基于圖像的火焰識(shí)別_第1頁(yè)
基于圖像的火焰識(shí)別_第2頁(yè)
基于圖像的火焰識(shí)別_第3頁(yè)
基于圖像的火焰識(shí)別_第4頁(yè)
基于圖像的火焰識(shí)別_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、基于圖像的火焰識(shí)別摘要: 圖像型火災(zāi)探測(cè)技術(shù)是以機(jī)器視覺(jué)為基礎(chǔ)的新型火災(zāi)探測(cè)技術(shù),它不會(huì)受到空間大小、環(huán)境惡劣等復(fù)雜因素的影響。本文的目的是通過(guò)在視頻圖像中提取信息來(lái)判斷火災(zāi)的發(fā)生,這項(xiàng)研究在現(xiàn)實(shí)生活中有著很大的實(shí)際意義。本文主要通過(guò)針對(duì)復(fù)雜環(huán)境下采集到的火災(zāi)圖像信息,對(duì)圖像進(jìn)行分析,采用中值濾波和圖像銳化對(duì)圖像進(jìn)行預(yù)處理,消除掉火災(zāi)圖像中參雜的噪聲。之后采用一種兩層組合的圖像分割算法對(duì)圖像進(jìn)行分割,得到火焰的疑似區(qū)域。并在此基礎(chǔ)上,對(duì)疑似區(qū)域的火焰特征進(jìn)行分析,提取出火焰的面積變化值、圓形度及閃爍頻率等特征,為之后的識(shí)別做準(zhǔn)備。最后運(yùn)用模糊神經(jīng)網(wǎng)絡(luò)建立火災(zāi)識(shí)別模型,將提取出的火焰特征作為輸入

2、量對(duì)火災(zāi)圖像進(jìn)行分類(lèi)識(shí)別。仿真結(jié)果表明,該算法對(duì)不同場(chǎng)景的火災(zāi)識(shí)別具有較高的準(zhǔn)確率。關(guān)鍵詞:火焰圖像;圖像分割;特征提取;特征融合;模糊神經(jīng)網(wǎng)絡(luò)Flame recognition based on imageAbstract: The image-type fire detection technology is a new detection method, which based on the machine vision. It will not be subject to the complex factors of the space size or the bad environm

3、ents. Collect the fire image information under complex environment. Analyzing the image, and using the median filtering and image sharpening to the image pre-processing, eliminating the noise mixes in the image of fire. With the two-tier combination of image segmentation algorithm to segmentation th

4、e image, in order to get the suspected area of the flame. On this basis, analysis the flame characteristics of the suspected region, to extract the flame area change values, round, and the flicker frequency characteristics for Identification in preparation. Finally, using the fuzzy neural network to

5、 establish the model of fire detection, Flame characteristics will be extracted as the input, in order to classification of the fire image. The simulation results show that the algorithm on different scenarios of fire detection with high accuracy.Keywords: flame image; image segmentation; feature ex

6、traction; feature fusion; fuzzy neural network.1、基于視頻圖像的火焰識(shí)別問(wèn)題1.1、如何進(jìn)行火焰圖像的預(yù)處理和分割?在實(shí)際環(huán)境中攝像頭所處的位置是非常復(fù)雜的,一般采集到的圖像都會(huì)受到天氣、光線的變化、陰影、燈光以及隨機(jī)噪聲的影響,而使得圖像質(zhì)量降低監(jiān)測(cè)難度加大。若要能夠準(zhǔn)確的提取火焰特征就先要對(duì)采集到的圖像進(jìn)行預(yù)處理,濾除掉圖像中參雜的噪聲并且利用分割技術(shù)找出圖像中的火焰目標(biāo)區(qū)域,然后根據(jù)目標(biāo)區(qū)域中的火焰特征進(jìn)行實(shí)時(shí)的火焰目標(biāo)識(shí)別。這對(duì)于基于機(jī)器視覺(jué)的視頻火焰探測(cè)技術(shù),是十分重要的。通常大部分情況下采集到的圖像都會(huì)因?yàn)楣饩€太暗、曝光、不足以及噪聲

7、太多等缺陷顯得不是很完美,影響到火焰的識(shí)別。因?yàn)闊o(wú)論從客觀環(huán)境影響或是主觀人為因素影響等,我們采集到的圖像質(zhì)量往往沒(méi)有人們想象的那么滿意。例如,因?yàn)檩喞^(guò)于鮮明使得圖像中的物體顯得不協(xié)調(diào),并且依照被檢測(cè)物的形狀、大小的要求,采集到的圖像邊緣處產(chǎn)生模糊,而且圖像中出現(xiàn)一些不知來(lái)源的黑點(diǎn)或白點(diǎn),更為嚴(yán)重的會(huì)出現(xiàn)圖像出現(xiàn)失真或者變形等。綜上所述,當(dāng)監(jiān)測(cè)火災(zāi)的過(guò)程中,檢測(cè)結(jié)果會(huì)受到很多復(fù)雜環(huán)境的影響,所以我們要對(duì)火焰圖像進(jìn)行一系列的預(yù)處理,使得圖像能夠更用以提取特征,從而分辨出火災(zāi)情況。1.2 ,怎樣提取火焰圖像的特征提?。吭诨馂?zāi)檢測(cè)系統(tǒng)中,火災(zāi)圖像中火焰的特征提取的正確與否,對(duì)隨后的火災(zāi)判斷起著決定

