版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、Diagram of distribution relationshipsProbability distributions have a surprising number inter-connections. A dashed line in the chart below indicates an approximate (limit) relationship between two distribution families. A solid line indicates an exact relationship: special case, sum, or transformat
2、ion.Click on a distribution for the parameterization of that distribution. Click on an arrow for details on the relationship represented by the arrow. Other diagrams on this site:The chart above is adapted from the chart originally published by Lawrence Leemis in 1986 (Relationships Among Common Uni
3、variate Distributions, American Statistician 40:143-146.) Leemis published a larger chart in 2008 which is available online.The precise relationships between distributions depend on parameterization. The relationships detailed below depend on the following parameterizations for the PDFs.Let C(n, k)
4、denote the binomial coefficient(n, k) and B(a, b) = (a) (b) / (a + b).Geometric: f(x) = p (1-p)x for non-negative integers x.Discrete uniform: f(x) = 1/n for x = 1, 2, ., n.Negative binomial: f(x) = C(r + x - 1, x) pr(1-p)x for non-negative integers x. See notes on the negative binomial distribution
5、.Beta binomial: f(x) = C(n, x) B( + x, n + - x) / B(, ) for x = 0, 1, ., n.Hypergeometric: f(x) = C(M, x) C(N-M, K - x) / C(N, K) for x = 0, 1, ., N.Poisson: f(x) = exp(-) x/ x! for non-negative integers x. The parameter is both the mean and the variance.Binomial: f(x) = C(n, x) px(1 - p)n-x for x =
6、 0, 1, ., n.Bernoulli: f(x) = px(1 - p)1-x where x = 0 or 1.Lognormal: f(x) = (22)-1/2 exp( -(log(x) - )2/ 22) / x for positive x. Note that and 2are not the mean and variance of the distribution.Normal : f(x) = (2 2)-1/2 exp( - ½(x - )/)2 ) for all x.Beta: f(x) = ( + ) x-1(1 - x)-1 / () () for
7、 0 x 1.Standard normal: f(x) = (2)-1/2 exp( -x2/2) for all x.Chi-squared: f(x) = x-/2-1 exp(-x/2) / (/2) 2/2 for positive x. The parameter is called the degrees of freedom.Gamma: f(x) = - x-1 exp(-x/) / () for positive x. The parameter is called the shape and is the scale.Uniform: f(x) = 1 for 0 x 1
8、.Cauchy: f(x) = /( (x - )2 + 2) ) for all x. Note that and are location and scale parameters. The Cauchy distribution has no mean or variance.Snedecor F: f(x) is proportional to x(1 - 2)/2 / (1 + (1/2) x)(1 + 2)/2 for positive x.Exponential: f(x) = exp(-x/)/ for positive x. The parameter is the mean
9、.Student t: f(x) is proportional to (1 + (x2/)-( + 1)/2 for positive x. The parameter is called the degrees of freedom.Weibull: f(x) = (/) x-1 exp(- x/) for positive x. The parameter is the shape and is the scale.Double exponential : f(x) = exp(-|x-|/) / 2 for all x. The parameter is the location an
10、d mean; is the scale.For comparison, see distribution parameterizations in R/S-PLUS and Mathematica.In all statements about two random variables, the random variables are implicitly independent.Geometric / negative binomial: If each Xi is geometric random variable with probability of success p then
11、the sum of n Xi's is a negative binomial random variable with parameters n and p.Negative binomial / geometric: A negative binomial distribution with r = 1 is a geometric distribution.Negative binomial / Poisson: If X has a negative binomial random variable with r large, p near 1, and r(1-p) = ,
12、 then FX FY where Y is a Poisson random variable with mean .Beta-binomial / discrete uniform: A beta-binomial (n, 1, 1) random variable is a discrete uniform random variable over the values 0 . n.Beta-binomial / binomial: Let X be a beta-binomial random variable with parameters (n, , ). Let p = /( +
13、 ) and suppose + is large. If Y is a binomial(n, p) random variable then FX FY.Hypergeometric / binomial: The difference between a hypergeometric distribution and a binomial distribution is the difference between sampling without replacement and sampling with replacement. As the population size incr
14、eases relative to the sample size, the difference becomes negligible.Geometric / geometric: If X1 and X2 are geometric random variables with probability of success p1 and p2 respectively, then min(X1, X2) is a geometric random variable with probability of success p = p1 + p2 - p1 p2. The relationshi
15、p is simpler in terms of failure probabilities: q = q1 q2.Poisson / Poisson: If X1 and X2 are Poisson random variables with means 1 and 2respectively, then X1 + X2 is a Poisson random variable with mean 1 + 2.Binomial / Poisson: If X is a binomial(n, p) random variable and Y is a Poisson(np) distrib
16、ution then P(X = n) P(Y = n) if n is large and np is small. For more information, see Poisson approximation to binomial.Binomial / Bernoulli: If X is a binomial(n, p) random variable with n = 1, X is a Bernoulli(p) random variable.Bernoulli / Binomial: The sum of n Bernoulli(p) random variables is a
