qū)域;3條直線最多可將平面分成1(123)7個(gè)區(qū)域;n條直線最多可將平面分成1(123n)1個(gè)區(qū)域,選C.4給出下列三個(gè)類比結(jié)論:(ab)nanbn與(ab)n類比,則有(ab)nanbn;loga(xy)logaxlogay與sin()類比,則有sin()sin sin ;(ab)2a22abb2與(ab)2類比,則有(ab)2a22a·bb2.其中正確結(jié)論的個(gè)數(shù)是()A0 B1C2 D3答案B解析(ab)nanbn(n1,a·b0),故錯(cuò)誤sin()sin sin 不恒成立如30°,60°,sin 90°1,sin 30

20、°·sin 60°,故錯(cuò)誤由向量的運(yùn)算公式知正確5若數(shù)列an是等差數(shù)列,則數(shù)列bn(bn)也為等差數(shù)列類比這一性質(zhì)可知,若正項(xiàng)數(shù)列cn是等比數(shù)列,且dn也是等比數(shù)列,則dn的表達(dá)式應(yīng)為()Adn BdnCdn Ddn答案D解析若an是等差數(shù)列,則a1a2anna1d,bna1dna1,即bn為等差數(shù)列;若cn是等比數(shù)列,則c1·c2··cnc·q12(n1)c·q,dnc1·q,即dn為等比數(shù)列,故選D.6觀察下列不等式:1<,1<,1<,照此規(guī)律,第五個(gè)不等式為_答案1<解析觀察

21、每行不等式的特點(diǎn),每行不等式左端最后一個(gè)分?jǐn)?shù)的分母的開方與右端值的分母相等,且每行右端分?jǐn)?shù)的分子構(gòu)成等差數(shù)列故第五個(gè)不等式為1<.7若P0(x0,y0)在橢圓1(a>b>0)外,過(guò)P0作橢圓的兩條切線的切點(diǎn)為P1,P2,則切點(diǎn)弦P1P2所在的直線方程是1,那么對(duì)于雙曲線則有如下命題:若P0(x0,y0)在雙曲線1(a>0,b>0)外,過(guò)P0作雙曲線的兩條切線,切點(diǎn)為P1,P2,則切點(diǎn)弦P1P2所在直線的方程是_答案1解析設(shè)P1(x1,y1),P2(x2,y2),則P1,P2的切線方程分別是1,1.因?yàn)镻0(x0,y0)在這兩條切線上,故有1,1,這說(shuō)明P1(x1,

22、y1),P2(x2,y2)在直線1上,故切點(diǎn)弦P1P2所在的直線方程是1.8已知等差數(shù)列an中,有,則在等比數(shù)列bn中,會(huì)有類似的結(jié)論:_.答案解析由等比數(shù)列的性質(zhì)可知b1b30b2b29b11b20,.9設(shè)f(x),先分別求f(0)f(1),f(1)f(2),f(2)f(3),然后歸納猜想一般性結(jié)論,并給出證明解f(0)f(1),同理可得:f(1)f(2),f(2)f(3),并注意到在這三個(gè)特殊式子中,自變量之和均等于1.歸納猜想得:當(dāng)x1x21時(shí),均有f(x1)f(x2).證明:設(shè)x1x21,f(x1)f(x2)10在RtABC中,ABAC,ADBC于D,求證:,那么在四面體ABCD中,類

23、比上述結(jié)論,你能得到怎樣的猜想,并說(shuō)明理由解如圖所示,由射影定理得AD2BD·DC,AB2BD·BC,AC2BC·DC,.又BC2AB2AC2,.猜想,四面體ABCD中,AB、AC、AD兩兩垂直,AE平面BCD,則.證明:如圖,連接BE并延長(zhǎng)交CD于F,連接AF.ABAC,ABAD,ACADD,AC平面ACD,AD平面ACD,AB平面ACD.AF平面ACD,ABAF.在RtABF中,AEBF,.在RtACD中,AFCD,.B組專項(xiàng)能力提升(時(shí)間:30分鐘)11已知正方形的對(duì)角線相等;矩形的對(duì)角線相等;正方形是矩形根據(jù)“三段論”推理出一個(gè)結(jié)論則這個(gè)結(jié)論是()A正方形

24、的對(duì)角線相等B矩形的對(duì)角線相等C正方形是矩形D其他答案A解析根據(jù)演繹推理的特點(diǎn),正方形與矩形是特殊與一般的關(guān)系,所以結(jié)論是正方形的對(duì)角線相等12.如圖,我們知道,圓環(huán)也可以看作線段AB繞圓心O旋轉(zhuǎn)一周所形成的平面圖形,又圓環(huán)的面積S(R2r2)(Rr)×2×.所以,圓環(huán)的面積等于以線段ABRr為寬,以AB中點(diǎn)繞圓心O旋轉(zhuǎn)一周所形成的圓的周長(zhǎng)2×為長(zhǎng)的矩形面積請(qǐng)你將上述想法拓展到空間,并解決下列問(wèn)題:若將平面區(qū)域M(x,y)|(xd)2y2r2(其中0<r<d)繞y軸旋轉(zhuǎn)一周,則所形成的旋轉(zhuǎn)體的體積是()A2r2d B22r2dC2rd2 D22rd2答

25、案B解析平面區(qū)域M的面積為r2,由類比知識(shí)可知:平面區(qū)域M繞y軸旋轉(zhuǎn)一周得到的旋轉(zhuǎn)體為實(shí)心的車輪內(nèi)胎,旋轉(zhuǎn)體的體積等于以圓(面積為r2)為底,以O(shè)為圓心、d為半徑的圓的周長(zhǎng)2d為高的圓柱的體積,所以旋轉(zhuǎn)體的體積Vr2×2d22r2d,選B.13如圖(1)若從點(diǎn)O所作的兩條射線OM、ON上分別有點(diǎn)M1、M2與點(diǎn)N1、N2,則三角形面積之比·.如圖(2),若從點(diǎn)O所作的不在同一平面內(nèi)的三條射線OP、OQ和OR上分別有點(diǎn)P1、P2,點(diǎn)Q1、Q2和點(diǎn)R1、R2,則類似的結(jié)論為_答案··解析考查類比推理問(wèn)題,由圖看出三棱錐P1OR1Q1及三棱錐P2OR2Q2的底面面積之比為·,又過(guò)頂點(diǎn)分別向底面作垂線,得到高的比為,故體積之比為··.14某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個(gè)式子的值都等于同一個(gè)常數(shù):sin213°cos217°sin 13°cos 17°;sin215°cos215°sin 15°cos 15°;sin218°cos212°sin 18°cos 12°;sin2(18°)cos248°sin(18°)cos 48°;sin

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論