8、性作用,是重要的組成部分。對(duì)檢測(cè)目標(biāo)進(jìn)行火焰的特征提取,它是對(duì)火焰識(shí)別的重要前提。主要是對(duì)火災(zāi)圖像進(jìn)行預(yù)處理和分割后,通過(guò)在火焰目標(biāo)區(qū)域?qū)鹧嫣卣鬟M(jìn)行提取,進(jìn)而以某種規(guī)則將提取出的特征進(jìn)行結(jié)合,為火災(zāi)判斷做好準(zhǔn)備。1.3, 怎樣進(jìn)行火災(zāi)火焰的識(shí)別?為了對(duì)一事物進(jìn)行綜合評(píng)估進(jìn)而進(jìn)行判斷,需以一定的方法將從計(jì)算機(jī)獲得的直觀信息進(jìn)行綜合分析,這種處理信息的技術(shù)就是數(shù)據(jù)融合。而多特征融合就是將同一種事物從不同方面進(jìn)行信息提取,利用計(jì)算機(jī)將這些信息以一定的準(zhǔn)則進(jìn)行綜合分析,進(jìn)而準(zhǔn)確認(rèn)識(shí)這一事物,多個(gè)信息的綜合分析比單個(gè)信息的獨(dú)自分析更能全面的了解判斷同一事物對(duì)采集到的火災(zāi)圖像進(jìn)行預(yù)處理,并提取火焰圖像的

9、靜態(tài)和動(dòng)態(tài)特征進(jìn)行分析,將提取出的特征進(jìn)行融合處理,判斷其是否發(fā)生火災(zāi)。一個(gè)較好的火災(zāi)識(shí)別系統(tǒng)若能夠?qū)馂?zāi)現(xiàn)場(chǎng)實(shí)時(shí)監(jiān)測(cè),必須具備較強(qiáng)的抗干擾能力、較快的反應(yīng)與檢測(cè)速度、較準(zhǔn)確的識(shí)別結(jié)果,具有較高的智能化。在本論文中,在對(duì)火災(zāi)圖像進(jìn)行預(yù)處理、分割及特征提取后,設(shè)計(jì)了一種適合大空間及惡劣環(huán)境下的基于多特征融合的火災(zāi)火焰識(shí)別算法,并在實(shí)驗(yàn)中得到實(shí)現(xiàn)。2、基于視頻圖像的火焰識(shí)別的實(shí)現(xiàn)2.1、火焰圖像預(yù)處理對(duì)火焰圖像的預(yù)處理主要包括對(duì)圖像的去噪和銳化從而使圖像變得平滑清晰。2.1.1、 對(duì)火焰圖像進(jìn)行去噪處理因?yàn)樵诓杉降膱D片中參雜著如燈光、太陽(yáng)光等一些干擾物,或者因?yàn)樵趷毫迎h(huán)境下攝像頭的角度或是灰塵濃

10、度高等使得圖片不清晰,因此獲取的火災(zāi)圖像或多或少的會(huì)引入多種噪聲,而這些噪聲對(duì)后面的圖像分割和特征提取有很大的影響,進(jìn)而使得火災(zāi)不能得到正確判斷。因此,火災(zāi)圖像的去噪處理是火災(zāi)圖像預(yù)處理的一項(xiàng)重要任務(wù)。中值濾波(Median filtering)是基于排序統(tǒng)計(jì)理論的一種能有效抑制噪聲的非線性信號(hào)處理技術(shù)。中值的定義如下:y=Medx1,x2,x3.xn=xi(n+12) n是奇數(shù)12xin2+xin2+1 n是偶數(shù) Y稱(chēng)為序列x的中值。所謂窗口,就是一個(gè)點(diǎn)的特定長(zhǎng)度或形狀的鄰域,當(dāng)濾波器是一維時(shí),移動(dòng)窗口的長(zhǎng)度一般都是奇數(shù),在每個(gè)時(shí)刻內(nèi)對(duì)窗口內(nèi)的所有觀測(cè)值按照其數(shù)值大小來(lái)進(jìn)行排列,而中值濾波器

11、的輸出值就是中間位置的觀測(cè)值。在二維中值濾波器中,可以利用某種形式的二維窗口,數(shù)字圖像各點(diǎn)的灰度值設(shè)為xi,j(i,j)I2,w為濾波窗口,則定義二維中值濾波為:yi,j=Medxi+a,j+b(a,b)A,(i,j)I2中值濾波去噪的處理方法主要是找出窗口中各個(gè)點(diǎn)的中值,然后對(duì)窗口的中心值進(jìn)行修改,替換為個(gè)點(diǎn)的中值,這樣圖像就會(huì)變得平滑,從而對(duì)圖像完成去噪。鄰域像素點(diǎn)的中間值與周?chē)袼鼗叶戎挡顒e較大的像素值,即極限像素值的敏感度不是很強(qiáng),相對(duì)于均值濾波的敏感度小,這樣一些孤立的噪聲點(diǎn)就可以被消除。一般二維中值濾波器的窗口有:方形、線形、圓形、十字形棱形等等,而若選擇不同的濾波窗口就會(huì)有不同的

