高中數(shù)學(xué)教學(xué)論文:函數(shù)定義域與思維品質(zhì)Word版_第1頁
高中數(shù)學(xué)教學(xué)論文:函數(shù)定義域與思維品質(zhì)Word版_第2頁
高中數(shù)學(xué)教學(xué)論文:函數(shù)定義域與思維品質(zhì)Word版_第3頁
高中數(shù)學(xué)教學(xué)論文:函數(shù)定義域與思維品質(zhì)Word版_第4頁
高中數(shù)學(xué)教學(xué)論文:函數(shù)定義域與思維品質(zhì)Word版_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、函 數(shù) 定 義 域 與 思 維 品 質(zhì) 浙江省溫嶺市職業(yè)技術(shù)學(xué)校 林銀彪思維品質(zhì)是指個(gè)體思維活動特殊性的外部表現(xiàn)。它包括思維的嚴(yán)密性、思維的靈活性、思維的深刻性、思維的批判性和思維的敏捷性等品質(zhì)。函數(shù)作為高中數(shù)學(xué)的主線,貫穿于整個(gè)高中數(shù)學(xué)的始終。函數(shù)的定義域是構(gòu)成函數(shù)的兩大要素之一,函數(shù)的定義域(或變量的允許值范圍)似乎是非常簡單的,然而在解決問題中不加以注意,常常會使人誤入歧途。在解函數(shù)題中強(qiáng)調(diào)定義域?qū)忸}結(jié)論的作用與影響,對提高學(xué)生的數(shù)學(xué)思維品質(zhì)是十分有益的。一、 函數(shù)關(guān)系式與定義域函數(shù)關(guān)系式包括定義域和對應(yīng)法則,所以在求函數(shù)的關(guān)系式時(shí)必須要考慮所求函數(shù)關(guān)系式的定義域,否則所求函數(shù)關(guān)系式可

2、能是錯(cuò)誤。如:例1:某單位計(jì)劃建筑一矩形圍墻,現(xiàn)有材料可筑墻的總長度為100m,求矩形的面積S與矩形長x的函數(shù)關(guān)系式? 解:設(shè)矩形的長為x米,則寬為(50x)米,由題意得: 故函數(shù)關(guān)系式為:如果解題到此為止,則本題的函數(shù)關(guān)系式還欠完整,缺少自變量的范圍。也就說學(xué)生的解題思路不夠嚴(yán)密。因?yàn)楫?dāng)自變量取負(fù)數(shù)或不小于50的數(shù)時(shí),S的值是負(fù)數(shù),即矩形的面積為負(fù)數(shù),這與實(shí)際問題相矛盾,所以還應(yīng)補(bǔ)上自變量的范圍: 即:函數(shù)關(guān)系式為: ()這個(gè)例子說明,在用函數(shù)方法解決實(shí)際問題時(shí),必須要注意到函數(shù)定義域的取值范圍對實(shí)際問題的影響。若考慮不到這一點(diǎn),就體現(xiàn)出學(xué)生思維缺乏嚴(yán)密性。若注意到定義域的變化,就說明學(xué)生的

3、解題思維過程體現(xiàn)出較好思維的嚴(yán)密性。二、 函數(shù)最值與定義域函數(shù)的最值是指函數(shù)在給定的定義域區(qū)間上能否取到最大(小)值的問題。如果不注意定義域,將會導(dǎo)致最值的錯(cuò)誤。如:例2:求函數(shù)在2,5上的最值 解: 當(dāng)時(shí),初看結(jié)論,本題似乎沒有最大值,只有最小值。產(chǎn)生這種錯(cuò)誤的根源在于學(xué)生是按照求二次函數(shù)最值的思路,而沒有注意到已知條件發(fā)生變化。這是思維呆板性的一種表現(xiàn),也說明學(xué)生思維缺乏靈活性。其實(shí)以上結(jié)論只是對二次函數(shù)在R上適用,而在指定的定義域區(qū)間上,它的最值應(yīng)分如下情況: 當(dāng)時(shí),在上單調(diào)遞增函數(shù); 當(dāng)時(shí),在上單調(diào)遞減函數(shù); 當(dāng)時(shí),在上最值情況是: , 即最大值是中最大的一個(gè)值。故本題還要繼續(xù)做下去:

