版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、第十九章 平行四邊形一、 教學(xué)目標(biāo):1 理解并掌握平行四邊形的概念和平行四邊形對(duì)邊、對(duì)角相等的性質(zhì)2 會(huì)用平行四邊形的性質(zhì)解決簡單的平行四邊形的計(jì)算問題,并會(huì)進(jìn)行有關(guān)的論證3 培養(yǎng)學(xué)生發(fā)現(xiàn)問題、解決問題的能力及邏輯推理能力二、 重點(diǎn)、難點(diǎn)1 重點(diǎn):平行四邊形的定義,平行四邊形對(duì)角、對(duì)邊相等的性質(zhì),以及性質(zhì)的應(yīng)用2 難點(diǎn):運(yùn)用平行四邊形的性質(zhì)進(jìn)行有關(guān)的論證和計(jì)算3 難點(diǎn)的突破方法:本節(jié)的主要內(nèi)容是平行四邊形的定義和平行四邊形對(duì)邊相等、對(duì)角相等的性質(zhì)這一節(jié)是全章的重點(diǎn)之一,學(xué)好本節(jié)可為學(xué)好全章打下基礎(chǔ)學(xué)習(xí)這一節(jié)的基礎(chǔ)知識(shí)是平行線性質(zhì)、全等三角形和四邊形,課堂上可引導(dǎo)學(xué)生回憶有關(guān)知識(shí)平行四邊形的定義
2、在小學(xué)里學(xué)過,學(xué)生是不生疏的,但對(duì)于概念的本質(zhì)屬性的理解并不深刻,所以這里并不是復(fù)習(xí)鞏固的問題,而是要加深理解,要防止學(xué)生把平行四邊形概念當(dāng)作已知,而不重視對(duì)它的本質(zhì)屬性的掌握為了有助于學(xué)生對(duì)平行四邊形本質(zhì)屬性的理解,在講平行四邊形定義前,要把平行四邊形的對(duì)邊、對(duì)角讓學(xué)生認(rèn)清楚講定義時(shí)要強(qiáng)調(diào)“四邊形”和“兩組對(duì)邊分別平行”這兩個(gè)條件,一個(gè)“四邊形”必須具備有“兩組對(duì)邊分別平行”才是平行四邊形;反之,平行四邊形,就一定是有“兩組對(duì)邊分別平行”的一個(gè)“四邊形”要指出,定義既是平行四邊形的一個(gè)判定方法,又是平行四邊形的一個(gè)性質(zhì)新教材是先讓學(xué)生用觀察、度量和猜想的方法得到平行四邊形的對(duì)邊相等、對(duì)角相等
3、這兩條性質(zhì)的,然后用兩個(gè)三角形全等,證明了這兩條性質(zhì)這有利于培養(yǎng)學(xué)生觀察、分析、猜想、歸納知識(shí)的自學(xué)能力教學(xué)中可以通過大量的生活中的實(shí)例:如推拉門、汽車防護(hù)鏈、書本等引入新課,使學(xué)生在已有的知識(shí)和認(rèn)知的基礎(chǔ)上去探索數(shù)學(xué)發(fā)展的規(guī)律,達(dá)到用問題創(chuàng)設(shè)數(shù)學(xué)情境,提高學(xué)生學(xué)習(xí)興趣 然后讓學(xué)生通過具體問題的觀察、猜想出一些不同于一般四邊形的性質(zhì),進(jìn)一步由學(xué)生歸納總結(jié)得到平行四邊形的性質(zhì)同時(shí)教師整理出一種推導(dǎo)平行四邊形性質(zhì)的范式,讓學(xué)生在教師的范式的誘導(dǎo)下,初步達(dá)到演繹數(shù)學(xué)論證過程的能力最后通過不同層次的典型例、習(xí)題,讓學(xué)生自己理解并掌握本節(jié)課的知識(shí)三、例題的意圖分析例1是教材P93的例1,它是平行四邊形性
4、質(zhì)的實(shí)際應(yīng)用,題目比較簡單,其目的就是讓學(xué)生能運(yùn)用平行四邊形的性質(zhì)進(jìn)行有關(guān)的計(jì)算,講課時(shí),可以讓學(xué)生來解答例2是補(bǔ)充的一道幾何證明題,即讓學(xué)生學(xué)會(huì)運(yùn)用平行四邊形的性質(zhì)進(jìn)行有關(guān)的論證,又讓學(xué)生從較簡單的幾何論證開始,提高學(xué)生的推理論證能力和邏輯思維能力,學(xué)會(huì)演繹幾何論證的方法此題應(yīng)讓學(xué)生自己進(jìn)行推理論證四、課堂引入1我們一起來觀察下圖中的竹籬笆格子和汽車的防護(hù)鏈,想一想它們是什么幾何圖形的形象?平行四邊形是我們常見的圖形,你還能舉出平行四邊形在生活中應(yīng)用的例子嗎?你能總結(jié)出平行四邊形的定義嗎?(1)定義:兩組對(duì)邊分別平行的四邊形是平行四邊形(2)表示:平行四邊形用符號(hào)“”來表示如圖,在四邊形AB
5、CD中,ABDC,ADBC,那么四邊形ABCD是平行四邊形平行四邊形ABCD記作“ABCD”,讀作“平行四邊形ABCD”AB/DC ,AD/BC , 四邊形ABCD是平行四邊形(判定); 四邊形ABCD是平行四邊形AB/DC, AD/BC(性質(zhì))注意:平行四邊形中對(duì)邊是指無公共點(diǎn)的邊,對(duì)角是指不相鄰的角,鄰邊是指有公共端點(diǎn)的邊,鄰角是指有一條公共邊的兩個(gè)角而三角形對(duì)邊是指一個(gè)角的對(duì)邊,對(duì)角是指一條邊的對(duì)角(教學(xué)時(shí)要結(jié)合圖形,讓學(xué)生認(rèn)識(shí)清楚)2【探究】平行四邊形是一種特殊的四邊形,它除具有四邊形的性質(zhì)和兩組對(duì)邊分別平行外,還有什么特殊的性質(zhì)呢?我們一起來探究一下讓學(xué)生根據(jù)平行四邊形的定義畫一個(gè)一
6、個(gè)平行四邊形,觀察這個(gè)四邊形,它除具有四邊形的性質(zhì)和兩組對(duì)邊分別平行外以,它的邊和角之間有什么關(guān)系?度量一下,是不是和你猜想的一致? (1)由定義知道,平行四邊形的對(duì)邊平行根據(jù)平行線的性質(zhì)可知,在平行四邊形中,相鄰的角互為補(bǔ)角(相鄰的角指四邊形中有一條公共邊的兩個(gè)角注意和第一章的鄰角相區(qū)別教學(xué)時(shí)結(jié)合圖形使學(xué)生分辨清楚)(2)猜想 平行四邊形的對(duì)邊相等、對(duì)角相等下面證明這個(gè)結(jié)論的正確性已知:如圖ABCD,求證:ABCD,CBAD,BD,BADBCD分析:作ABCD的對(duì)角線AC,它將平行四邊形分成ABC和CDA,證明這兩個(gè)三角形全等即可得到結(jié)論(作對(duì)角線是解決四邊形問題常用的輔助線,通過作對(duì)角線,