12、濾波效果。不過(guò)已經(jīng)有實(shí)驗(yàn)證明,一維中值濾波器沒(méi)有二維中值濾波器抑制噪聲的效果好。因?yàn)楫?dāng)濾波窗口采為方形時(shí),圖像中特定區(qū)域的形狀不會(huì)受到影響,所以在本節(jié)中采用方形窗口的中值濾波方法。通常來(lái)說(shuō),若是選擇了過(guò)大的窗口,雖然很好的抑制了噪聲,但由于有較強(qiáng)的平均化處理,處理結(jié)果明顯出現(xiàn)圖像邊緣模糊、細(xì)節(jié)不明顯的情況。本文對(duì)中值濾波分別采用3x3和5 x5模板進(jìn)行火災(zāi)圖像濾波處理,實(shí)驗(yàn)結(jié)果可以看出,窗口越大,邊緣細(xì)節(jié)越模糊。2.1.2、圖像銳化處理 火災(zāi)圖像經(jīng)過(guò)中值濾波處理后會(huì)使圖像的輪廓模糊、邊界不明顯,而圖像的輪廓在后續(xù)的特征提取中非常重要,而通過(guò)對(duì)圖像進(jìn)行銳化處理,可以將圖像的邊緣變得清晰。從頻譜的

13、角度來(lái)看,圖像的邊緣和輪廓具有灰度突變的特征,對(duì)應(yīng)著高頻分量,因此圖像銳化濾波器可以使用高通濾波器,使高頻分量順利通過(guò),提升火災(zāi)圖像的邊緣質(zhì)量,使火焰區(qū)域邊緣線條變得清晰。頻率域內(nèi)常用的高通濾波器有四種21 ,即理想高通濾波器、巴特沃斯高通濾波器、指數(shù)高通濾波器和梯形高通濾波器。本章采用指數(shù)高通濾波器(exponential high pass filter,EHPF)來(lái)實(shí)現(xiàn)。 指數(shù)高通濾波器的傳遞函數(shù)為:Hu,v=e-D0IDu,vn式中:n決定指數(shù)函數(shù)的衰減率。根據(jù)以上分析的圖像預(yù)處理和分割算法進(jìn)行實(shí)驗(yàn),下面是對(duì)同一火災(zāi)火焰圖像分別進(jìn)行預(yù)處理和分割后的實(shí)驗(yàn)結(jié)果,如圖所示:實(shí)驗(yàn)結(jié)果表明,原圖

14、經(jīng)過(guò)中值濾波處理后,噪聲受到很好的抑制圖像輪廓得到很大的改善,邊緣變的清晰。經(jīng)過(guò)圖像的中值濾波及銳化處理后,火災(zāi)圖像的邊緣變得清晰,為下來(lái)的圖像分割做好準(zhǔn)備。2.1.3、火焰圖像分割差分法也稱(chēng)為差影圖法,它的主要原理是在采集到的視頻圖像中,首先選取一幀靜止圖像作為背景幀圖像,因此在判斷圖像中是否含有火災(zāi)圖像,就可以利用當(dāng)前幀的像素減去之前所選的背景幀圖像的像素,此方法是一種常用于檢測(cè)運(yùn)動(dòng)物體和圖像變化區(qū)域的處理方法。設(shè)定閾值T,當(dāng)相減后的圖像中某一像素的差值大于閾值T時(shí),就認(rèn)為該像素是前景像素(運(yùn)動(dòng)目標(biāo)),小于T時(shí)認(rèn)為是背景像素。首先從監(jiān)控視頻中按一定的采樣速率抽取幀圖像。設(shè)幀圖像序列為Mi(

15、x,y)。的取值1m,m為連續(xù)序列圖像的幀數(shù),(x,y)為圖像中各像素的坐標(biāo)。選取一幀無(wú)火圖像作為基準(zhǔn)圖像,對(duì)于圖像序列的當(dāng)前幀有:Mix,y=Mix,y-M0(x,y)式中Mi(x,y) 為當(dāng)前需處理幀,M0(x,y)為基準(zhǔn)幀。經(jīng)過(guò)差分運(yùn)算后得到的就是背景相對(duì)簡(jiǎn)單的差值圖像,其中包含有位置相對(duì)變化的火焰疑似區(qū)域。然后設(shè)定閩值進(jìn)行閩值分割,得到二值圖像。下面是對(duì)不同場(chǎng)景數(shù)幅火災(zāi)圖片進(jìn)行閾值分割實(shí)驗(yàn)。原圖像分割后的圖像在實(shí)際的火災(zāi)監(jiān)測(cè)中,可能獲取的圖像未定義背景圖像,這時(shí)可以將前后兩幀相鄰的圖像進(jìn)行差分,這樣雖然會(huì)使兩幀之間重疊的火焰區(qū)域?yàn)V除掉,但從整體來(lái)看絕大部分的火焰區(qū)域還是會(huì)保留下來(lái),不會(huì)

