版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、11.2.1 任意角的三角函數(shù)2學(xué)習(xí)目標(biāo)學(xué)習(xí)目標(biāo)1、知識與技能、知識與技能借助單位圓理解任意角的三角函數(shù)借助單位圓理解任意角的三角函數(shù);從任意角三角從任意角三角函數(shù)的定義認(rèn)識其定義域,函數(shù)值的符號函數(shù)的定義認(rèn)識其定義域,函數(shù)值的符號;已知角已知角終邊上一點(diǎn)終邊上一點(diǎn),會(huì)求角會(huì)求角的各三角函數(shù)值的各三角函數(shù)值; 記住三角記住三角函數(shù)的定義域、值域,誘導(dǎo)公式(一)函數(shù)的定義域、值域,誘導(dǎo)公式(一). 2、過程與方法、過程與方法利用終邊與單位圓的交點(diǎn)坐標(biāo)求三角函數(shù)值利用終邊與單位圓的交點(diǎn)坐標(biāo)求三角函數(shù)值 ;各各個(gè)三角函數(shù)值的象限符號;誘導(dǎo)公式一的熟練應(yīng)個(gè)三角函數(shù)值的象限符號;誘導(dǎo)公式一的熟練應(yīng)用。用
2、。 3、情感、態(tài)度與價(jià)值觀、情感、態(tài)度與價(jià)值觀學(xué)習(xí)轉(zhuǎn)化的思想,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)治學(xué)、一絲不茍的學(xué)習(xí)轉(zhuǎn)化的思想,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)治學(xué)、一絲不茍的科學(xué)精神科學(xué)精神. 3教學(xué)的重點(diǎn)和難點(diǎn)教學(xué)的重點(diǎn)和難點(diǎn)v 重點(diǎn):三角函數(shù)的定義,各三角函數(shù)值在重點(diǎn):三角函數(shù)的定義,各三角函數(shù)值在每個(gè)象限的符號,特殊角的三角函數(shù)值每個(gè)象限的符號,特殊角的三角函數(shù)值.v 難點(diǎn):對三角函數(shù)的自變量的多值性的理難點(diǎn):對三角函數(shù)的自變量的多值性的理解,三角函數(shù)的求值中符號的確定解,三角函數(shù)的求值中符號的確定.41.在初中我們是如何定義銳角三角函數(shù)的?在初中我們是如何定義銳角三角函數(shù)的?sincostancacbba復(fù)習(xí)回顧復(fù)習(xí)回顧Oa
3、bMPc5OabMPyx2.在直角坐標(biāo)系中如何用坐標(biāo)表示銳角三角函數(shù)?在直角坐標(biāo)系中如何用坐標(biāo)表示銳角三角函數(shù)?新課新課 導(dǎo)入導(dǎo)入622:barOPbMPaOM其中yx2.在直角坐標(biāo)系中如何用坐標(biāo)表示銳角三角函數(shù)?在直角坐標(biāo)系中如何用坐標(biāo)表示銳角三角函數(shù)?raOPOMcosrbOPMPsinabOMMPtanbaP,Mo7如果改變點(diǎn)在終邊上的位置,這三個(gè)比值會(huì)改變嗎?如果改變點(diǎn)在終邊上的位置,這三個(gè)比值會(huì)改變嗎?PMOPMPsinOPOMcosOMMPtanOMPPMOPOPMPOOMMOPM誘思誘思 探究探究MOyxP(a,b)8OPMPsinOPOMcosOMMPtan,則若1 rOPba
4、ab1.銳角三角函數(shù)(在單位圓中)銳角三角函數(shù)(在單位圓中)以原點(diǎn)以原點(diǎn)O為為圓心,以單位圓心,以單位長度為半徑的圓,稱為長度為半徑的圓,稱為單位圓單位圓. yOP),(bax1M92.任意角的三角函數(shù)定義任意角的三角函數(shù)定義 設(shè)設(shè) 是一個(gè)任意角,它的終邊與是一個(gè)任意角,它的終邊與單位圓單位圓交于點(diǎn)交于點(diǎn)),(yxP 那么那么:(1) 叫做叫做 的正弦,記作的正弦,記作 ,即,即 ;ysinysin (2) 叫做叫做 的余弦,記作的余弦,記作 ,即,即 ; cosxxcos(3) 叫做 的正切正切,記作 ,即 。 xytanxytan 所以,正弦,余弦,正切都所以,正弦,余弦,正切都是以是以角
