版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、南通市教研室2012年數(shù)學(xué)全真模擬試卷五試題一、填空題:本大題共14小題,每小題5分,共70分請(qǐng)把答案直接填寫在答題卡相應(yīng)位置上.1 兩個(gè)平面最多將空間分成 部分2 設(shè)集合,則 3 已知,則 4 以點(diǎn)為圓心且與直線相切的圓的方程是 5 根據(jù)如圖所示的偽代碼,可知輸出的結(jié)果為 (第6題)O 20 40 60 80 100 成績(jī) 6 42 108 人數(shù)I1While I<8 IEnd WhilePrint S(第5題)6 如圖,是某班一次競(jìng)賽成績(jī)的頻數(shù)分布直方圖,利用組中值可估計(jì)其的平均分為 7 設(shè)向量,若與垂直,則實(shí)數(shù)的值為 8 在等腰直角ABC中,過直角頂點(diǎn)C在內(nèi)部任作一條射線,與線段交
2、于點(diǎn),則的概率為 9 我們知道:“平面內(nèi)不共線的三點(diǎn)確定一個(gè)圓”類似地,空間中 10已知數(shù)列的前項(xiàng)和,第項(xiàng)滿足,則 11在平面直角坐標(biāo)系xOy中,拋物線的焦點(diǎn)為,設(shè)點(diǎn)是拋物線上的動(dòng)點(diǎn),則的最大值為 12對(duì)任意的銳角,給出下列三個(gè)不等式:; ; , 其中恒成立的不等式的序號(hào)為 .13已知,則的最小值為 14設(shè)函數(shù)對(duì)于任意,都有成立,則實(shí)數(shù)= .二、解答題:本大題共6小題,共90分請(qǐng)?jiān)诖痤}卡指定區(qū)域內(nèi)作答,解答時(shí)應(yīng)寫出文字說明、證 明過程或演算步驟15(本題滿分14分)已知ABC內(nèi)接于單位圓(半徑為1個(gè)單位長(zhǎng)度的圓),且(1)求角的大小; (2)求ABC面積的最大值 16(本題滿分14分)(第16
3、題圖)在如圖所示的多面體中,為二面角的平面角(1)求證:;(2)求證: 17(本題滿分15分)請(qǐng)你設(shè)計(jì)一個(gè)紙盒如圖所示,ABCDEF是邊長(zhǎng)為30cm的正六邊形硬紙片,切去陰影部分所示的六個(gè)全等的四邊形,再沿虛線折起,正好形成一個(gè)無蓋的正六棱柱形狀的紙盒G、H分別在AB、AF上,是被切去的一個(gè)四邊形的兩個(gè)頂點(diǎn),設(shè)AGAHx(cm)(1)若要求紙盒的側(cè)面積S(cm2)最大,試問x應(yīng)取何值?ABCDEFGH(第17題圖)(2)若要求紙盒的的容積V(cm3)最大,試問x應(yīng)取何值?并求此時(shí)紙盒的高與底面邊長(zhǎng)的比 18(本題滿分15分)在平面直角坐標(biāo)系中,已知圓:,圓:(,且).(1)設(shè)為坐標(biāo)軸上的點(diǎn),滿
4、足:過點(diǎn)P分別作圓與圓的一條切線,切點(diǎn)分別為、,使得,試求出所有滿足條件的點(diǎn)的坐標(biāo);(2)若斜率為正數(shù)的直線平分圓,求證:直線與圓總相交. 19(本題滿分16分) 若函數(shù)為定義域上單調(diào)函數(shù),且存在區(qū)間(其中),使得當(dāng)時(shí),的取值范圍恰為,則稱函數(shù)是上的正函數(shù),區(qū)間叫做等域區(qū)間(1)已知是上的正函數(shù),求的等域區(qū)間;(2)試探究是否存在實(shí)數(shù),使得函數(shù)是上的正函數(shù)?若存在,請(qǐng)求出 實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說明理由 20(本題滿分16分) 設(shè)正項(xiàng)數(shù)列的前項(xiàng)和為,已知,數(shù)列是公比不為1的等比數(shù)列(1)求數(shù)列的通項(xiàng)公式(用表示);(2)設(shè)為常數(shù),對(duì)滿足且的任意正整數(shù),不等式都成立,求證:的最小值為 試題