16、影響后續(xù)特征提取。2.2、火焰特征值的提取在火災(zāi)檢測(cè)系統(tǒng)中,火災(zāi)圖像中火焰的特征提取的正確與否,對(duì)隨后的火災(zāi)判斷起著決定性作用,是重要的組成部分。根據(jù)一般火災(zāi)發(fā)生的狀況,一般都表現(xiàn)為火災(zāi)火焰是從無(wú)到有,并且持續(xù)不斷變化發(fā)展。通過(guò)對(duì)火災(zāi)初期火焰圖像的研究,其主要表現(xiàn)為以下幾個(gè)特征:火焰面積增大、邊緣抖動(dòng)、形狀不規(guī)則、位置基本穩(wěn)定等等。本文主要提取的火焰特征值是火焰的面積變化、形狀特性、頻閃特性。2.2.1、火焰面積變化特征火災(zāi)火焰的面積變化包括面積正的增長(zhǎng)和負(fù)的增長(zhǎng),無(wú)論是面積變大還是變小都屬于火焰面積的增長(zhǎng)?;鹧嬖谝欢〞r(shí)間內(nèi)的面積增長(zhǎng)率可以根據(jù)當(dāng)前幀的整體火焰像素?cái)?shù)目和這段確定的時(shí)間后的另外一

17、幀火焰圖像的像素?cái)?shù)目的差來(lái)計(jì)算,結(jié)果可作為下一步識(shí)別火災(zāi)火焰的依據(jù)。利用計(jì)算火焰區(qū)域的區(qū)域增長(zhǎng)率來(lái)表達(dá)火災(zāi)火焰的面積增長(zhǎng)率,而火焰區(qū)域增長(zhǎng)率又可以用圖像區(qū)域中的像素變化率來(lái)表示。設(shè)Yi為第ti時(shí)刻目標(biāo)區(qū)域的像素總值,則Yi+1為第ti+1時(shí)刻的像素總值,在連續(xù)的視頻中,時(shí)間的劃分是以前后幀數(shù)來(lái)計(jì)算的,因此,第i幀的目標(biāo)區(qū)域像素總值可設(shè)為Yi,則第i+1幀的像素總值為Yi+1,而令第i幀的區(qū)域面積為Si,第i+1幀區(qū)域面積為Si+1。因此,下式表示的是在連續(xù)視頻幀中火焰的面積變化率:B=dYdi=Yi+1-Yii+j-i=dSdti=Si+1-Siti+1-ti其中,j表示第j幀,i+j表示第i

18、+j幀,B表示火焰的面積變化率,它的時(shí)間范圍為ti到ti+1這一間隔時(shí)間段內(nèi)。根據(jù)火焰面積變化率,選取以下四種樣本實(shí)驗(yàn)組進(jìn)行實(shí)驗(yàn),其分別為火災(zāi)圖像組和蠟燭、路燈及車(chē)燈干擾圖像組,對(duì)這四種樣本分別計(jì)算它們連續(xù)6幀圖像的面積值,結(jié)果如下表所示:從表可以看出,在同一時(shí)間內(nèi),火災(zāi)圖像組明顯比其他干擾物圖像平均面積變化值大,因此可以將火焰面積變化特征作為火災(zāi)圖像的特征之一。2.2.2、火焰的形狀特征由于火災(zāi)火焰在燃燒過(guò)程中形狀是不規(guī)則變化的,根據(jù)這一特點(diǎn)可以排除大部分形狀規(guī)則程度較高特點(diǎn)的干擾源,如手電筒、路燈、車(chē)燈及太陽(yáng)光等,因此圓形度可作為火災(zāi)的重要判據(jù)之一。圓形度指的就是物體邊緣與圓相似的程度,可

19、以用來(lái)表示存在邊緣的物體其邊緣輪廓的復(fù)雜程度,若知道物體所在區(qū)域的面積以及物體邊緣的總長(zhǎng)度,就可以計(jì)算出物體的圓形度值。圓形度代表了物體的復(fù)雜程度,根據(jù)其概念得圓形度Ci計(jì)算公式為:Ci=Li2/(4×Si)其中i=1,2,3,n式中: Si表示第i幀的區(qū)域面積;Li表示第i幀的區(qū)域周長(zhǎng),即區(qū)域邊界的長(zhǎng)度,可從邊界鏈碼中得到。垂直和水平的步幅為單位長(zhǎng)度,對(duì)角步幅長(zhǎng)度為21/2, 兩個(gè)直角還原成一個(gè)對(duì)角度,其1/2步幅也為21/2。按上述規(guī)則遍歷邊界鏈碼,即可算出邊界長(zhǎng)度。圓形度對(duì)圓形物體取最小值1,物體形狀越復(fù)雜其值越大。通過(guò)上述所介紹的圓形度算法對(duì)上一節(jié)的例子分別計(jì)算其圓形度。結(jié)果