7、可以把未知問題轉(zhuǎn)化為已知的關(guān)于三角形的問題) 證明:連接AC, ABCD,ADBC, 13,24又 ACCA, ABCCDA (ASA) ABCD,CBAD,BD又 1423, BADBCD由此得到:平行四邊形性質(zhì)1平行四邊形的對(duì)邊相等平行四邊形性質(zhì)2 平行四邊形的對(duì)角相等五、例習(xí)題分析例1(教材P93例1) 例2(補(bǔ)充)如圖,在平行四邊形ABCD中,AE=CF,求證:AF=CE分析:要證AF=CE,需證ADFCBE,由于四邊形ABCD是平行四邊形,因此有D=B ,AD=BC,AB=CD,又AE=CF,根據(jù)等式性質(zhì),可得BE=DF由“邊角邊”可得出所需要的結(jié)論證明略六、隨堂練習(xí)1填空:(1)在
8、ABCD中,A=,則B= 度,C= 度,D= 度(2)如果ABCD中,AB=240,則A= 度,B= 度,C= 度,D= 度 (3)如果ABCD的周長為28cm,且AB:BC=25,那么AB= cm,BC= cm,CD= cm,CD= cm2如圖4.39,在ABCD中,AC為對(duì)角線,BEAC,DFAC,E、F為垂足,求證:BEDF七、課后練習(xí)1(選擇)在下列圖形的性質(zhì)中,平行四邊形不一定具有的是( )(A)對(duì)角相等 (B)對(duì)角互補(bǔ) (C)鄰角互補(bǔ) (D)內(nèi)角和是2在ABCD中,如果EFAD,GHCD,EF與GH相交與點(diǎn)O,那么圖中的平行四邊形一共有( )(A)4個(gè) (B)5個(gè) (C)8個(gè) (D
9、)9個(gè)3如圖,ADBC,AECD,BD平分ABC,求證AB=CE平行四邊形的性質(zhì)(二)一、 教學(xué)目標(biāo):1 理解平行四邊形中心對(duì)稱的特征,掌握平行四邊形對(duì)角線互相平分的性質(zhì)2 能綜合運(yùn)用平行四邊形的性質(zhì)解決平行四邊形的有關(guān)計(jì)算問題,和簡單的證明題3 培養(yǎng)學(xué)生的推理論證能力和邏輯思維能力二、 重點(diǎn)、難點(diǎn)1 重點(diǎn):平行四邊形對(duì)角線互相平分的性質(zhì),以及性質(zhì)的應(yīng)用2 難點(diǎn):綜合運(yùn)用平行四邊形的性質(zhì)進(jìn)行有關(guān)的論證和計(jì)算3 難點(diǎn)的突破方法:(1)本節(jié)課的主要內(nèi)容是平行四邊形的性質(zhì)3,它是通過旋轉(zhuǎn)平行四邊形,得到平行四邊形是中心對(duì)稱圖形和對(duì)角線互相平分的性質(zhì)這一節(jié)綜合性較強(qiáng),教學(xué)中要注意引導(dǎo)學(xué)生要注意讓學(xué)生鞏
10、固基礎(chǔ)知識(shí)和基本技能,加強(qiáng)對(duì)解題思路的分析,解題思想方法的概括、指導(dǎo)和結(jié)論的升華(2)教學(xué)時(shí)要講明線段互相平分的意義和表示方法如圖,設(shè)四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,若AC與BD互相平分,則有OAOC,OBOD(3)在平行四邊形中,從一條邊上的任意一點(diǎn),向?qū)叜嫶咕€,這點(diǎn)與垂足間的距離(或從這點(diǎn)到對(duì)邊垂線段的長,或者說這條邊和對(duì)邊的距離),叫做以這條邊為底的平行四邊形的高這里所說的“底”是相對(duì)高而言的在平行四邊形中,有時(shí)高是指垂線段本身,如作平行四邊形的高,就是指作垂線段所以平行四邊形的高,在作圖時(shí)一般是指垂線段本身在進(jìn)行計(jì)算時(shí),它的意義是距離,即長度 (4)平行四邊形的面積等于它
11、的底和高的積,即a·h其中a可以是平行四邊形的任何一邊,h必須是a邊與其對(duì)邊的距離,即對(duì)應(yīng)的高,如圖(1)要避免學(xué)生發(fā)生如圖(2)的錯(cuò)誤為了區(qū)別,有時(shí)也可以把高記成、,表明它們所對(duì)應(yīng)的底是a或AB(5)學(xué)完本節(jié)后,歸納總結(jié)一下平行四邊形比一般四邊形多哪些性質(zhì),平行四邊形有哪些性質(zhì)可以按邊、角、對(duì)角線進(jìn)行總結(jié)通過復(fù)習(xí)總結(jié),使學(xué)生掌握這些知識(shí),也培養(yǎng)學(xué)生隨時(shí)復(fù)習(xí)總結(jié)的習(xí)慣,并提高他們歸納總結(jié)的能力三、例題的意圖分析 本節(jié)課安排了兩個(gè)例題,例1是一道補(bǔ)充題,它是性質(zhì)3的直接運(yùn)用,然后對(duì)例1進(jìn)行了引申,可以根據(jù)學(xué)生的實(shí)際情況選講,并歸納結(jié)論:過平行四邊形對(duì)角線的交點(diǎn)作直線交對(duì)邊或?qū)叺难娱L線
12、,所得的對(duì)應(yīng)線段相等例1與后面的三個(gè)圖形是一組重要的基本圖形,熟悉它的性質(zhì)對(duì)解答復(fù)雜問題是很有幫助的例2是教材P94的例2,這是復(fù)習(xí)鞏固小學(xué)學(xué)過的平行四邊形面積計(jì)算這個(gè)例題比小學(xué)計(jì)算平行四邊形面積的題加深了一步,需要應(yīng)用勾股定理,先求得平行四邊形一邊上的高,然后才能應(yīng)用公式計(jì)算在以后的解題中,還會(huì)遇到需要應(yīng)用勾股定理來求高或底的問題,在教學(xué)中要注意使學(xué)生掌握其方法四、課堂引入1復(fù)習(xí)提問:(1)什么樣的四邊形是平行四邊形?四邊形與平行四邊形的關(guān)系是:(2)平行四邊形的性質(zhì):具有一般四邊形的性質(zhì)(內(nèi)角和是)角:平行四邊形的對(duì)角相等,鄰角互補(bǔ) 邊:平行四邊形的對(duì)邊相等 2【探究】:請(qǐng)學(xué)生在紙上畫兩個(gè)
