版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、目錄 上頁 下頁 返回 結(jié)束 第五節(jié)一、有向曲面及曲面元素的投影一、有向曲面及曲面元素的投影 二、二、 對坐標的曲面積分的概念與性質(zhì)對坐標的曲面積分的概念與性質(zhì) 三、對坐標的曲面積分的計算法三、對坐標的曲面積分的計算法四、兩類曲面積分的聯(lián)系四、兩類曲面積分的聯(lián)系對坐標的曲面積分 第十一章 目錄 上頁 下頁 返回 結(jié)束 一、有向曲面及曲面元素的投影一、有向曲面及曲面元素的投影 曲面分類雙側(cè)曲面單側(cè)曲面莫比烏斯帶莫比烏斯帶曲面分上側(cè)和下側(cè)曲面分內(nèi)側(cè)和外側(cè)曲面分左側(cè)和右側(cè)(單側(cè)曲面的典型) 目錄 上頁 下頁 返回 結(jié)束 其方向用法向量指向方向余弦coscoscos 0 為前側(cè) 0 為右側(cè) 0 為上側(cè)
2、 0 為下側(cè)外側(cè)內(nèi)側(cè) 設 為有向曲面,)(yxSSyxS)(側(cè)的規(guī)定 指定了側(cè)的曲面叫有向曲面, 表示 :其面元在 xOy 面上的投影記為,0)(yxyxS)(的面積為則規(guī)定,)(yx,)(yx,0時當0cos時當0cos時當0cos類似可規(guī)定zxyzSS)( ,)(目錄 上頁 下頁 返回 結(jié)束 二、二、 對坐標的曲面積分的概念與性質(zhì)對坐標的曲面積分的概念與性質(zhì) 1. 引例引例 設穩(wěn)定流動的不可壓縮流體的速度場為設穩(wěn)定流動的不可壓縮流體的速度場為求單位時間流過有向曲面 的流量 . S分析分析: 假設假設 是面積為是面積為S 的平的平面面, 則流量法向量: 流速為常向量: ),(),(),(zy
3、xRzyxQzyxPv )cos,cos,(cosnvcosvS nvSnv目錄 上頁 下頁 返回 結(jié)束 對一般的有向曲面 ,用“大化小, 常代變, 近似和, 取極限” ni 10lim0limni 1iiiiPcos),(iiiiRcos),(0limni 1zyiiiiSP)(,(xziiiiSQ)(,(yxiiiiSR)(,(iiiiQcos),(iS對穩(wěn)定流動的不可壓縮流體的速度場),(),(),(zyxRzyxQzyxPv 進行分析可得iniviiiSnv)cos,cos,(cosiiiin設, 那么 目錄 上頁 下頁 返回 結(jié)束 設 為光滑的有向曲面, 在 上定義了一個意分割和在局
4、部面元上任意取點,0limni 1zyiiiiSP)(,(xziiiiSQ)(,(分,yxRxzQzyPdddddd記作P, Q, R 叫做被積函數(shù); 叫做積分曲面.yxiiiiSR)(,(或第二類曲面積分.下列極限都存在向量場xdydzdPQR),(),(),(zyxRzyxQzyxPA 若對 的任 則稱此極限為向量場 A 在有向曲面上對坐標的曲面積2. 定義:定義:目錄 上頁 下頁 返回 結(jié)束 引例中, 流過有向曲面 的流體的流量為zyPddxzQdd稱為Q 在有向曲面 上對 z, x 的曲面積分;yxRdd稱為R 在有向曲面 上對 x, y 的曲面積分.稱為P 在有向曲面 上對 y, z
5、 的曲面積分;yxRxzQzyPdddddd若記 正側(cè)的單位法向量為令)cos,cos,cos(n)dd,dd,d(dddyxxzzySnS) ),(, ),(, ),(zyxRzyxQzyxPA 則對坐標的曲面積分也常寫成如下向量形式目錄 上頁 下頁 返回 結(jié)束 3. 性質(zhì)性質(zhì)(1) 假設,1kiiki 1之間無公共內(nèi)點, 那么i且(2) 用 表示 的反向曲面, 那么SA dSASAddiSAdyxRxzQzyPddddddSnAdSA d目錄 上頁 下頁 返回 結(jié)束 三、對坐標的曲面積分的計算法三、對坐標的曲面積分的計算法定理定理: 設光滑曲面設光滑曲面yxDyxyxzz),( , ),(