20、如下表所示從表看出,火焰的圓形度值明顯大于其他干擾物的圓形度值,所以火焰的圓形度可以作為火焰區(qū)別其它物體的特征。2.2.3、火焰頻閃特性對(duì)火焰的閃爍現(xiàn)象進(jìn)行長(zhǎng)期試驗(yàn)得出火焰的閃爍頻率可設(shè)定在處于10-20HZ的低頻區(qū)?;馂?zāi)發(fā)生過(guò)程中,火焰無(wú)規(guī)則的跳躍是火動(dòng)態(tài)變化最顯著的特征之一,因此,火焰的閃爍頻率也可以作為火焰目標(biāo)特征提取的一個(gè)重要判據(jù)。實(shí)驗(yàn)發(fā)現(xiàn)在跳躍過(guò)程中,前后幀圖像中必然存在火焰高度的變化,因此就可以將高度與火焰的閃爍頻率聯(lián)系到一起,能夠通過(guò)高度的變化來(lái)確定火焰的閃爍頻率。根據(jù)火焰高度與火焰的閃爍頻率之間存在著的密切聯(lián)系,因此可以將火焰的高度變化作為火焰閃爍頻率的判斷條件。在視頻中,通過(guò)

21、函數(shù)來(lái)表示每一幀的火焰的高度變化。在前一章得到的疑似火災(zāi)區(qū)域,對(duì)這個(gè)區(qū)域的高度集合進(jìn)行一個(gè)標(biāo)記,因?yàn)閰^(qū)域內(nèi)的高度存在高度不一的多個(gè)高度值,再將集合內(nèi)的元素進(jìn)行描述,最后得出一個(gè)高度變化的特征函數(shù),由此特征函數(shù)就可以反映出譜內(nèi)分量的多少。設(shè)Gqp為得到的疑似的火災(zāi)區(qū)域,其中q表示第q幀圖像,p表示疑似區(qū)域包含p個(gè)不同的高度值,將該區(qū)域的高度集合設(shè)為H,則集合內(nèi)的元素hqp了表示為:hqp=H(Gqp)上式表示的是一個(gè)高度元素的集合,若想得到每一個(gè)特定的高度元素,需要對(duì)H進(jìn)行離散傅里葉變換得到傅里葉集合數(shù)TP,則可將集合內(nèi)的元素描述為:tqp=dH=1kq-1khqpe-j2iqlk對(duì)上式得到的高

22、度集合中的元素進(jìn)行積分運(yùn)算,則得到一個(gè)高度變化的特征函數(shù),將傅里葉變換的長(zhǎng)度用l來(lái)表示,而傅里葉變換時(shí)的系數(shù)集合表示為T(mén)p。因此,下式表示為高度在確定時(shí)間段內(nèi)的一個(gè)變化,可以看出,當(dāng)譜內(nèi)分量越多f(Tp)的值越大。fdTp=q=2ntiptipl2-1上圖是火焰目標(biāo)、車(chē)燈及路燈的頻譜變化圖,從圖中可以看出火焰的頻譜變化有一定的變量值,而車(chē)燈、路燈的頻譜變化沒(méi)有明顯的變化。而這些值是在一個(gè)比較穩(wěn)定的區(qū)域,包含高峰與低谷值,因此可以將這個(gè)穩(wěn)定變化的區(qū)域作為火焰跳躍的最高值與回歸時(shí)的最低值來(lái)看待,在每次火焰跳躍時(shí)就可以反應(yīng)火焰本身的一次頻率特性。在實(shí)驗(yàn)中,由于路燈的固定性,它的像素變化范圍始終不變,

23、而車(chē)燈由于車(chē)的可移動(dòng)性,像素變化范圍處于區(qū)域移動(dòng)中,但是像素的變化遵循一定的變化閡值范圍。而在火焰的像素變化試驗(yàn)中,由于火焰的跳躍性,其像素處于變化當(dāng)中火苗的跳躍高度按照一定的區(qū)域范圍進(jìn)行跳躍,但同時(shí)像素整體處于一個(gè)區(qū)域范圍內(nèi),不會(huì)發(fā)生移動(dòng)。2.3、火焰識(shí)別2.3.1、模糊神經(jīng)網(wǎng)絡(luò)人工神經(jīng)網(wǎng)絡(luò)是仿生模型的智能化,是一種非線性動(dòng)力系統(tǒng),其主要結(jié)構(gòu)是將大量的神經(jīng)元進(jìn)行非線性組合,并且對(duì)其進(jìn)行信息處理的一種算法。模糊邏輯系統(tǒng)的主要內(nèi)容是包含模糊概念和模糊邏輯的系統(tǒng),它由四個(gè)部分組成,分別為模糊產(chǎn)生器、模糊規(guī)則庫(kù)、模糊推理機(jī)和解模糊化器。該系統(tǒng)最適合用到工程應(yīng)用中,因?yàn)樗妮斎肓亢洼敵隽慷际菍?shí)變量。模