13、全等的ABCD和EFGH,并連接對(duì)角線AC、BD和EG、HF,設(shè)它們分別交于點(diǎn)O把這兩個(gè)平行四邊形落在一起,在點(diǎn)O處釘一個(gè)圖釘,將ABCD繞點(diǎn)O旋轉(zhuǎn),觀察它還和EFGH重合嗎?你能從子中看出前面所得到的平行四邊形的邊、角關(guān)系嗎?進(jìn)一步,你還能發(fā)現(xiàn)平行四邊形的什么性質(zhì)嗎?結(jié)論:(1)平行四邊形是中心對(duì)稱圖形,兩條對(duì)角線的交點(diǎn)是對(duì)稱中心; (2)平行四邊形的對(duì)角線互相平分五、例習(xí)題分析例1(補(bǔ)充) 已知:如圖421, ABCD的對(duì)角線AC、BD相交于點(diǎn)O,EF過點(diǎn)O與AB、CD分別相交于點(diǎn)E、F求證:OEOF,AE=CF,BE=DF證明:在 ABCD中,ABCD,1234又 OAOC(平行四邊形的
14、對(duì)角線互相平分), AOECOF(ASA)OEOF,AE=CF(全等三角形對(duì)應(yīng)邊相等) ABCD, AB=CD(平行四邊形對(duì)邊相等) ABAE=CDCF 即 BE=FD【引申】若例1中的條件都不變,將EF轉(zhuǎn)動(dòng)到圖b的位置,那么例1的結(jié)論是否成立?若將EF向兩方延長與平行四邊形的兩對(duì)邊的延長線分別相交(圖c和圖d),例1的結(jié)論是否成立,說明你的理由解略例2(教材P94的例2)已知四邊形ABCD是平行四邊形,AB10cm,AD8cm,ACBC,求BC、CD、AC、OA的長以及ABCD的面積六、隨堂練習(xí)1在平行四邊形中,周長等于48, 已知一邊長12,求各邊的長 已知AB=2BC,求各邊的長 已知對(duì)
15、角線AC、BD交于點(diǎn)O,AOD與AOB的周長的差是10,求各邊的長2如圖, ABCD中,AEBD,EAD=60°,AE=2cm,AC+BD=14cm,則OBC的周長是_ _cm3 ABCD一內(nèi)角的平分線與邊相交并把這條邊分成,的兩條線段,則ABCD的周長是_ _七、課后練習(xí)1判斷對(duì)錯(cuò)(1)在ABCD中,AC交BD于O,則AO=OB=OC=OD ( )(2)平行四邊形兩條對(duì)角線的交點(diǎn)到一組對(duì)邊的距離相等 ( )(3)平行四邊形的兩組對(duì)邊分別平行且相等 ( )(4)平行四邊形是軸對(duì)稱圖形 ( )2在 ABCD中,AC6、BD4,則AB的范圍是_ _3在平行四邊形ABCD中,已知AB、BC
16、、CD三條邊的長度分別為(x+3),(x-4)和16,則這個(gè)四邊形的周長是 4公園有一片綠地,它的形狀是平行四邊形,綠地上要修幾條筆直的小路,如圖,AB15cm,AD12cm,ACBC,求小路BC,CD,OC的長,并算出綠地的面積一、 教學(xué)目標(biāo): 1在探索平行四邊形的判別條件中,理解并掌握用邊、對(duì)角線來判定平行四邊形的方法 2會(huì)綜合運(yùn)用平行四邊形的判定方法和性質(zhì)來解決問題 3培養(yǎng)用類比、逆向聯(lián)想及運(yùn)動(dòng)的思維方法來研究問題二、重點(diǎn)、難點(diǎn)4 重點(diǎn):平行四邊形的判定方法及應(yīng)用5 難點(diǎn):平行四邊
17、形的判定定理與性質(zhì)定理的靈活應(yīng)用3難點(diǎn)的突破方法:平行四邊形的判別方法是本節(jié)課的核心內(nèi)容同時(shí)它又是后面進(jìn)一步研究矩形、菱形、正方形判別的基礎(chǔ),更是發(fā)展學(xué)生合情推理及說理的良好素材本節(jié)課的教學(xué)重點(diǎn)為平行四邊形的判別方法在本課中,可以探索活動(dòng)為載體,并將論證作為探索活動(dòng)的自然延續(xù)與必要發(fā)展,從而將直觀操作與簡單推理有機(jī)融合,達(dá)到突出重點(diǎn)、分散難點(diǎn)的目的 (1)平行四邊形的判定方法1、2都是平行四邊形性質(zhì)的逆命題,它們的證明都可利用定義或前一個(gè)方法來證明(2)平行四邊形有四種判定方法,與性質(zhì)類似,可從邊、對(duì)角線兩方面進(jìn)行記憶要注意:本教材沒有把用角來作為判定的方法,教學(xué)中可以根據(jù)學(xué)生的情況作為補(bǔ)充;
18、本節(jié)課只介紹前兩個(gè)判定方法(3)教學(xué)中,我們可創(chuàng)設(shè)貼近學(xué)生生活、生動(dòng)有趣的問題情境,開展有效的數(shù)學(xué)活動(dòng),如通過欣賞圖片及識(shí)別圖片中的平行四邊形,使學(xué)生建立對(duì)平行四邊形的直覺認(rèn)識(shí)并復(fù)習(xí)平行四邊形的定義,建立新舊知識(shí)間的相互聯(lián)系接著提出問題:小明的父親手中有一些木條,他想通過適當(dāng)?shù)臏y量、割剪,釘制一個(gè)平行四邊形框架,你能幫他想出一些辦法來嗎?從而組織學(xué)生主動(dòng)參與、勤于動(dòng)手、積極思考,使他們?cè)谧灾魈骄颗c合作交流的過程中,從整體上把握“平行四邊形的判別”的方法然后利用學(xué)生手中的學(xué)具硬紙板條通過觀察、測量、猜想、驗(yàn)證、探索構(gòu)成平行四邊形的條件在學(xué)生拼圖的活動(dòng)中,教師可以以問題串的形式展開對(duì)平行四邊形判別
19、方法的探討,讓學(xué)生在問題解決中,實(shí)現(xiàn)對(duì)平行四邊形各種判別方法的掌握,并發(fā)展了學(xué)生說理及簡單推理的能力 (4)從本節(jié)開始,就應(yīng)讓學(xué)生直接運(yùn)用平行四邊形的性質(zhì)和判定去解決問題,凡是可以用平行四邊形知識(shí)證明的問題,不要再回到用三角形全等證明應(yīng)該對(duì)學(xué)生提出這個(gè)要求 (5)平行四邊形知識(shí)的運(yùn)用包括三個(gè)方面:一是直接運(yùn)用平行四邊形的性質(zhì)去解決某些問題例如求角的度數(shù),線段的長度,證明角相等或線段相等等;二是判定一個(gè)四邊形是平行四邊形,從而判定直線平行等;三是先判定一個(gè)四邊形是平行四邊形,然后再眼再用平行四邊形的性質(zhì)去解決某些問題 (6)平行四邊形的概念、性質(zhì)、判定都是非常重要的基礎(chǔ)知識(shí),這些知識(shí)是本章的重點(diǎn)