5、為自變量角為自變量,以,以單位圓單位圓上點(diǎn)上點(diǎn)的的坐標(biāo)或坐標(biāo)的比值坐標(biāo)或坐標(biāo)的比值為函數(shù)值的為函數(shù)值的函數(shù),我們將他們稱為函數(shù),我們將他們稱為三角函數(shù)三角函數(shù).0 , 1AOyxyxP ,)0(x使比值有意義的角的集合使比值有意義的角的集合即為三角函數(shù)的定義域即為三角函數(shù)的定義域.10)0 , 1 (AxyoP),(yx的終邊的終邊說說 明明(1)正弦就是交點(diǎn)的縱坐標(biāo),余弦就是交點(diǎn))正弦就是交點(diǎn)的縱坐標(biāo),余弦就是交點(diǎn)橫坐標(biāo)的比值橫坐標(biāo)的比值. .的橫坐標(biāo),的橫坐標(biāo), 正切就是正切就是 交點(diǎn)的縱坐標(biāo)與交點(diǎn)的縱坐標(biāo)與. .(2) 正弦、余弦總有意義正弦、余弦總有意義.當(dāng)當(dāng) 的終邊在的終邊在 y橫坐
6、標(biāo)等于橫坐標(biāo)等于0, xytan無意義,此時(shí)無意義,此時(shí) )(2zkk軸上時(shí),點(diǎn)軸上時(shí),點(diǎn)P 的的(3)由于角的集合與實(shí)數(shù)集之間可以建立)由于角的集合與實(shí)數(shù)集之間可以建立一一對應(yīng)關(guān)系一一對應(yīng)關(guān)系,三角函數(shù)可以看成是自變量為實(shí)數(shù)的函數(shù)三角函數(shù)可以看成是自變量為實(shí)數(shù)的函數(shù).11任意角的三角函數(shù)的定義過程:任意角的三角函數(shù)的定義過程:直角三角形中定義銳角三角函數(shù)直角三角形中定義銳角三角函數(shù) abrarbtan,cos,sin直角坐標(biāo)系中定義銳角三角函數(shù)直角坐標(biāo)系中定義銳角三角函數(shù) abrarbtan,cos,sin單位圓中定義銳角三角函數(shù)單位圓中定義銳角三角函數(shù) ababtan,cos,sin單位圓
7、中定義任意角的三角函數(shù)單位圓中定義任意角的三角函數(shù) ,sinyxcosxytan,12例例1.求求 的正弦、余弦和正切值的正弦、余弦和正切值.3535AOB解:解:在直角坐標(biāo)系中,作在直角坐標(biāo)系中,作 AOB,易知,易知 的終邊與單位圓的交點(diǎn)坐標(biāo)為的終邊與單位圓的交點(diǎn)坐標(biāo)為 13( ,).22所以所以 53sin,32 51cos,325tan3.3 思考:思考:若把角若把角 改為改為 呢呢? 3567,2167sin,2367cos3367tan實(shí)例實(shí)例 剖析剖析xyoAB35P15.1P15.313 設(shè)角設(shè)角 是一個(gè)任意角,是一個(gè)任意角, 是終邊上的任意一點(diǎn),是終邊上的任意一點(diǎn),點(diǎn)點(diǎn) 與原
8、點(diǎn)的距離與原點(diǎn)的距離 .),( yxP022yxrP那么那么 叫做叫做 的正弦,即的正弦,即ryrysin 叫做叫做 的余弦,即的余弦,即rxrxcos 叫做叫做 的正弦,即的正弦,即xy0tanxxy 任意角任意角 的三角函數(shù)值僅與的三角函數(shù)值僅與 有關(guān),而與點(diǎn)有關(guān),而與點(diǎn) 在角的在角的終邊上的位置無關(guān)終邊上的位置無關(guān).P定義推廣:定義推廣:14例例2.已知角已知角 的終邊經(jīng)過點(diǎn)的終邊經(jīng)過點(diǎn) ,求角,求角 的正弦、余弦和正切值的正弦、余弦和正切值 .)4, 3(0P220( 3)( 4)5.OP 解解:由已知可得由已知可得設(shè)角設(shè)角 的終邊與單位圓交于的終邊與單位圓交于 ,),(yxP分別過點(diǎn)
9、分別過點(diǎn) 、 作作 軸的垂線軸的垂線 、0PMPP00PMx400PM于是,于是, ;54|1sin000OPPMOPMPyyyMP30OMxOMOMP00POM;531cos00OPOMOPOMxxsin4tan.cos3yx4, 30P0MOyxMyxP xr1312cosrx125tanxy5sin,13yr于是于是,鞏固鞏固 提高提高練習(xí)練習(xí): 1.已知角已知角 的終邊過點(diǎn)的終邊過點(diǎn) , 求求 的三個(gè)三角函數(shù)值的三個(gè)三角函數(shù)值.5 ,12P解:解:由已知可得:由已知可得:P15.2162P15 ,8aaaa.已知角 的終邊上一點(diǎn)R且0 ,sin,cos ,ta