24、糊系統(tǒng)所運(yùn)用的一般化模式是以一種對(duì)專(zhuān)家組織的模糊" IF-THEN”規(guī)則的描述,而且模糊系統(tǒng)四個(gè)部分的選擇有很大的自由度。模糊系統(tǒng)對(duì)于知識(shí)的抽取較為方便,在進(jìn)行不完整信息處理時(shí),可以通過(guò)已有的經(jīng)驗(yàn)和知識(shí)來(lái)對(duì)信息進(jìn)行處理,而且能夠很好的利用專(zhuān)家知識(shí),比較適合用在模糊或定性的知識(shí)上。但是模糊系統(tǒng)的自適應(yīng)能力不強(qiáng),不能自動(dòng)更新模糊隸屬度函數(shù)參數(shù),因?yàn)樵谀:到y(tǒng)中,主要是人來(lái)進(jìn)操作的,因此它的運(yùn)算速度不是很快且推理準(zhǔn)確性比較低。模糊神經(jīng)網(wǎng)絡(luò)(Fuzzy Neural Network-FNN)是模糊理論同神經(jīng)網(wǎng)絡(luò)相結(jié)合的產(chǎn)物。模糊神經(jīng)網(wǎng)絡(luò)很好的利用了二者的優(yōu)點(diǎn),讓它們有機(jī)的結(jié)合起來(lái),使得解決問(wèn)

25、題的方法更完善,所解問(wèn)題的范圍更廣。2.3.2、基于模糊神經(jīng)網(wǎng)絡(luò)在火災(zāi)檢測(cè)中的工作原理根據(jù)模糊神經(jīng)網(wǎng)絡(luò)的三層結(jié)構(gòu),以及每層所要完成的功能可知,在對(duì)火災(zāi)進(jìn)行檢測(cè)時(shí)的網(wǎng)絡(luò)識(shí)別步驟如下:Step 1:建立神經(jīng)網(wǎng)絡(luò),其權(quán)值是模糊規(guī)則中的隸屬度函數(shù);Step2:為了能得到更準(zhǔn)確的網(wǎng)絡(luò)結(jié)構(gòu),從而能夠完整的表達(dá)火災(zāi)現(xiàn)場(chǎng),主要方法是將訓(xùn)練樣本輸入到網(wǎng)絡(luò)中,讓網(wǎng)絡(luò)進(jìn)行訓(xùn)練,與此同時(shí)找到最適合的隸屬度函數(shù),對(duì)其不斷修改。Step3:從神經(jīng)網(wǎng)絡(luò)中提取出修改后的隸屬度函數(shù)和模糊規(guī)則,并將其保存,以便作為此火災(zāi)現(xiàn)場(chǎng)環(huán)境下的模糊推理之用。當(dāng)在現(xiàn)場(chǎng)真正發(fā)生火災(zāi)時(shí),將采集到的火焰特征作為輸入信號(hào)輸入時(shí),依據(jù)之前訓(xùn)練好的網(wǎng)絡(luò)結(jié)

26、構(gòu)對(duì)數(shù)據(jù)進(jìn)行計(jì)算這樣便可以得到最正確的輸出。模糊神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)算法,可采用最小二乘法與誤差反向傳播的算法。2.3.3、火災(zāi)檢測(cè)中模糊神經(jīng)網(wǎng)絡(luò)的設(shè)計(jì)基于Takagi-Surgeon模型(簡(jiǎn)寫(xiě)為T(mén)-S)的模糊神經(jīng)網(wǎng)絡(luò),其主要是它的后件是輸入語(yǔ)言變量的函數(shù),可以較容易的與優(yōu)化、自適應(yīng)方法和PID控制方法相結(jié)合,這種模型計(jì)算簡(jiǎn)單,并且在數(shù)學(xué)分析上也有一定的優(yōu)勢(shì)。本文主要采用TS型模糊神經(jīng)網(wǎng)絡(luò)來(lái)實(shí)現(xiàn)火災(zāi)探測(cè)系統(tǒng)的特征層融合。模糊神經(jīng)網(wǎng)絡(luò)的具體結(jié)構(gòu)如下:第一層是輸入層,輸入分別為火焰的面積變化值、圓形度、閃爍頻率,將輸入的xij傳到第二層。第二層是隸屬函數(shù)層,在各個(gè)論域中,運(yùn)用高斯模型的隸屬度函數(shù)來(lái)表達(dá)輸