20、內(nèi)容,要使學(xué)生熟練地掌握這些知識(shí)三、例題的意圖分析本節(jié)課安排了3個(gè)例題,例1是教材P96的例3,它是平行四邊形的性質(zhì)與判定的綜合運(yùn)用,此題最好先讓學(xué)生說出證明的思路,然后老師總結(jié)并指出其最佳方法例2與例3都是補(bǔ)充的題目,其目的就是讓學(xué)生能靈活和綜合地運(yùn)用平行四邊形的判定方法和性質(zhì)來解決問題例3是一道拼圖題,教學(xué)時(shí),可以讓學(xué)生動(dòng)起來,邊拼圖邊說明道理,即可以提高學(xué)生的動(dòng)手能力和學(xué)生的思維能力,又可以提高學(xué)生的學(xué)習(xí)興趣如讓學(xué)生再用四個(gè)不等邊三角形拼一個(gè)如圖的大三角形,讓學(xué)生指出圖中所有的平行四邊形,并說明理由四、課堂引入1欣賞圖片、提出問題展示圖片,提出問題,在剛才演示的圖片中,有哪些是平行四邊形
21、?你是怎樣判斷的?2【探究】:小明的父親手中有一些木條,他想通過適當(dāng)?shù)臏y量、割剪,釘制一個(gè)平行四邊形框架,你能幫他想出一些辦法來嗎?讓學(xué)生利用手中的學(xué)具硬紙板條通過觀察、測量、猜想、驗(yàn)證、探索構(gòu)成平行四邊形的條件,思考并探討:(1)你能適當(dāng)選擇手中的硬紙板條搭建一個(gè)平行四邊形嗎?(2)你怎樣驗(yàn)證你搭建的四邊形一定是平行四邊形?(3)你能說出你的做法及其道理嗎?(4)能否將你的探索結(jié)論作為平行四邊形的一種判別方法?你能用文字語言表述出來嗎?(5)你還能找出其他方法嗎?從探究中得到:平行四邊形判定方法1 兩組對(duì)邊分別相等的四邊形是平行四邊形。平行四邊形判定方法2 對(duì)角線互相平分的四邊形是平行四邊形
22、。五、例習(xí)題分析例1(教材P96例3)已知:如圖ABCD的對(duì)角線AC、BD交于點(diǎn)O,E、F是AC上的兩點(diǎn),并且AE=CF求證:四邊形BFDE是平行四邊形分析:欲證四邊形BFDE是平行四邊形可以根據(jù)判定方法2來證明(證明過程參看教材)問;你還有其它的證明方法嗎?比較一下,哪種證明方法簡單例2(補(bǔ)充) 已知:如圖,ABBA,BCCB, CAAC求證:(1) ABCB,CABA,BCAC;(2) ABC的頂點(diǎn)分別是BCA各邊的中點(diǎn)證明:(1) ABBA,CBBC, 四邊形ABCB是平行四邊形ABCB(平行四邊形的對(duì)角相等)同理CABA,BCAC(2) 由(1)證得四邊形ABCB是平行四邊形同理,四邊
23、形ABAC是平行四邊形 ABBC, ABAC(平行四邊形的對(duì)邊相等) BCAC同理 BACA, ABCBABC的頂點(diǎn)A、B、C分別是BCA的邊BC、CA、AB的中點(diǎn) 例3(補(bǔ)充)小明用手中六個(gè)全等的正三角形做拼圖游戲時(shí),拼成一個(gè)六邊形你能在圖中找出所有的平行四邊形嗎?并說說你的理由 六、隨堂練習(xí)1如圖,在四邊形ABCD中,AC、BD相交于點(diǎn)O,(1)若AD=8cm,AB=4cm,那么當(dāng)BC=_ _cm,CD=_ _cm時(shí),四邊形ABCD為平行四邊形;(2)若AC=10cm,BD=8cm,那么當(dāng)AO=_ _cm,DO=_ _cm時(shí),四邊形ABCD為平行四邊形2已知:如圖, ABCD中,點(diǎn)E、F分
24、別在CD、AB上,DFBE,EF交BD于點(diǎn)O求證:EO=OF3靈活運(yùn)用課本P89例題,如圖:由火柴棒拼出的一列圖形,第n個(gè)圖形由(n+1)個(gè)等邊三角形拼成,通過觀察,分析發(fā)現(xiàn):第4個(gè)圖形中平行四邊形的個(gè)數(shù)為_ _ (6個(gè))第8個(gè)圖形中平行四邊形的個(gè)數(shù)為_ _ (20個(gè))七、課后練習(xí)1(選擇)下列條件中能判斷四邊形是平行四邊形的是( ) (A)對(duì)角線互相垂直 (B)對(duì)角線相等 (C)對(duì)角線互相垂直且相等 (D)對(duì)角線互相平分2已知:如圖,ABC,BD平分ABC,DEBC,EFBC, 求證:BE=CF一、 教學(xué)目標(biāo): 1掌握用一組對(duì)邊平行且相等來判定平行四邊形的
25、方法 2會(huì)綜合運(yùn)用平行四邊形的四種判定方法和性質(zhì)來證明問題 3通過平行四邊形的性質(zhì)與判定的應(yīng)用,啟迪學(xué)生的思維,提高分析問題的能力二、 重點(diǎn)、難點(diǎn)1重點(diǎn):平行四邊形各種判定方法及其應(yīng)用,尤其是根據(jù)不同條件能正確地選擇判定方法2難點(diǎn):平行四邊形的判定定理與性質(zhì)定理的綜合應(yīng)用3難點(diǎn)的突破方法:本節(jié)課是平行四邊形判定的第二節(jié)課,上一節(jié)課已經(jīng)學(xué)習(xí)了判定方法1和判定方法2,再結(jié)合平行四邊形的定義,同學(xué)們已經(jīng)掌握了3種平行四邊形的判定方法本節(jié)課在上節(jié)課的基礎(chǔ)上,學(xué)習(xí)平行四邊形的判定方法3,使同學(xué)們會(huì)應(yīng)用這些方法進(jìn)行幾何的推理證明,并且
26、通過本節(jié)課的學(xué)習(xí),繼續(xù)培養(yǎng)學(xué)生的分析問題、尋找最佳解題途徑的能力本節(jié)課的知識(shí)點(diǎn)不難,但學(xué)生靈活運(yùn)用判定定理去解決相關(guān)問題并不容易,在以后的教學(xué)中還應(yīng)加強(qiáng)一題多解和尋找最佳解題方法的訓(xùn)練(1)平行四邊形的判定方法3不是性質(zhì)的逆命題它可以用平行四邊形定義或平行四邊形判定方法1或2來證明,可以看作是鞏固前面兩個(gè)判定方法的一個(gè)很好的練習(xí)題教學(xué)中可引導(dǎo)學(xué)生用不同的方法進(jìn)行證明,以活躍學(xué)生的思維(2)注意強(qiáng)調(diào):判定方法3是“一組對(duì)邊平行且相等的四邊形是平行四邊形”,而“一組對(duì)邊平行另一組對(duì)邊相等的四邊形不一定是平行四邊形”例如:如圖,ADBC,ABDC,但四邊形ABCD不是平行四邊形(3)學(xué)過本節(jié)后,應(yīng)使