5、(附加題)21【選做題】本題包括A、B、C、D四小題,請(qǐng)選定其中兩題,并在相應(yīng)的答題區(qū)域內(nèi)作答若 多做,則按作答的前兩題評(píng)分解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟(第21A題)A(幾何證明選講)如圖,已知切圓于點(diǎn),交圓于,兩點(diǎn),點(diǎn)是的中點(diǎn)求證: B(矩陣與變換)將曲線:繞坐標(biāo)原點(diǎn)逆時(shí)針旋轉(zhuǎn)后,得到的曲線,求曲線的方程 C(極坐標(biāo)與參數(shù)方程)在平面直角坐標(biāo)系xOy中,求直線(t為參數(shù))被圓(為參數(shù))截得的弦長(zhǎng)D(不等式選講)已知x,y,z均為正數(shù)求證:【必做題】第22、23題,每小題10分,共計(jì)20分請(qǐng)?jiān)诖痤}卡指定區(qū)域內(nèi)作答,解答時(shí)應(yīng)寫出文 字說明、證明過程或演算步驟22考察二數(shù),滿足不等式于
6、是一個(gè)自然的推廣引導(dǎo)我們?nèi)ゲ孪胂旅娴拿}:若且則試用數(shù)學(xué)歸納法證明上述命題 23某養(yǎng)雞場(chǎng)流行一種傳染病,雞的感染率為10現(xiàn)對(duì)50只雞進(jìn)行抽血化驗(yàn),以期查出所有病雞設(shè)計(jì)了如下方案:按n(且n是50的約數(shù))只雞一組平均分組,并把同組的n只雞抽到的血混合在一起化驗(yàn),若發(fā)現(xiàn)有問題,即對(duì)該組的n只雞逐只化驗(yàn)記為某一組中病雞的只數(shù)(1)若n,求隨機(jī)變量的概率分布和數(shù)學(xué)期望;(2)為了減少化驗(yàn)次數(shù)的期望值,試確定n的大小南通市教研室2012年數(shù)學(xué)全真模擬試卷五參考答案1. 四; 2. ; 3. ; 4. ; 5. ; 6. ; 7. ; 8. ; 9. 不共面的四點(diǎn)確定一個(gè)球; 10. 8; 11. ; 1
7、2. ; 13. 16; 14. 1答案解析1 當(dāng)兩個(gè)平面平行時(shí),將空間分為三個(gè)部分;當(dāng)兩個(gè)平面相交時(shí),將空間分為四個(gè)部分;2. 由得,又,所以,則;3. ;4. 圓心到直線的距離為,所以圓的方程是;5. ;6. 平均分為:;7. 易得,由與垂直得;8. 所求概率;10. 由可得,當(dāng)且時(shí),;11. 設(shè)拋物線上動(dòng)點(diǎn),則,令,則,利用 導(dǎo)數(shù)可求得當(dāng)時(shí),的最大值為,即;12. 因?yàn)闉殇J角,所以,即正確;同理,即正確;不恒 成立,不妨??;13. 因?yàn)椋?,于是(?dāng)且僅當(dāng),且時(shí)取等號(hào));14. 一方面,由對(duì)任意恒成立得;另一方面,由得,所以15命題立意:本題主要考查兩角和與差的正切公式與正、余弦定理等
8、基礎(chǔ)知識(shí),考查運(yùn)算求解 能力(1)由得, 所以,(4分) 故ABC 中,(6分)(2)由正弦定理得,即,(8分) 由余弦定理得,即,(10分) 由得,(當(dāng)且僅當(dāng)時(shí)取等號(hào))(12分) 所以.(14分)16命題立意:本題主要考查直線與平面、平面與平面的位置關(guān)系,考查空間想象、推理論證能力證明:(1)因?yàn)闉槎娼堑钠矫娼牵?所以,(2分) 又,平面, 所以平面,(5分) 而平面, 所以;(7分) (2)因?yàn)椋?又平面,平面, 所以平面,(11分) 而平面,平面平面, 所以(14分) 17命題立意:本題主要考查數(shù)學(xué)建模和解決實(shí)際問題的能力,考查運(yùn)算求解能力解:(1)易得正六棱柱的底面正六邊形的邊長(zhǎng)為,
9、正六棱柱的高為, 所以紙盒的側(cè)面積S ,(5分) 因?yàn)樵摱魏瘮?shù)開口向下,且對(duì)稱軸方程為, 所以當(dāng)cm時(shí),側(cè)面積S最大(7分) (2)紙盒的容積V ,(10分) 由得,或(舍去),(12分)x5+0極大值9 000 列表: 所以當(dāng)cm時(shí),容積V最大,此時(shí)紙盒的高與底面邊長(zhǎng)的比為(15分) 18命題立意:本題主要考查圓的方程、直線與圓、圓與圓的位置關(guān)系等,考查運(yùn)算求解與推理論 證能力解:(1)設(shè)點(diǎn)的坐標(biāo)為,圓與圓的半徑分別為,由題意得,即,(4分)化簡(jiǎn)得,(6分)因?yàn)闉樽鴺?biāo)軸上的點(diǎn),所以點(diǎn)的坐標(biāo)為或;(8分)(2)依題意可設(shè)直線的方程為:,化簡(jiǎn)得, 則圓心到直線的距