27、入變量的各個(gè)隸屬度,其公式如下:Fijxi=exp-(xi-cii)2式中ci為隸屬函數(shù)的中心; i為高斯型隸屬函數(shù)的標(biāo)準(zhǔn)差。利用高斯函數(shù)對(duì)這些輸入數(shù)據(jù)進(jìn)行模糊化,這是因?yàn)樵谳斎胱兞恐?,由于每個(gè)特征所表達(dá)的物理量不同,每個(gè)輸入量的范圍不同,數(shù)值也就有很大不同,因此把每個(gè)輸入變量均變?yōu)殡`屬度函數(shù)在om的范圍內(nèi)。運(yùn)用這種方法不僅使得網(wǎng)絡(luò)計(jì)算變得快速,而且還可以防止小數(shù)值被大數(shù)值淹沒(méi)。根據(jù)三個(gè)特征的物理意義,可設(shè)計(jì)將每一輸入變量用三種語(yǔ)言變量值來(lái)表示其分別為Small(小)、Medium(中)、Large(大)。根據(jù)火災(zāi)發(fā)生時(shí)的情況和以往的經(jīng)驗(yàn)可知,當(dāng)提取出的特征值越小時(shí),Small的隸屬度值會(huì)越大

28、,而Large的隸屬度值會(huì)越小,當(dāng)Medium的隸屬度函數(shù)處在中間范圍時(shí),提取的特征值越大,則Small的隸屬度值會(huì)越小,Large的隸屬度值會(huì)越大。因此將三個(gè)語(yǔ)言變量的隸屬度函數(shù)均以高斯函數(shù)來(lái)表示,會(huì)更加符合火災(zāi)檢測(cè)數(shù)據(jù)的規(guī)律。第三層為規(guī)則化層,其模糊推理主要是利用神經(jīng)元的乘積來(lái)實(shí)現(xiàn)的。將三個(gè)輸入變量面積變化率x1,圓形度x1,閃爍頻率x1,分別模糊化為三層那么會(huì)得到最多27條模糊規(guī)則。通過(guò)對(duì)火災(zāi)發(fā)生時(shí)的實(shí)際狀況進(jìn)行了解,從而總結(jié)出有用的16條模糊規(guī)則,以便減少不必要的網(wǎng)絡(luò)計(jì)算,其規(guī)則如上表所示。第三層和第四層的結(jié)點(diǎn)數(shù)相同,其相互關(guān)系為:yi4=yi3/j=1nyi3第五層計(jì)算一條規(guī)則的輸出

29、:yi5=yi4P0i+P1ix11+P2ix21第六層輸出層的神經(jīng)元采用求和形式計(jì)算網(wǎng)絡(luò)的輸出:y=i=1nyi5下圖為模糊神經(jīng)網(wǎng)絡(luò)算法流程圖,在模糊神經(jīng)網(wǎng)絡(luò)中,需要通過(guò)學(xué)習(xí)調(diào)整的參數(shù)有ci、i和Pji三個(gè)向量。2.3.4、學(xué)習(xí)算法因?yàn)楸疚慕o定了輸入分量的模糊分割數(shù),那么需要學(xué)習(xí)的參數(shù)主要是網(wǎng)絡(luò)的連接權(quán)pijk(j=1,2,n; l=1,2,n; k=1,2,r)以及網(wǎng)絡(luò)隸屬度函數(shù)的中心值cisi 及寬度isi(i=1,2,n;si=1,2,mj)。經(jīng)過(guò)我們的推理可以得出:網(wǎng)絡(luò)的連接權(quán)pijkpjlkt+1=pjlkt+(ydk-yk)j xl其中j=1,2,m;l=1,2,r。網(wǎng)絡(luò)隸屬度函

30、數(shù)的中心值cisi 及寬度isi2.3.5、結(jié)果仿真本文所選用的模糊神經(jīng)網(wǎng)絡(luò)訓(xùn)練樣本是依據(jù)國(guó)內(nèi)外現(xiàn)有的核心期刊中相關(guān)的文章,以及在實(shí)驗(yàn)室中所做的火災(zāi)實(shí)驗(yàn)數(shù)據(jù)。根據(jù)上一節(jié)分析可知網(wǎng)絡(luò)的前三層可是對(duì)輸入數(shù)據(jù)的歸一化,因此網(wǎng)絡(luò)的輸入數(shù)據(jù)可以直接由提取到的特征數(shù)據(jù)來(lái)得到,而且為了避免網(wǎng)絡(luò)訓(xùn)練消耗不必要的網(wǎng)絡(luò)時(shí)間,所以在根據(jù)每一個(gè)特征的物理意義的基礎(chǔ)上,對(duì)網(wǎng)絡(luò)權(quán)值的初始值選擇在一個(gè)合理的范圍內(nèi)。選取在各種場(chǎng)合下拍攝的早期火災(zāi)及干擾現(xiàn)象的視頻序列作為學(xué)習(xí)樣本,限于篇幅,選取40幀圖像作為訓(xùn)練樣本進(jìn)行實(shí)驗(yàn),其中5幀為無(wú)火樣本、13幀為陰燃火樣本、22幀為有火樣本,40幀圖像提取到的特征數(shù)據(jù)如表4.2所示。初