10、n求角 的的值.-15 ,8 ,xa ya解:由于22158170raaaa所以 1017 ,ara若則于是88151588sin,cos,tan171717171515aaaaaa 20-17 ,ara若則于是88151588sin,cos,tan171717171515aaaaaa 1732sin,cos,tan.yx.已知角 的終邊在直線上,求角 的的值 1解: 當(dāng)角 的終邊在第一象限時(shí),221,2125在角 的終邊上取點(diǎn),則r=225152sin,cos,tan255155 2當(dāng)角 的終邊在第三象限時(shí),221, 2125r 在角 的終邊上取點(diǎn),則22 5152sin,cos,tan25
11、5155 181.根據(jù)三角函數(shù)的定義,確定它們的定義域根據(jù)三角函數(shù)的定義,確定它們的定義域(弧度制)(弧度制)探探究究三角函數(shù)三角函數(shù)定義域定義域sincostanR)(2Zkk2.確定三角函數(shù)值在各象限的符號確定三角函數(shù)值在各象限的符號yxosinyxocosyxotan+( )( )( )( )( )( )( )( )( )( )( )R+-+-+-+-19yxo+-+-yxoyxo全為+yxosincostansinyr cosxr tanyx 三個(gè)三角函數(shù)在各象限的符號三個(gè)三角函數(shù)在各象限的符號心得心得: :角定象限角定象限, ,象限定符號象限定符號. .P15.320例例3. 求證:
12、當(dāng)下列不等式組成立時(shí),角求證:當(dāng)下列不等式組成立時(shí),角 為第三象限角為第三象限角.反之也對反之也對0tan 0sin 證明:證明: 因?yàn)槭揭驗(yàn)槭?成立成立,所以所以 角的終邊可能位于第三角的終邊可能位于第三 或第四象限,也可能位于或第四象限,也可能位于y 軸的非正半軸上;軸的非正半軸上;0sin 又因?yàn)槭接忠驗(yàn)槭?成立,所以角成立,所以角 的終邊可能位于的終邊可能位于第一或第三象限第一或第三象限. 0tan 因?yàn)槭蕉汲闪ⅲ越且驗(yàn)槭蕉汲闪?,所以?的終邊只能位于第三象限的終邊只能位于第三象限.于是角于是角 為第三象限角為第三象限角.反過來請同學(xué)們自己證明反過來請同學(xué)們自己證明.P15.621
13、如果兩個(gè)角的終邊相同,那么這兩如果兩個(gè)角的終邊相同,那么這兩個(gè)角的同一三角函數(shù)值有何關(guān)系?個(gè)角的同一三角函數(shù)值有何關(guān)系? 終邊相同的角的同一三角函數(shù)值相等(終邊相同的角的同一三角函數(shù)值相等(公式一公式一)tan)2tan(cos)2cos(sin)2sin(kkk其中其中zk 利用公式一,可以把求任意角的三角函數(shù)值,轉(zhuǎn)化為利用公式一,可以把求任意角的三角函數(shù)值,轉(zhuǎn)化為求求 角的三角函數(shù)值角的三角函數(shù)值 .020360到或 ?22 例題例題235344cossintantan.( )sin .cos .tan() 例例4 4. .確確定定下下列列三三角角函函數(shù)數(shù)值值的的符符號號, ,然然后后用用
14、計(jì)計(jì)算算器器驗(yàn)驗(yàn)證證: : ( (1 1) )2 25 50 0; ;( (2 2) )( (- -) ); ;( (3 3) )( (- -6 67 72 2 ) ); ;( (4 4) )3 34 4(1)因?yàn)椋┮驗(yàn)?是第三象限角,所以是第三象限角,所以 ;2500250cos(3)因?yàn)椋┮驗(yàn)?= 而而 是第一象限角,所以是第一象限角,所以)672tan(tan(482 360 )tan48 , tan( 672 )0; 48解:解: (2)因?yàn)椋┮驗(yàn)?是第四象限角,所以是第四象限角,所以4sin0;420tantan()tan. ( (4 4) )3 323o5.911 (1)sin14
15、80 10; (2)cos; (3)tan(-)46例 求下列三角函數(shù)值:oooo(1)sin1480 10 = sin(40 10+ 4360 ) = sin40 100.645; 92(2)coscos(2 )cos;4442113(3)tan()tan(2 )tan.6663解:解:246.已知已知 在第二象限在第二象限, 試確定試確定 sin(cos ) cos(sin ) 的符號的符號. 解解: 在第二象限在第二象限, -1cos 0, 0sin 1. - - - -1, 1 ,2 2 - - cos 0, 0sin . 2 2 sin(cos )0. sin(cos ) cos(s