27、學(xué)生掌握平行四邊形的四個(gè)(或五個(gè))判定方法,這些判定的方法是:從邊看:兩組對(duì)邊分別平行的四邊形是平行四邊形;兩組對(duì)邊分別相等的四邊形是平行四邊形;一組對(duì)邊平行且相等的四邊形是平行四邊形從對(duì)角線看:對(duì)角線互相平分的四邊形是平行四邊形(從角看:兩組對(duì)角分別相等的四邊形是平行四邊形)(4)讓學(xué)生了解平行四邊形知識(shí)的運(yùn)用包括三個(gè)方面:一是直接運(yùn)用平行四邊形的性質(zhì)去解決某些問題例如求角的度數(shù),線段的長度,證明角相等或線段相等等;二是判定一個(gè)四邊形是平行四邊形,從而判定直線平行等;三是先判定一個(gè)四邊形是平行四邊形,然后再用平行四邊形的性質(zhì)去解決某些問題(5)平行四邊形的概念、性質(zhì)、判定都是非常重要的基礎(chǔ)知
28、識(shí),這些知識(shí)是本章的重點(diǎn)內(nèi)容,要使學(xué)生熟練地掌握這些知識(shí)三、例題的意圖分析 本節(jié)課的兩個(gè)例題都是補(bǔ)充的題目,目的是讓學(xué)生能掌握平行四邊形的第三種判定方法和會(huì)綜合運(yùn)用平行四邊形的判定方法和性質(zhì)來解決問題學(xué)生程度好一些的學(xué)校,可以適當(dāng)?shù)刈约涸傺a(bǔ)充一些題目,使同學(xué)們會(huì)應(yīng)用這些方法進(jìn)行幾何的推理證明,通過學(xué)習(xí),培養(yǎng)學(xué)生分析問題、尋找最佳解題途徑的能力四、課堂引入1 平行四邊形的性質(zhì);2 平行四邊形的判定方法;3 【探究】 取兩根等長的木條AB、CD,將它們平行放置,再用兩根木條BC、AD加固,得到的四邊形ABCD是平行四邊形嗎?結(jié)論:一組對(duì)邊平行且相等的四邊形是平行四邊形五、例習(xí)題分析例1(補(bǔ)充)已知
29、:如圖, ABCD中,E、F分別是AD、BC的中點(diǎn),求證:BE=DF 分析:證明BE=DF,可以證明兩個(gè)三角形全等,也可以證明四邊形BEDF是平行四邊形,比較方法,可以看出第二種方法簡單 證明: 四邊形ABCD是平行四邊形, ADCB,AD=CD E、F分別是AD、BC的中點(diǎn), DEBF,且DE=AD,BF=BC DE=BF 四邊形BEDF是平行四邊形(一組對(duì)邊平行且相等的四邊形平行四邊形) BE=DF 此題綜合運(yùn)用了平行四邊形的性質(zhì)和判定,先運(yùn)用平行四邊形的性質(zhì)得到判定另一個(gè)四邊形是平行四邊形的條件,再應(yīng)用平行四邊形的性質(zhì)得出結(jié)論;題目雖不復(fù)雜,但層次有三,且利用知識(shí)較多,因此應(yīng)使學(xué)生獲得清
30、晰的證明思路例2(補(bǔ)充)已知:如圖, ABCD中,E、F分別是AC上兩點(diǎn),且BEAC于E,DFAC于F求證:四邊形BEDF是平行四邊形 證明: 四邊形ABCD是平行四邊形, AB=CD,且ABCD BAE=DCF BEAC于E,DFAC于F, BEDF,且BEA=DFC=90° ABECDF (AAS) BE=DF 四邊形BEDF是平行四邊形(一組對(duì)邊平行且相等的四邊形平行四邊形)六、課堂練習(xí)1(選擇)在下列給出的條件中,能判定四邊形ABCD為平行四邊形的是( )(A)ABCD,AD=BC (B)A=B,C=D (C)AB=CD,AD=BC (D)AB=AD,CB=CD2已知:如圖,
31、ACED,點(diǎn)B在AC上,且AB=ED=BC, 找出圖中的平行四邊形,并說明理由3已知:如圖,在ABCD中,AE、CF分別是DAB、BCD的平分線求證:四邊形AFCE是平行四邊形七、課后練習(xí)1判斷題:(1)相鄰的兩個(gè)角都互補(bǔ)的四邊形是平行四邊形; ( )(2)兩組對(duì)角分別相等的四邊形是平行四邊形; ( )(3)一組對(duì)邊平行,另一組對(duì)邊相等的四邊形是平行四邊形; ( )(4)一組對(duì)邊平行且相等的四邊形是平行四邊形; ( )(5)對(duì)角線相等的四邊形是平行四邊形; ( )(6)對(duì)角線互相平分的四邊形是平行四邊形 ( )2延長ABC的中線AD至E,使DE=AD求證:四邊形ABEC是平行四邊形3在四邊形A
32、BCD中,(1)ABCD;(2)ADBC;(3)ADBC;(4)AOOC;(5)DOBO;(6)ABCD選擇兩個(gè)條件,能判定四邊形ABCD是平行四邊形的共有_對(duì)(共有9對(duì))(三) 平行四邊形的判定三角形的中位線一、 教學(xué)目標(biāo):1 理解三角形中位線的概念,掌握它的性質(zhì)2 能較熟練地應(yīng)用三角形中位線性質(zhì)進(jìn)行有關(guān)的證明和計(jì)算3經(jīng)歷探索、猜想、證明的過程,進(jìn)一步發(fā)展推理論證的能力4能運(yùn)用綜合法證明有關(guān)三角形中位線性質(zhì)的結(jié)論理解在證明過程中所運(yùn)用的歸納、類比、轉(zhuǎn)化等思想方法二、 重點(diǎn)、難點(diǎn)1重點(diǎn):掌握和運(yùn)用三角形中位線的性質(zhì)2難點(diǎn):三角形中位線性質(zhì)的證明(輔助線的添加方法)3難點(diǎn)的突破方法:(1)本教材
33、三角形中位線的內(nèi)容是由一道例題從而引出其概念和性質(zhì)的,新教材與老教材在這個(gè)知識(shí)的講解順序安排上是不同的,它這種安排是要降低難度,但由于學(xué)生在前面的學(xué)習(xí)中,添加輔助線的練習(xí)很少,因此無論講解順序怎么安排,證明三角形中位線的性質(zhì)(例1)時(shí),題中輔助線的添加都是一大難點(diǎn),因此教師一定要重點(diǎn)分析輔助線的作法的思考過程讓學(xué)生理解:所證明的結(jié)論既有平行關(guān)系,又有數(shù)量關(guān)系,聯(lián)想已學(xué)過的知識(shí),可添加輔助線構(gòu)造平行四邊形,利用平行四邊形的對(duì)邊平行且相等來證明結(jié)論成立的思路與方法(2)強(qiáng)調(diào)三角形的中位線與中線的區(qū)別:中位線:中點(diǎn)與中點(diǎn)的連線;中 線:頂點(diǎn)與對(duì)邊中點(diǎn)的連線(3)要把三角形中位線性質(zhì)的特點(diǎn)、條件、結(jié)論