31、始學(xué)習(xí)率設(shè)定為0._5,根據(jù)網(wǎng)絡(luò)自身運(yùn)算調(diào)整學(xué)習(xí)率,誤差極限設(shè)定為0.001,訓(xùn)練步數(shù)設(shè)定為20000,對(duì)訓(xùn)練樣本集重復(fù)強(qiáng)化訓(xùn)練,直到誤差極限達(dá)到設(shè)定值。利用MATLAB采用表4.2中20組數(shù)據(jù)作為訓(xùn)練樣本集。神經(jīng)網(wǎng)絡(luò)的誤差收斂狀況如圖所示,曲線的縱坐標(biāo)為平方和誤差,橫坐標(biāo)為訓(xùn)練步數(shù)。從圖中二可以判定T-S模糊神經(jīng)網(wǎng)絡(luò)算法已達(dá)到穩(wěn)定,幾乎不會(huì)陷入局部極小或發(fā)生震蕩。為了測(cè)試模糊神經(jīng)網(wǎng)絡(luò)模型的識(shí)別能力,選取10組樣本圖像對(duì)網(wǎng)絡(luò)進(jìn)行測(cè)試,圖為10組中的4組圖像,它們分別為第一組、第六組、第七組和第九組下表為測(cè)試輸出與期望輸出值的對(duì)比。對(duì)選取的10組測(cè)試樣本圖像進(jìn)行圖像預(yù)處理、分割以及特征提取后,得

32、到的火焰三個(gè)特征值作為網(wǎng)絡(luò)的輸入量,并對(duì)網(wǎng)絡(luò)的識(shí)別能力進(jìn)行測(cè)試,從表中的數(shù)據(jù)可以看出,所得到的期望輸出與實(shí)際輸出的值相差很小,準(zhǔn)確度較高,因此可知基于模糊神經(jīng)網(wǎng)絡(luò)的火災(zāi)探測(cè)模型已建立成功,識(shí)別結(jié)果令人滿意。3、總結(jié)本論文研究的主要內(nèi)容是在復(fù)雜環(huán)境中,對(duì)火災(zāi)圖像進(jìn)行預(yù)處理及分割的基礎(chǔ)上,對(duì)火焰圖像進(jìn)行特征提取,采用了利用模糊神經(jīng)網(wǎng)絡(luò)對(duì)火災(zāi)進(jìn)行識(shí)別識(shí)別的算法,仿真實(shí)驗(yàn)表明,該算法有較高的準(zhǔn)確率。致謝 本課程小論文結(jié)合模式識(shí)別的學(xué)習(xí),根據(jù)指導(dǎo)老師楊老師的指導(dǎo)意見(jiàn)撰寫(xiě)的。論文中識(shí)別技術(shù)的發(fā)展,結(jié)合已有論文提出的基于圖像的火焰識(shí)別。感謝指導(dǎo)老師楊老師的耐心指導(dǎo),針對(duì)具體問(wèn)題,熱心的點(diǎn)評(píng),使得論文的內(nèi)容更

33、充實(shí),思路分析的更清楚。感謝楊老師給同學(xué)們機(jī)會(huì),讓我們自己講解,自由討論,多角度看待問(wèn)題。感謝同學(xué)們的積極討論、分享知識(shí),不同思路方法的共享,使得論文思路更清晰。參考文獻(xiàn)【1】 賈子若.高等學(xué)校學(xué)生宿舍火災(zāi)風(fēng)險(xiǎn)綜合評(píng)價(jià)研究【j】.北京交通大學(xué),2009 40(2):3_5-42【2】 范華中,張伯虎,馮艷.圖像處理技術(shù)在火焰目標(biāo)提取中的應(yīng)用【f】。電光與控制,2006 13(1): 99-103;【3】 程鑫,王大川,殷棟梁.圖像型火災(zāi)火焰探測(cè)原理.火災(zāi)科學(xué)J. 2005 , 14(1):239-244.【4】 Lai C L, Yang J C.Advanced Real Time Fire

34、 Detection in Video Surveillance System C. IEEE International Symposium on Circuits and Systems (ISCAS),2008: 3542-3545.【5】 Plumb O A, Richard R F. Development of an Economical Video Based Fire Detection and Location SystemD. US Department of Commerce,Technology Administration, National Institute of

35、 Standards and Technology, 2006.【6】 Richards R F, Monk B N Plumb O A. Fire detection, location and heat release rate through inverse problem solution. Part I: Theory J. Fire Safety Journal, 2007,28(3): 23一3 5.【7】 Cheng X F, Wu J H, Yuan X, Zhou H. Principles for a video fire detection system J. Fire Safety Journal, 2009,33 (1):_57一69?!?】 程曉舫,鄧志華,沙川等.自由火焰影像發(fā)展的測(cè)量和分析【j】.應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報(bào),2008 6(12): 426-432.【9】 程曉舫,吳建華,徐新宇.CCD影像中高溫目標(biāo)的甄別【j】然科學(xué)進(jìn)展,2007 11(3):293-299.【10】 Yamagishi H, Yamaguchi J. Fire flame detection algorithm using a

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論