10、離為,又圓的半徑為,所以“直線與圓總相交”等價(jià)于“,”即 ,(11分)記,整理得,當(dāng)時(shí),;當(dāng)時(shí),判別式,解得;綜上得,的最小值為1,所以式,即證(15分) 19命題立意:本題主要考查函數(shù)的圖象與性質(zhì)及導(dǎo)數(shù)等基礎(chǔ)知識(shí),考查靈活運(yùn)用數(shù)形結(jié)合 思想、分類討論思想進(jìn)行推理論證的綜合能力 解:(1)因?yàn)樵谏蠁握{(diào)遞增的正函數(shù), 所以當(dāng)時(shí), 即(3分) 解得, 故函數(shù)的“等域區(qū)間”為;(5分) (2)因?yàn)楹瘮?shù)是上單調(diào)遞減的正函數(shù), 所以當(dāng)時(shí),即(8分) 兩式相減得,即,(10分) 代入得 故、為方程的兩個(gè)小于0實(shí)根, 所以 解得(16分) 20命題立意:本題主要考查等比數(shù)列的定義與通項(xiàng)公式、求和公式等基礎(chǔ)知
11、識(shí),考查靈活運(yùn)用基 本不等式等進(jìn)行探索求解、推理分析的綜合能力 解:(1)設(shè)數(shù)列是公比為, 則, 故, 得,(4分) 所以, 又,所以,此時(shí)(6分) (2)由得,(8分) 下求的最大值,即的最小值: 因?yàn)榍遥?所以,即,(12分) 下證: 設(shè),其中, 則, 當(dāng)時(shí),即, 所以,的最小值為(16分)21A命題立意:本題主要考查圓的有關(guān)知識(shí),考查推理論證能力解:連結(jié), 由切圓于點(diǎn),是的中點(diǎn)得,(5分) 故四點(diǎn)共圓,(8分) 則(10分) B命題立意:本題主要考查矩陣的變換,考查運(yùn)算求解能力解:設(shè)上的任意點(diǎn)在變換矩陣M作用下為,則,(5分)即(8分)代入得(10分) C命題立意:本題主要考查參數(shù)方程,考查運(yùn)算求解能力解:將直線與圓的參數(shù)方程化為普通方程得與,(6分) 則圓心到直線的距離為,(8分) 所以直線被圓截得的弦長(zhǎng)為(10分)D命題立意:本題主要考查證明不等式的基本方法,考查推理論證能力證明:因?yàn)閤,y,z均為正數(shù),所以,(4分) 同理得(當(dāng)且僅當(dāng)xyz時(shí),以上三式等號(hào)都成立),(6分) 將上述三個(gè)不等式兩邊分別相加,并除以2,得(10分) 22命題立意:本題主要考查數(shù)學(xué)歸納法,推理論證能力證明:當(dāng)時(shí),因?yàn)?,所以,?分) 當(dāng)時(shí),假設(shè)當(dāng)時(shí),成立, (4分) 則當(dāng)時(shí),因?yàn)?所以 (6分) , 所以,當(dāng)時(shí),結(jié)論也成立, 由得,原命題得證(10分)23命題立意:本題主要考查
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版建筑材料購(gòu)銷合同書模板
- 二零二五年度臺(tái)球室租賃及品牌形象合作合同3篇
- 2025購(gòu)銷合同常用文本
- 二零二五年度全新租賃房屋合同住宅押金退還管理協(xié)議3篇
- 2025年度全新出售房屋買賣貸款擔(dān)保合同3篇
- 2025年度年度全新高空纜車運(yùn)營(yíng)意外事故免責(zé)服務(wù)協(xié)議3篇
- 二零二五年度智慧社區(qū)建設(shè)與運(yùn)營(yíng)管理協(xié)議合同范文2篇
- 2025年農(nóng)村兄弟分家協(xié)議及遺產(chǎn)分配執(zhí)行方案
- 2025年度養(yǎng)殖場(chǎng)勞務(wù)合同(養(yǎng)殖場(chǎng)安全生產(chǎn)監(jiān)管)3篇
- 二零二五年度創(chuàng)業(yè)投資股權(quán)代持專項(xiàng)合同2篇
- (高清版)AQ∕T 8006-2018 安全生產(chǎn)檢測(cè)檢驗(yàn)機(jī)構(gòu)能力的通 用要求
- 電梯井道改造施工合同
- 插座安裝 服務(wù)合同范本
- 承德市承德縣2022-2023學(xué)年七年級(jí)上學(xué)期期末歷史試題【帶答案】
- CJT511-2017 鑄鐵檢查井蓋
- 轉(zhuǎn)科患者交接記錄單
- 現(xiàn)代漢語智慧樹知到期末考試答案章節(jié)答案2024年昆明學(xué)院
- 人教版六年級(jí)數(shù)學(xué)(上冊(cè))期末調(diào)研題及答案
- 舞蹈療法在減少壓力和焦慮中的作用
- 計(jì)算機(jī)應(yīng)用專業(yè)大學(xué)生職業(yè)生涯規(guī)劃
- 設(shè)備的故障管理
評(píng)論
0/150
提交評(píng)論