34、及作用交代清楚:特點(diǎn):在同一個(gè)題設(shè)下,有兩個(gè)結(jié)論一個(gè)結(jié)論表明位置關(guān)系,另一個(gè)結(jié)論表明數(shù)量關(guān)系;條件(題設(shè)):連接兩邊中點(diǎn)得到中位線;結(jié)論:有兩個(gè),一個(gè)表明中位線與第三邊的位置關(guān)系,另一個(gè)表明中位線與第三邊的數(shù)量關(guān)系(在應(yīng)用時(shí),可根據(jù)需要選用其中的結(jié)論);作用:在已知兩邊中點(diǎn)的條件下,證明線段的平行關(guān)系及線段的倍分關(guān)系(4)可通過題組練習(xí),讓學(xué)生掌握其性質(zhì)三、例題的意圖分析 例1是教材P98的例4,這是三角形中位線性質(zhì)的證明題,教材采用的是先證明后引出概念與性質(zhì)的方法,它一是要練習(xí)鞏固平行四邊形的性質(zhì)與判定,二是為了降低難度,因此教師們?cè)诮虒W(xué)中要把握好度建議講完例1,引出三角形中位線的概念和性質(zhì)
35、后,馬上做一組練習(xí),以鞏固三角形中位線的性質(zhì),然后再講例2例2是一道補(bǔ)充題,選自老教材的一個(gè)例題,它是三角形中位線性質(zhì)與平行四邊形的判定的混合應(yīng)用題,題型挺好,添加輔助線的方法也很巧,結(jié)論以后也會(huì)經(jīng)常用到,可根據(jù)學(xué)生情況適當(dāng)?shù)倪x講例2教學(xué)中,要把輔助線的添加方法講清楚,可以借助與多媒體或教具四、課堂引入1 平行四邊形的性質(zhì);平行四邊形的判定;它們之間有什么聯(lián)系?2 你能說說平行四邊形性質(zhì)與判定的用途嗎?(答:平行四邊形知識(shí)的運(yùn)用包括三個(gè)方面:一是直接運(yùn)用平行四邊形的性質(zhì)去解決某些問題例如求角的度數(shù),線段的長度,證明角相等或線段相等等;二是判定一個(gè)四邊形是平行四邊形,從而判定直線平行等;三是先判
36、定一個(gè)四邊形是平行四邊形,然后再眼再用平行四邊形的性質(zhì)去解決某些問題)3創(chuàng)設(shè)情境實(shí)驗(yàn):請(qǐng)同學(xué)們思考:將任意一個(gè)三角形分成四個(gè)全等的三角形,你是如何切割的?(答案如圖)圖中有幾個(gè)平行四邊形?你是如何判斷的?五、例習(xí)題分析例1(教材P98例4) 如圖,點(diǎn)D、E、分別為ABC邊AB、AC的中點(diǎn),求證:DEBC且DE=BC 分析:所證明的結(jié)論既有平行關(guān)系,又有數(shù)量關(guān)系,聯(lián)想已學(xué)過的知識(shí),可以把要證明的內(nèi)容轉(zhuǎn)化到一個(gè)平行四邊形中,利用平行四邊形的對(duì)邊平行且相等的性質(zhì)來證明結(jié)論成立,從而使問題得到解決,這就需要添加適當(dāng)?shù)妮o助線來構(gòu)造平行四邊形 方法1:如圖(1),延長DE到F,使EF=DE,連接CF,由A
37、DECFE,可得ADFC,且AD=FC,因此有BDFC,BD=FC,所以四邊形BCFD是平行四邊形所以DFBC,DF=BC,因?yàn)镈E=DF,所以DEBC且DE=BC 方法2:如圖(2),延長DE到F,使EF=DE,連接CF、CD和AF,又AE=EC,所以四邊形ADCF是平行四邊形所以ADFC,且AD=FC因?yàn)锳D=BD,所以BDFC,且BD=FC所以四邊形ADCF是平行四邊形所以DFBC,且DF=BC,因?yàn)镈E=DF,所以DEBC且DE=BC定義:連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線【思考】:(1)想一想:一個(gè)三角形的中位線共有幾條?三角形的中位線與中線有什么區(qū)別? (2)三角形的中位線
38、與第三邊有怎樣的關(guān)系? (答:(1)一個(gè)三角形的中位線共有三條;三角形的中位線與中線的區(qū)別主要是線段的端點(diǎn)不同中位線是中點(diǎn)與中點(diǎn)的連線;中線是頂點(diǎn)與對(duì)邊中點(diǎn)的連線 (2)三角形的中位線與第三邊的關(guān)系:三角形的中位線平行與第三邊,且等于第三邊的一半)三角形中位線的性質(zhì):三角形的中位線平行與第三邊,且等于第三邊的一半拓展利用這一定理,你能證明出在設(shè)情境中分割出來的四個(gè)小三角形全等嗎?(讓學(xué)生口述理由)例2(補(bǔ)充)已知:如圖(1),在四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點(diǎn)求證:四邊形EFGH是平行四邊形證明:連結(jié)AC(圖(2),DAG中, AH=HD,CG=GD, HGA
39、C,HG=AC(三角形中位線性質(zhì))同理EFAC,EF=AC HGEF,且HG=EF 四邊形EFGH是平行四邊形此題可得結(jié)論:順次連結(jié)四邊形四條邊的中點(diǎn),所得的四邊形是平行四邊形六、課堂練習(xí)1(填空)如圖,A、B兩點(diǎn)被池塘隔開,在AB外選一點(diǎn)C,連結(jié)AC和BC,并分別找出AC和BC的中點(diǎn)M、N,如果測得MN=20 m,那么A、B兩點(diǎn)的距離是 m,理由是 2已知:三角形的各邊分別為8cm 、10cm和12cm ,求連結(jié)各邊中點(diǎn)所成三角形的周長3如圖,ABC中,D、E、F分別是AB、AC、BC的中點(diǎn),(1)若EF=5cm,則AB= cm;若BC=9cm,則DE= cm;(2)中線AF與DE中位線有什
40、么特殊的關(guān)系?證明你的猜想七、課后練習(xí)1(填空)一個(gè)三角形的周長是135cm,過三角形各頂點(diǎn)作對(duì)邊的平行線,則這三條平行線所組成的三角形的周長是 cm2(填空)已知:ABC中,點(diǎn)D、E、F分別是ABC三邊的中點(diǎn),如果DEF的周長是12cm,那么ABC的周長是 cm3已知:如圖,E、F、G、H分別是AB、BC、CD、DA的中點(diǎn)求證:四邊形EFGH是平行四邊形矩形(一)一、教學(xué)目標(biāo): 1掌握矩形的概念和性質(zhì),理解矩形與平行四邊形的區(qū)別與聯(lián)系 2會(huì)初步運(yùn)用矩形的概念和性質(zhì)來解決有關(guān)問題 3滲透
