![201x年高考數(shù)學(xué)二輪復(fù)習(xí)專題八數(shù)學(xué)思想方法與高考數(shù)學(xué)文化第2講分類討論思想轉(zhuǎn)化與化歸思想文_第1頁](http://file3.renrendoc.com/fileroot_temp3/2021-12/25/2201f5b2-3a29-4cc1-9ce5-ea33008e75e2/2201f5b2-3a29-4cc1-9ce5-ea33008e75e21.gif)
![201x年高考數(shù)學(xué)二輪復(fù)習(xí)專題八數(shù)學(xué)思想方法與高考數(shù)學(xué)文化第2講分類討論思想轉(zhuǎn)化與化歸思想文_第2頁](http://file3.renrendoc.com/fileroot_temp3/2021-12/25/2201f5b2-3a29-4cc1-9ce5-ea33008e75e2/2201f5b2-3a29-4cc1-9ce5-ea33008e75e22.gif)
![201x年高考數(shù)學(xué)二輪復(fù)習(xí)專題八數(shù)學(xué)思想方法與高考數(shù)學(xué)文化第2講分類討論思想轉(zhuǎn)化與化歸思想文_第3頁](http://file3.renrendoc.com/fileroot_temp3/2021-12/25/2201f5b2-3a29-4cc1-9ce5-ea33008e75e2/2201f5b2-3a29-4cc1-9ce5-ea33008e75e23.gif)
![201x年高考數(shù)學(xué)二輪復(fù)習(xí)專題八數(shù)學(xué)思想方法與高考數(shù)學(xué)文化第2講分類討論思想轉(zhuǎn)化與化歸思想文_第4頁](http://file3.renrendoc.com/fileroot_temp3/2021-12/25/2201f5b2-3a29-4cc1-9ce5-ea33008e75e2/2201f5b2-3a29-4cc1-9ce5-ea33008e75e24.gif)
![201x年高考數(shù)學(xué)二輪復(fù)習(xí)專題八數(shù)學(xué)思想方法與高考數(shù)學(xué)文化第2講分類討論思想轉(zhuǎn)化與化歸思想文_第5頁](http://file3.renrendoc.com/fileroot_temp3/2021-12/25/2201f5b2-3a29-4cc1-9ce5-ea33008e75e2/2201f5b2-3a29-4cc1-9ce5-ea33008e75e25.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、第第2講分類討論思想、轉(zhuǎn)化與化歸思想講分類討論思想、轉(zhuǎn)化與化歸思想數(shù)學(xué)思想解讀1.分類討論的思想是當(dāng)問題的對象不能進(jìn)行統(tǒng)一研究時,就需要對研究的對象按某個標(biāo)準(zhǔn)進(jìn)行分類,然后對每一類分別研究,給出每一類的結(jié)論,最終綜合各類結(jié)果得到整個問題的解答.實質(zhì)上分類討論就是“化整為零,各個擊破,再集零為整”的數(shù)學(xué)思想.2.轉(zhuǎn)化與化歸思想方法用在研究、解決數(shù)學(xué)問題時,思維受阻或?qū)で蠛唵畏椒ɑ驈囊环N狀況轉(zhuǎn)化到另一種情形,也就是轉(zhuǎn)化到另一種情境使問題得到解決,這種轉(zhuǎn)化是解決問題的有效策略,同時也是獲取成功的思維方式.探究提高1.指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性取決于底數(shù)a,因此,當(dāng)?shù)讛?shù)a的大小不確定時,應(yīng)分0a1兩種
2、情況討論.2.利用等比數(shù)列的前n項和公式時,若公比q的大小不確定,應(yīng)分q1和q1兩種情況進(jìn)行討論,這是由等比數(shù)列的前n項和公式?jīng)Q定的. 解析(1)當(dāng)n1時,a1S12a12,解得a12.因為Sn2an2,當(dāng)n2時,Sn12an12,兩式相減得,an2an2an1,即an2an1,則數(shù)列an為首項為2,公比為2的等比數(shù)列,則S5S4a52532.探究提高1.圓錐曲線形狀不確定時,常按橢圓、雙曲線來分類討論,求圓錐曲線的方程時,常按焦點的位置不同來分類討論.2.相關(guān)計算中,涉及圖形問題時,也常按圖形的位置不同、大小差異等來分類討論. 應(yīng)用3由變量或參數(shù)引起的分類討論【例3】已知f(x)xaex(a
3、R,e為自然對數(shù)的底).(1)討論函數(shù)f(x)的單調(diào)性;(2)若f(x)e2x對xR恒成立,求實數(shù)a的取值范圍.解(1)f(x)1aex,當(dāng)a0時,f(x)0,函數(shù)f(x)是(,)上的單調(diào)遞增函數(shù);當(dāng)a0時,由f(x)0得xln a,所以函數(shù)f(x)在(,ln a)上的單調(diào)遞增,在(ln a,)上的單調(diào)遞減. 探究提高1.(1)參數(shù)的變化取值導(dǎo)致不同的結(jié)果,需對參數(shù)進(jìn)行討論,如含參數(shù)的方程、不等式、函數(shù)等.本題中參數(shù)a與自變量x的取值影響導(dǎo)數(shù)的符號應(yīng)進(jìn)行討論.(2)解析幾何中直線點斜式、斜截式方程要考慮斜率k存在或不存在,涉及直線與圓錐曲線位置關(guān)系要進(jìn)行討論.2.分類討論要標(biāo)準(zhǔn)明確、統(tǒng)一,層次