6、:取上側(cè),),(zyxR是 上的連續(xù)函數(shù), 那么yxzyxRdd),() ,(yxDyxR),(yxzyxdd證證:0limni 1yxiiiiSR)(,(yxiS )(yxi)( 取上側(cè),),(iiiz0limni 1) ,(iiR),(iizyxi)(yxx,yzyxRyxDdd)(,(yxzyxRdd),(目錄 上頁 下頁 返回 結(jié)束 假設,),( , ),(:zyDzyzyxx則有zyzyxPdd),(), (zy,PzyD),(zyxzydd 假設,),( , ),(:xzDxzxzyy則有xzzyxQdd),() , zxQxzD,(),(xzyxzdd(前正后負)(右正左負)說明
7、說明: 如果積分曲面 取下側(cè), 那么yxzyxRdd),() ,(yxDyxR),(yxzyxdd目錄 上頁 下頁 返回 結(jié)束 例例1. 計算計算yxxzxzzyzyyxdd)(dd)(dd)(其中 是以原點為中心, 邊長為 a 的正立方體的整個表面的外側(cè).解解: 利用對稱性.原式y(tǒng)xxzdd)(3 的頂部 ),(:2221aaayxz取上側(cè) 的底部 ),(:2222aaayxz取下側(cè)1dd)(3yxxzyxDyxxadd)2(3yxxz2dd)(yxxayxDdd)2(yxDyxadd333axzyO目錄 上頁 下頁 返回 結(jié)束 解解: 把把 分為上下兩部分分為上下兩部分2211:yxz根據(jù)
8、對稱性0ddyxxyz 考慮考慮: 下述解法是否正確下述解法是否正確:例例2. 計算曲面積分計算曲面積分,ddyxzyx其中 為球面2x外側(cè)在第一和第五卦限部分. zyx1O12yxD0,01:),(22yxyxDyxyx2221:yxz122zy目錄 上頁 下頁 返回 結(jié)束 zyx1O12yxDyxDyxyxyxdd 1222221cossin2rryxDrrrd1210315220d2sinyxzyxdd2ddyxzyx1ddyxzyxyxDyxxydd )1(22yx yxDyxxydd 221yx ddrr目錄 上頁 下頁 返回 結(jié)束 上Szzyx2cosdd下Szzyx2cosdd例
9、例3. 設設S 是球面是球面1222zyx的外側(cè) , 計算SxxzyI2cosdd2解解: 利用輪換對稱性利用輪換對稱性, 有有Sxxzy2cosdd2SSzyxyxz22cosddcosddSzzyxI2cosdd102221cos1drrrr102221cos1d4rr1tan4yxz2cosddzzyx2cosdd,cosdd22Szzyx122222221cos1ddyxyxyxyx20d220目錄 上頁 下頁 返回 結(jié)束 四、兩類曲面積分的聯(lián)系四、兩類曲面積分的聯(lián)系ni 1zyiiiiSP)(,(xziiiiSQ)(,(yxRxzQzyPddddddyxiiiiSR)(,(0lim0
10、limni 1iiiiPcos),(iiiiQcos),(iiiiRcos),(iSSRQPdcoscoscos曲面的方向用法向量的方向余弦刻畫目錄 上頁 下頁 返回 結(jié)束 令yxRxzQzyPddddddSRQPdcoscoscosSAnd向量形式),(RQPA )cos,cos,(cosn)dd,dd,d(dddyxxzzySnSSA dnAAnSnAd( A 在 n 上的投影)目錄 上頁 下頁 返回 結(jié)束 例例4. 位于原點電量為位于原點電量為 q 的點電荷產(chǎn)生的電場為的點電荷產(chǎn)生的電場為解解: :Srqd2SRqd2q4。q)(),(22233zyxrzyxrqrrqE求E 通過球面
11、: r = R 外側(cè)的電通量 .SE dSnEdSrrdrrq3目錄 上頁 下頁 返回 結(jié)束 yxz111例例5. 設設,1:22yxz是其外法線與 z 軸正向夾成的銳角, 計算.dcos2SzI解解: SzIdcos2yxzdd2rrrd)1(d210202yxDyxyxdd)1(22n目錄 上頁 下頁 返回 結(jié)束 221cosyxx例例6. 計算曲面積分計算曲面積分其中 解解: 利用兩類曲面積分的聯(lián)系利用兩類曲面積分的聯(lián)系, 有有zyxzdd)(2)(2xzSdcosyxddcoscosOyxz2 原式 =)( x)(2xzyxzdd,dddd)(2yxzzyxz旋轉(zhuǎn)拋物面)(2221yx