41、運(yùn)動(dòng)聯(lián)系、從量變到質(zhì)變的觀點(diǎn)1重點(diǎn):矩形的性質(zhì)2難點(diǎn):矩形的性質(zhì)的靈活應(yīng)用3難點(diǎn)的突破方法: 1矩形是在平行四邊形的前提下定義的從定義出發(fā),首先應(yīng)該肯定,矩形是平行四邊形,但它是特殊的平行四邊形特殊之處就是有一個(gè)角是直角因此在教學(xué)在我們采用運(yùn)動(dòng)方式探索矩形的概念及性質(zhì),如用多媒體或教具演示,從平行四邊形到矩形的演變過程,得到矩形的概念,并理解矩形與平行四邊形的關(guān)系2通過教學(xué)還要使學(xué)生明確:(1)矩形是特殊的平行四邊形,(2)矩形只比平行四邊形多一個(gè)條件:“有一個(gè)角是直角”,不能用“四個(gè)角都是直角的行四邊形是矩形”來定義矩形;(3)矩形是特殊的平行四邊形,具有
42、平行四邊形的一切性質(zhì)(共性),還具有它自己特殊的性質(zhì)(個(gè)性) 3從邊、角、對(duì)角線方面(可繼續(xù)演示教具),讓學(xué)生觀察或度量猜想矩形的特殊性質(zhì) (1)邊:對(duì)邊與平行四邊形性質(zhì)相同,鄰邊互相垂直(與性質(zhì)1等價(jià)); (2)角:四個(gè)角是直角(性質(zhì)1); (3)對(duì)角錢:相等且互相平分(性質(zhì)2) 4引導(dǎo)學(xué)生利用矩形與平行四邊形的從屬關(guān)系、矩形的概念以及全等三角形的知識(shí),規(guī)范證明兩條性質(zhì)及推論并指出:推論敘述了直角三角形中線段的倍分關(guān)系,是直角三角形很重要的一條性質(zhì),在求線段長
43、或求線段倍分關(guān)系時(shí),常用到這個(gè)結(jié)論 5矩形ABCD的兩條對(duì)角線AC,BD把矩形分成四個(gè)等腰三角形,即AOB,BOC,COD和DOA讓學(xué)生證明后熟記這個(gè)結(jié)論,以便在復(fù)雜圖形中盡快找到解題的思路三、例題的意圖分析例1是教材P104的例1,它是矩形性質(zhì)的直接運(yùn)用,它除了用以鞏固所學(xué)的矩形性質(zhì)外,對(duì)計(jì)算題的格式也起了一個(gè)示范作用例2與例3都是補(bǔ)充的題目,其中通過例2的講解是想讓學(xué)生了解:(1)因?yàn)榫匦嗡膫€(gè)角都是直角,因此矩形中的計(jì)算經(jīng)常要用到直角三角形的性質(zhì),而利用方程的思想,解決直角三角形中的計(jì)算,這是幾何計(jì)算題中常用的方法;(2)“直角三角形斜邊上的高”是一個(gè)基本圖形,利用
44、面積公式,可得到兩直角邊、斜邊及斜邊上的高的一個(gè)基本關(guān)系式并能通過例2、例3的講解使學(xué)生掌握解決有關(guān)矩形方面的一些計(jì)算題目與證明題的方法四、課堂引入1展示生活中一些平行四邊形的實(shí)際應(yīng)用圖片(推拉門,活動(dòng)衣架,籬笆、井架等),想一想:這里面應(yīng)用了平行四邊形的什么性質(zhì)?2思考:拿一個(gè)活動(dòng)的平行四邊形教具,輕輕拉動(dòng)一個(gè)點(diǎn),觀察不管怎么拉,它還是一個(gè)平行四邊形嗎?為什么?(動(dòng)畫演示拉動(dòng)過程如圖)3再次演示平行四邊形的移動(dòng)過程,當(dāng)移動(dòng)到一個(gè)角是直角時(shí)停止,讓學(xué)生觀察這是什么圖形?(小學(xué)學(xué)過的長方形)引出本課題及矩形定義矩形定義:有一個(gè)角是直角的平行四邊形叫做矩形(通常也叫長方形)矩形是我們最常見的圖形之
45、一,例如書桌面、教科書的封面等都有矩形形象【探究】在一個(gè)平行四邊形活動(dòng)框架上,用兩根橡皮筋分別套在相對(duì)的兩個(gè)頂點(diǎn)上(作出對(duì)角線),拉動(dòng)一對(duì)不相鄰的頂點(diǎn),改變平行四邊形的形狀 隨著的變化,兩條對(duì)角線的長度分別是怎樣變化的? 當(dāng)是直角時(shí),平行四邊形變成矩形,此時(shí)它的其他內(nèi)角是什么樣的角?它的兩條對(duì)角線的長度有什么關(guān)系?操作,思考、交流、歸納后得到矩形的性質(zhì)矩形性質(zhì)1 矩形的四個(gè)角都是直角矩形性質(zhì)2 矩形的對(duì)角線相等 如圖,在矩形ABCD中,AC、BD相交于點(diǎn)O,由性質(zhì)2有AO=BO=CO=DO=AC=BD因此可以得到直角三角形的一個(gè)性質(zhì):直角三角形斜邊上的中線等于斜邊的一半五、例習(xí)題分析 例1 (
46、教材P104例1)已知:如圖,矩形ABCD的兩條對(duì)角線相交于點(diǎn)O,AOB=60°,AB=4cm,求矩形對(duì)角線的長分析:因?yàn)榫匦问翘厥獾钠叫兴倪呅?,所以它具有?duì)角線相等且互相平分的特殊性質(zhì),根據(jù)矩形的這個(gè)特性和已知,可得OAB是等邊三角形,因此對(duì)角線的長度可求解:四邊形ABCD是矩形,AC與BD相等且互相平分OA=OB又 AOB=60°, OAB是等邊三角形 矩形的對(duì)角線長AC=BD = 2OA=2×4=8(cm) 例2(補(bǔ)充)已知:如圖 ,矩形 ABCD,AB長8 cm ,對(duì)角線比AD邊長4 cm求AD的長及點(diǎn)A到BD的距離AE的長例3(補(bǔ)充) 已知:如圖,矩形A
47、BCD中,E是BC上一點(diǎn),DFAE于F,若AE=BC 求證:CEEF 分析:CE、EF分別是BC,AE等線段上的一部分,若AFBE,則問題解決,而證明AFBE,只要證明ABEDFA即可,在矩形中容易構(gòu)造全等的直角三角形 證明: 四邊形ABCD是矩形, B=90°,且ADBC 1=2 DFAE, AFD=90° B=AFD又 AD=AE, ABEDFA(AAS) AF=BE EF=EC 此題還可以連接DE,證明DEFDEC,得到EFEC六、隨堂練習(xí)1(填空)(1)矩形的定義中有兩個(gè)條件:一是 ,二是 (2)已知矩形的一條對(duì)角線與一邊的夾角為30°,則矩形兩條對(duì)角線相