4、分明,分類要做到“不重不漏”.【訓(xùn)練3】(2015全國卷)已知函數(shù)f(x)ln xa(1x).(1)討論f(x)的單調(diào)性;(2)當(dāng)f(x)有最大值,且最大值大于2a2時,求a的取值范圍.探究提高1.一般問題特殊化,使問題處理變得直接、簡單.特殊問題一般化,可以使我們從宏觀整體的高度把握問題的一般規(guī)律,從而達(dá)到成批處理問題的效果.2.對于某些選擇題、填空題,如果結(jié)論唯一或題目提供的信息暗示答案是一個定值時,可以把題中變化的量用特殊值代替,即可得到答案.應(yīng)用2函數(shù)、方程、不等式之間的轉(zhuǎn)化【例5】已知函數(shù)f(x)3e|x|,若存在實數(shù)t1,),使得對任意的x1,m,mZ且m1,都有f(xt)3ex,
5、試求m的最大值.解當(dāng)t1,)且x1,m時,xt0,f(xt)3exextext1ln xx.原命題等價轉(zhuǎn)化為:存在實數(shù)t1,),使得不等式t1ln xx對任意x1,m恒成立.令h(x)1ln xx(1xm). 探究提高1.函數(shù)與方程、不等式聯(lián)系密切,解決方程、不等式的問題需要函數(shù)幫助.2.解決函數(shù)的問題需要方程、不等式的幫助,因此借助于函數(shù)與方程、不等式進(jìn)行轉(zhuǎn)化與化歸可以將問題化繁為簡,一般可將不等關(guān)系轉(zhuǎn)化為最值(值域)問題,從而求出參變量的范圍.探究提高1.第(1)題是正與反的轉(zhuǎn)化,由于不為單調(diào)函數(shù)有多種情況,先求出其反面,體現(xiàn)“正難則反”的原則.題目若出現(xiàn)多種成立的情形,則不成立的情形相對
6、很少,從后面考慮較簡單,因此,間接法多用于含有“至多”“至少”及否定性命題情形的問題中.2.第(2)題是把關(guān)于x的函數(shù)轉(zhuǎn)化為在0,4內(nèi)關(guān)于p的一次函數(shù)大于0恒成立的問題.在處理多變元的數(shù)學(xué)問題時,我們可以選取其中的參數(shù),將其看作是“主元”,而把其它變元看作是參數(shù).【訓(xùn)練6】已知函數(shù)f(x)x33ax1,g(x)f(x)ax5,其中f(x)是f(x)的導(dǎo)函數(shù).對滿足1a1的一切a的值,都有g(shù)(x)0,則實數(shù)x的取值范圍為_.1.分類討論思想是將一個較復(fù)雜的數(shù)學(xué)問題分解(或分割)成若干個基礎(chǔ)性問題,通過對基礎(chǔ)性問題的解答來實現(xiàn)解決原問題的思想策略.對問題實行分類與整合,分類標(biāo)準(zhǔn)等于增加一個已知條件
7、,實現(xiàn)了有效增設(shè),將大問題(或綜合性問題)分解為小問題(或基礎(chǔ)性問題),優(yōu)化解題思想,降低問題難度.常見的分類討論問題: (1)集合:注意集合中空集 討論.(2)函數(shù):對數(shù)函數(shù)或指數(shù)函數(shù)中的底數(shù)a,一般應(yīng)分a1和0a1的討論,函數(shù)yax2bxc有時候分a0和a0的討論,對稱軸位置的討論,判別式的討論.(3)數(shù)列:由Sn求an分n1和n1的討論;等比數(shù)列中分公比q1和q1的討論.(4)三角函數(shù):角的象限及函數(shù)值范圍的討論.(5)不等式:解不等式時含參數(shù)的討論,基本不等式相等條件是否滿足的討論.(6)立體幾何:點線面及圖形位置關(guān)系的不確定性引起的討論.(7)平面解析幾何:直線點斜式中k分存在和不存在,直線截距式中分b0和b0的討論;軌跡方程中含參數(shù)時曲線類型及形狀的討論.(8)去絕對值時的討論及分段函數(shù)的討論等.2.轉(zhuǎn)化與化歸思
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度節(jié)目制作與品牌形象塑造服務(wù)合同
- 2025年度教育行業(yè)市場調(diào)研服務(wù)合同
- 2025年度智慧城市房屋置換服務(wù)合同
- 2025年度環(huán)保治理過橋借款合同(生態(tài)文明建設(shè))
- 2025年衛(wèi)浴行業(yè)綠色制造與節(jié)能改造合同
- 2025年度工地承包安全生產(chǎn)責(zé)任合同
- 2025年度海洋工程固定資產(chǎn)買賣合同模板
- 2025年度新型環(huán)保日化用品購銷合同
- 2025年國際貿(mào)易合同翻譯與客戶關(guān)系管理協(xié)議
- 2025年度廣告內(nèi)容創(chuàng)作與發(fā)布合同
- 公文寫作題庫(500道)
- 學(xué)校教學(xué)常規(guī)管理學(xué)習(xí)活動課件
- 2024-2030年中國大閘蟹養(yǎng)殖行業(yè)運營形勢分析及未來銷售格局研究報告
- 集成墻板購銷合同范本(2024版)
- 2023九年級歷史下冊 第三單元 第一次世界大戰(zhàn)和戰(zhàn)后初期的世界第10課《凡爾賽條約》和《九國公約》教案 新人教版
- 骨髓穿刺課件
- 2024中國保險發(fā)展報告-中南大風(fēng)險管理研究中心.燕道數(shù)科
- 元素的用途完整版本
- 建筑設(shè)計工程設(shè)計方案
- 供熱行業(yè)環(huán)境保護(hù)管理辦法
- 七十歲換領(lǐng)證駕考三力測試答題
評論
0/150
提交評論