4、 函數(shù)在2,5上的最小值是 4,最大值是12 這個(gè)例子說明,在函數(shù)定義域受到限制時(shí),若能注意定義域的取值范圍對函數(shù)最值的影響,并在解題過程中加以注意,便體現(xiàn)出學(xué)生思維的靈活性。三、 函數(shù)值域與定義域函數(shù)的值域是該函數(shù)全體函數(shù)值的集合,當(dāng)定義域和對應(yīng)法則確定,函數(shù)值也隨之而定。因此在求函數(shù)值域時(shí),應(yīng)注意函數(shù)定義域。如:例3:求函數(shù)的值域 錯(cuò)解:令 故所求的函數(shù)值域是 剖析:經(jīng)換元后,應(yīng)有,而函數(shù)在0,+)上是增函數(shù), 所以當(dāng)t=0時(shí),ymin=1 故所求的函數(shù)值域是1, +)以上例子說明,變量的允許值范圍是何等的重要,若能發(fā)現(xiàn)變量隱含的取值范圍,精細(xì)地檢查解題思維的過程,就可以避免以上錯(cuò)誤結(jié)果的

5、產(chǎn)生。也就是說,學(xué)生若能在解好題目后,檢驗(yàn)已經(jīng)得到的結(jié)果,善于找出和改正自己的錯(cuò)誤,善于精細(xì)地檢查思維過程,便體現(xiàn)出良好的思維批判性。四、 函數(shù)單調(diào)性與定義域函數(shù)單調(diào)性是指函數(shù)在給定的定義域區(qū)間上函數(shù)自變量增加時(shí),函數(shù)值隨著增減的情況,所以討論函數(shù)單調(diào)性必須在給定的定義域區(qū)間上進(jìn)行。如:例4:指出函數(shù)的單調(diào)區(qū)間 解:先求定義域: 函數(shù)定義域?yàn)?令,知在上時(shí),u為減函數(shù), 在上時(shí), u為增函數(shù)。 又 函數(shù)在上是減函數(shù),在上是增函數(shù)。即函數(shù)的單調(diào)遞增區(qū)間,單調(diào)遞減區(qū)間是。如果在做題時(shí),沒有在定義域的兩個(gè)區(qū)間上分別考慮函數(shù)的單調(diào)性,就說明學(xué)生對函數(shù)單調(diào)性的概念一知半解,沒有理解,在做練習(xí)或作業(yè)時(shí),只

6、是對題型,套公式,而不去領(lǐng)會解題方法的實(shí)質(zhì),也說明學(xué)生的思維缺乏深刻性。五、函數(shù)奇偶性與定義域判斷函數(shù)的奇偶性,應(yīng)先考慮該函數(shù)的定義域區(qū)間是否關(guān)于坐標(biāo)原點(diǎn)成中心對稱,如果定義域區(qū)間是關(guān)于坐標(biāo)原點(diǎn)不成中心對稱,則函數(shù)就無奇偶性可談。否則要用奇偶性定義加以判斷。如:例5:判斷函數(shù)的奇偶性 解: 定義域區(qū)間1,3關(guān)于坐標(biāo)原點(diǎn)不對稱 函數(shù)是非奇非偶函數(shù) 若學(xué)生像以上這樣的過程解完這道題目,就很好地體現(xiàn)出學(xué)生解題思維的敏捷性 如果學(xué)生不注意函數(shù)定義域,那么判斷函數(shù)的奇偶性得出如下錯(cuò)誤結(jié)論: 函數(shù)是奇函數(shù)錯(cuò)誤剖析:因?yàn)橐陨献龇ㄊ菦]有判斷該函數(shù)的定義域區(qū)間是否關(guān)于原點(diǎn)成中心對稱的前提下直接加以判斷所造成,這是學(xué)生極易忽視的步驟,也是造成結(jié)論錯(cuò)誤的原因。綜上所述,在求解函數(shù)函數(shù)關(guān)系式、最值(值域)、單調(diào)性、奇偶性等問題中,若能精細(xì)地檢查思維過程,思辨函數(shù)定義域有無改變(指對定義域?yàn)镽來說),對解題結(jié)果有無影響,就能提高學(xué)生質(zhì)疑辨析能力,有利于培養(yǎng)學(xué)生的思維品質(zhì),從而不斷提高學(xué)生思維能力,進(jìn)而有利于培養(yǎng)學(xué)生思維的創(chuàng)造性。參 考 文 獻(xiàn)1 王岳庭主編 數(shù)學(xué)教師的素質(zhì)與中學(xué)生數(shù)學(xué)素質(zhì)的培養(yǎng)論文集 北京 海洋出版社 19982 田萬海主編 數(shù)學(xué)教育學(xué) 浙江 浙江教

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論