48、交所得的四個(gè)角的度數(shù)分別為 、 、 、 (3)已知矩形的一條對(duì)角線長為10cm,兩條對(duì)角線的一個(gè)交角為120°,則矩形的邊長分別為 cm, cm, cm, cm2(選擇)(1)下列說法錯(cuò)誤的是( ) (A)矩形的對(duì)角線互相平分 (B)矩形的對(duì)角線相等(C)有一個(gè)角是直角的四邊形是矩形 (D)有一個(gè)角是直角的平行四邊形叫做矩形(2)矩形的對(duì)角線把矩形分成的三角形中全等三角形一共有( )(A)2對(duì) (B)4對(duì) (C)6對(duì) (D)8對(duì)3已知:如圖,O是矩形ABCD對(duì)角線的交點(diǎn),AE平分BAD,AOD=120°,求AEO的度數(shù)七、課后練習(xí)1(選擇)矩形的兩條對(duì)角線的夾角為60
49、76;,對(duì)角線長為15cm,較短邊的長為( )(A)12cm (B)10cm (C)7.5cm (D)5cm2在直角三角形ABC中,C=90°,AB=2AC,求A、B的度數(shù)3已知:矩形ABCD中,BC=2AB,E是BC的中點(diǎn),求證:EAED4如圖,矩形ABCD中,AB=2BC,且AB=AE,求證:CBE的度數(shù)矩形(二)一、教學(xué)目標(biāo):1理解并掌握矩形的判定方法2使學(xué)生能應(yīng)用矩形定義、判定等知識(shí),解決簡單的證明題和計(jì)算題,進(jìn)一步培養(yǎng)學(xué)生的分析能力二、重點(diǎn)、難點(diǎn)1重點(diǎn):矩形的判定2難點(diǎn):矩形的判定及性質(zhì)的綜合應(yīng)用3難點(diǎn)的突破方法: 矩形是有一個(gè)角是直角的平行四邊形,在判定一個(gè)四邊形是不是矩
50、形時(shí),首先看這個(gè)四邊形是不是平行四邊形,再看它兩邊的夾角是不是直角,這種用“定義”判定是最重要和最基本的判定方法(這體現(xiàn)了定義作用的雙重性、性質(zhì)和判定)而其它判定都是以“定義”為基礎(chǔ)推導(dǎo)出來的因此本節(jié)課要從復(fù)習(xí)矩形定義下手,并指出由平行四邊形得到矩形只需要添加一個(gè)獨(dú)立條件,然后讓學(xué)生思考討論,如果小華做出的是一個(gè)平行四邊形,再加一個(gè)什么條件可以說明它是一個(gè)矩形呢?從而導(dǎo)出矩形判定方法 對(duì)于判定方法1,要著重說明這個(gè)性質(zhì)包括兩個(gè)條件:(1)是平行四邊形;(2)兩條對(duì)角線相等對(duì)于判定2,只要求是四邊形即可,因?yàn)橛捎腥齻€(gè)角是直角,可以推出四邊形是平行四邊形,而由對(duì)角線相等卻推不出四邊形是平行四邊形為
51、了加深印象,我們安排了例1,在教學(xué)中可以適當(dāng)?shù)卦僭黾右恍┡袛嗟念}目 要讓學(xué)生知道(1)矩形的判定方法有以下三種:一個(gè)角是直角的平行四邊形;對(duì)角線相等的平行四邊形;有三個(gè)角是直角的四邊形(2)而由矩形和平行四邊形及四邊形的從屬關(guān)系將矩形的判定方法又可分為兩類:從四邊形出發(fā)必須增加三個(gè)特定的獨(dú)立條件;從平行四邊形出發(fā)只需再增加一個(gè)特定的獨(dú)立條件(3)特別地:如果所給四邊形添加的條件不滿足三個(gè)的肯定不是矩形;所給四邊形添加的條件是三個(gè)獨(dú)立條件,但若與判定方法不同,則需要利用定義和判定方法證明或舉反例,才能下結(jié)論在教學(xué)中,除教材中所舉的門框或矩形零件外,還可以結(jié)合生產(chǎn)生活實(shí)際說
52、明判定矩形的實(shí)用價(jià)值三、例題的意圖分析 本節(jié)課的三個(gè)例題都是補(bǔ)充題,例1在的一組判斷題是為了讓學(xué)生加深理解判定矩形的條件,老師們?cè)诮虒W(xué)中還可以適當(dāng)?shù)卦僭黾右恍┡袛嗟念}目;例2是利用矩形知識(shí)進(jìn)行計(jì)算;例3是一道矩形的判定題,三個(gè)題目從不同的角度出發(fā),來綜合應(yīng)用矩形定義及判定等知識(shí)的四、課堂引入1什么叫做平行四邊形?什么叫做矩形?2矩形有哪些性質(zhì)?3矩形與平行四邊形有什么共同之處?有什么不同之處?4事例引入:小華想要做一個(gè)矩形像框送給媽媽做生日禮物,于是找來兩根長度相等的短木條和兩根長度相等的長木條制作,你有什么辦法可以檢測他做的是矩形像框嗎?看看誰的方法可行?通過討論得到矩形的判定方法矩形判定方法1:對(duì)角錢相等的平行四邊形是矩形矩形判定方法2:有三個(gè)角是直角的四邊形是矩形(指出:判定一個(gè)四邊形是矩形,知道三個(gè)角是直角,條件就夠了因?yàn)橛伤倪呅蝺?nèi)角和可知,這時(shí)第四個(gè)角一定是直角)五、例習(xí)題分析 例1(補(bǔ)充)下列各句判定矩形的說法是否正確?為什么? (1)有
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024高考地理一輪復(fù)習(xí)第七單元自然環(huán)境對(duì)人類活動(dòng)的影響考法精練含解析
- DB42-T 2358-2024 智慧界樁系統(tǒng)技術(shù)與工程建設(shè)規(guī)范
- (3篇)2024-2025年少先隊(duì)工作總結(jié)
- 安全監(jiān)理工作方法
- 二零二五年度品牌VI形象重塑與傳播合同
- 2024年全國交通安全日活動(dòng)總結(jié)例文(四篇)
- 乒乓球正手攻球技術(shù)教學(xué)設(shè)計(jì)
- 二零二五年度飛機(jī)租賃及航空器改裝合同3篇
- 二零二五版?zhèn)€人水利工程運(yùn)行維護(hù)施工合同2篇
- 2021-2021學(xué)年高中化學(xué)212脂肪烴第2課時(shí)炔烴脂肪烴的來源及應(yīng)用課件新人教版選修5
- 骨科手術(shù)后患者營養(yǎng)情況及營養(yǎng)不良的原因分析,骨傷科論文
- GB/T 24474.1-2020乘運(yùn)質(zhì)量測量第1部分:電梯
- GB/T 12684-2006工業(yè)硼化物分析方法
- 定崗定編定員實(shí)施方案(一)
- 高血壓患者用藥的注意事項(xiàng)講義課件
- 特種作業(yè)安全監(jiān)護(hù)人員培訓(xùn)課件
- 太平洋戰(zhàn)爭課件
- 封條模板A4打印版
- T∕CGCC 7-2017 焙烤食品用糖漿
- 貨代操作流程及規(guī)范
- 常暗之廂(7規(guī)則-簡體修正)
評(píng)論
0/150
提交評(píng)論