12、z介于平面 z= 0 及 z = 2 之間部分的下側(cè). )(2xz2211cosyx 目錄 上頁 下頁 返回 結(jié)束 原式 =)( x)(2xzyxzddOyxz2)( xxyxD22241)(yx 原式 =)(2221yx yxyxxyxDdd)(22212rrrrd)cos(221220220d8yxdd得代入將,)(2221yxz目錄 上頁 下頁 返回 結(jié)束 內(nèi)容小結(jié)內(nèi)容小結(jié)定義定義:Szyxfd),(iiiniiSf),(lim10yxRxzQzyPddddddzyiiiiniSP),(lim10yxiiiiSR),(1. 兩類曲面積分及其聯(lián)系兩類曲面積分及其聯(lián)系xziiiiSQ),(
13、目錄 上頁 下頁 返回 結(jié)束 性質(zhì)性質(zhì):yxRxzQzyPddddddyxRxzQzyPdddddd聯(lián)絡聯(lián)絡:yxRxzQzyPddddddSRQPdcoscoscos考慮考慮:的方向有關, 上述聯(lián)系公式是否矛盾 ?兩類曲面積分的定義一個與 的方向無關, 一個與目錄 上頁 下頁 返回 結(jié)束 2. 常用計算公式及方法常用計算公式及方法面積分第一類 (對面積)第二類 (對坐標)二重積分(1) 統(tǒng)一積分變量代入曲面方程 (方程不同時分片積分)(2) 積分元素投影第一類: 面積投影第二類: 有向投影(4) 確定積分域把曲面積分域投影到相關坐標面 注:二重積分是第一類曲面積分的特殊情況注:二重積分是第一
14、類曲面積分的特殊情況.轉(zhuǎn)化目錄 上頁 下頁 返回 結(jié)束 當yxDyxyxzz),( , ),(:時,yxzzyxzyxfSzyxfyxDyxdd1),(,(d),(22yxyxzyxRyxzyxRyxDdd),(,(dd),((上側(cè)取“+”, 下側(cè)取“”)類似可考慮在 yOz 面及 zOx 面上的二重積分轉(zhuǎn)化公式 .目錄 上頁 下頁 返回 結(jié)束 思考與練習思考與練習1. P227 題2提示提示: 設設,),( ,0:yxDyxz那么 取上側(cè)時,yxzyxRdd),(yxDyxyxRdd),(0 取下側(cè)時,yxzyxRdd),(yxDyxyxRdd),(02. P244 題 13. P227 題3(3)目錄 上頁 下頁 返回 結(jié)束 ,),(Czyxf是平面1zyx在第四卦限部分的上側(cè) , 計算zyxzyxfIdd),(xzyzyxfdd),(2yxzzyxfdd),(提示提示: 求出 的法方向余弦,轉(zhuǎn)化成第一類曲面積分P227 題題3(3). 設設作業(yè)作業(yè) P227 3 (1) ,(2) , (4) ; 4 (1), (2)SzyxId)(31Sd31yxxd3d01103121第六節(jié) 目錄 上頁 下頁 返回 結(jié)束 ,ddddddzyxyxzxzyI
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國新型煙草行業(yè)開拓第二增長曲線戰(zhàn)略制定與實施研究報告
- 2025-2030年中國衛(wèi)星遙感行業(yè)全國市場開拓戰(zhàn)略制定與實施研究報告
- 2025-2030年中國空調(diào)維修與售后行業(yè)并購重組擴張戰(zhàn)略制定與實施研究報告
- 新形勢下電子散熱材料及器件行業(yè)高速增長戰(zhàn)略制定與實施研究報告
- 中國移動互聯(lián)網(wǎng)APP行業(yè)發(fā)展趨勢預測及投資戰(zhàn)略研究報告
- 二年級數(shù)學(上)計算題專項練習匯編
- 春分文化與新媒介
- 管理層晉升述職報告
- 易制爆危險化學品購銷交易流程
- 二零二五年度大型貨車司機勞動合同范本與注意事項2篇
- 閱讀理解(專項訓練)-2024-2025學年湘少版英語六年級上冊
- 民用無人駕駛航空器產(chǎn)品標識要求
- 2024年醫(yī)院產(chǎn)科工作計劃例文(4篇)
- 2024-2025學年九年級英語上學期期末真題復習 專題09 單詞拼寫(安徽專用)
- 無創(chuàng)通氣基本模式
- 江西省贛州市尋烏縣2023-2024學年八年級上學期期末檢測數(shù)學試卷(含解析)
- 《臨床放射生物學》課件
- 腸造口還納術手術配合
- 2024年中考語文試題分類匯編:詩詞鑒賞(學生版)
- 中國音樂史與名作賞析智慧樹知到期末考試答案章節(jié)答案2024年山東師范大學
- 管廊維護與運營績效考核評分表
評論
0/150
提交評論