16、in ) Oxy2( ,)33ppaP PM MP P1 1P P2 232y=3421sin xyoP1P2xyo T A210 30 例利用單位圓尋找適合下列條件的例利用單位圓尋找適合下列條件的0 到到360 的角的角.3030 150150 解解:3030 9090 或或210210 270270 3tan335 例例3 3. .若若, ,試試比比較較的的大大小小. .0sin,tan, 2. 解:如圖,在單位圓中,設(shè) AOP=(0,),則AP=2PPMOAMAATOAOPT過點(diǎn) 作于,過點(diǎn) 作交的延長線于 ,.MPAT則角 的正弦線為,正切線為POAPOAAOT的面積扇形的面積的面積,
17、111222OA MPOAOA AT,即MPAT.sintan .POxyMAT3654sin32sin 與與AB o S2 S1P2P1 M1例例.利用三角函數(shù)線比較下列各組數(shù)的大?。豪萌呛瘮?shù)線比較下列各組數(shù)的大?。航猓航猓?如圖可知:如圖可知: 54tan32tan 與與54sin32sin M23754sin32sin 與與AB oT2T1 S2 S1例例.利用三角函數(shù)線比較下列各組數(shù)的大?。豪萌呛瘮?shù)線比較下列各組數(shù)的大?。航猓航猓?如圖可知:如圖可知: 54tan32tan 與與54sin32sin 54tan32tan 38例例5.5.求函數(shù)求函數(shù) 的定義域的定義域. .( )2cos1f aa=-OxyP2MP112x=2,2()33kkkZppapp -+P1cos2a391.(0,2 )cossintanxxxx在內(nèi)使成立的 的取值范圍是( )3(,)44A53(,)42B3(,2 )2C37(,)24DCxyoMPAT32.(, )4若,則下列各式錯(cuò)誤的是( )( )sincos0A( )sincos0B( )|sin| |cos|C()sincos0DDsin0,cos0,|sin| |cos|分析:xyoy=-xPM 練習(xí)練習(xí)40 xyoy=-xxyoy=-xxyoMPsincos1,(0,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 事業(yè)單位專屬勞動(dòng)協(xié)議樣本2024年版一
- 2025版城市協(xié)警服務(wù)外包項(xiàng)目聘用合同范本3篇
- 2025版智慧小區(qū)商業(yè)街物業(yè)綜合管理服務(wù)合同
- 臨時(shí)工職務(wù)聘請合同集(2024年版)一
- 二零二五年度現(xiàn)代農(nóng)業(yè)技術(shù)合作補(bǔ)充協(xié)議范本3篇
- 2025年度船舶安全檢查與整改服務(wù)合同4篇
- 二零二五年度桉樹種植基地林業(yè)生態(tài)修復(fù)承包合同范本4篇
- 二零二五年度體育公園場地承包經(jīng)營協(xié)議3篇
- 2025年度出口退稅賬戶托管與資金結(jié)算服務(wù)合同范本4篇
- 2025版新媒體平臺(tái)合作運(yùn)營服務(wù)合同3篇
- 二零二五年度無人駕駛車輛測試合同免責(zé)協(xié)議書
- 2025年湖北華中科技大學(xué)招聘實(shí)驗(yàn)技術(shù)人員52名歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 黑龍江省哈爾濱市2024屆中考數(shù)學(xué)試卷(含答案)
- 高三日語一輪復(fù)習(xí)助詞「と」的用法課件
- 毛渣采購合同范例
- 無子女離婚協(xié)議書范文百度網(wǎng)盤
- 2023中華護(hù)理學(xué)會(huì)團(tuán)體標(biāo)準(zhǔn)-注射相關(guān)感染預(yù)防與控制
- 一年級數(shù)學(xué)個(gè)位數(shù)加減法口算練習(xí)題大全(連加法-連減法-連加減法直接打印版)
- 五年級上冊小數(shù)遞等式計(jì)算200道及答案
- 2024年廣東高考政治真題考點(diǎn)分布匯 總- 高考政治一輪復(fù)習(xí)
- 燃?xì)夤艿滥甓葯z驗(yàn)報(bào)告
評論
0/150
提交評論