17、 binomial(n, p) random variable.Poisson / normal: If X is a Poisson random variable with large mean and Y is a normal distribution with the same mean and variance as X, then for integers j and k, P(j X k) P(j - 1/2 Y k + 1/2). For more information, see normal approximation to Poisson.Binomial / norm
18、al: If X is a binomial(n, p) random variable and Y is a normal random variable with the same mean and variance as X, i.e. np and np(1-p), then for integers j and k, P(j X k) P(j - 1/2 Y k + 1/2). The approximation is better when p 0.5 and when n is large. For more information, see normal approximati
19、on to binomial.Lognormal / lognormal: If X1 and X2 are lognormal random variables with parameters (1, 12) and (2, 22) respectively, then X1 X2 is a lognormal random variable with parameters (1 + 2, 12 + 22).Normal / lognormal: If X is a normal (, 2) random variable then eX is a lognormal (, 2) rando
20、m variable. Conversely, if X is a lognormal (, 2) random variable then log X is a normal (, 2) random variable.Beta / normal: If X is a beta random variable with parameters and equal and large, FX FY where Y is a normal random variable with the same mean and variance as X, i.e. mean /( + ) and varia
21、nce /(+)2( + + 1). For more information, seenormal approximation to beta.Normal / standard normal: If X is a normal(, 2) random variable then (X - )/ is a standard normal random variable. Conversely, If X is a normal(0,1) random variable then X + is a normal (, 2) random variable.Normal / normal: If
22、 X1 is a normal (1, 12) random variable and X2 is a normal (2, 22) random variable, then X1 + X2 is a normal (1 + 2, 12 + 22) random variable.Gamma / normal: If X is a gamma(, ) random variable and Y is a normal random variable with the same mean and variance as X, then FX FY if the shape parameter
23、is large relative to the scale parameter . For more information, see normal approximation to gamma.Gamma / beta: If X1 is gamma(1, 1) random variable and X2 is a gamma (2, 1) random variable then X1/(X1 + X2) is a beta(1, 2) random variable. More generally, if X1 is gamma(1, 1) random variable and X
24、2 is gamma(2, 2) random variable then 2 X1/(2 X1 + 1 X2) is a beta(1, 2) random variable.Beta / uniform: A beta random variable with parameters = = 1 is a uniform random variable.Chi-squared / chi-squared: If X1 and X2 are chi-squared random variables with 1 and 2 degrees of freedom respectively, th
25、en X1 + X2 is a chi-squared random variable with 1 + 2 degrees of freedom.Standard normal / chi-squared: The square of a standard normal random variable has a chi-squared distribution with one degree of freedom. The sum of the squares of n standard normal random variables is has a chi-squared distri
26、bution with n degrees of freedom.Gamma / chi-squared: If X is a gamma (, ) random variable with = /2 and = 2, then X is a chi-squared random variable with degrees of freedom.Cauchy / standard normal: If X and Y are standard normal random variables, X/Y is a Cauchy(0,1) random variable.Student t / st
27、andard normal: If X is a t random variable with a large number of degrees of freedom then FX FY where Y is a standard normal random variable. For more information, see normal approximation to t.Snedecor F / chi-squared: If X is an F(, ) random variable with large, then X is approximately distributed
28、 as a chi-squared random variable with degrees of freedom.Chi-squared / Snedecor F: If X1 and X2 are chi-squared random variables with 1 and 2 degrees of freedom respectively, then (X1/1)/(X2/2) is an F(1, 2) random variable.Chi-squared / exponential: A chi-squared distribution with 2 degrees of fre
29、edom is an exponential distribution with mean 2.Exponential / chi-squared: An exponential random variable with mean 2 is a chi-squared random variable with two degrees of freedom.Gamma / exponential: The sum of n exponential() random variables is a gamma(n, ) random variable.Exponential / gamma: A g
30、amma distribution with shape parameter = 1 and scale parameter is an exponential() distribution.Exponential / uniform: If X is an exponential random variable with mean , then exp(-X/) is a uniform random variable. More generally, sticking any random variable into its CDF yields a uniform random vari
31、able.Uniform / exponential: If X is a uniform random variable, - log X is an exponential random variable with mean . More generally, applying the inverse CDF of any random variable X to a uniform random variable creates a variable with the same distribution as X.Cauchy reciprocal: If X is a Cauchy (, ) random variable, then 1/X is a Cauchy (/c, /c) random variable where c = 2 + 2.Cauchy sum: If X1 is a Cauchy (1, 1) random variable and X2 is a Cauchy (2, 2), then X1 + X2 is a Cauchy (1 + 2, 1 + 2) random vari
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中英文設(shè)備維修合同范本(2024版)
- 2025年苗圃地租賃合同模板(含知識產(chǎn)權(quán)保護條款)
- 2025年度二手房交易房地產(chǎn)評估機構(gòu)選擇合同3篇
- 二零二五年度醫(yī)療設(shè)備銷售傭金分紅合同范本3篇
- 二零二五版電子商務(wù)知識產(chǎn)權(quán)保護合同簽署4篇
- 二手房購買定金協(xié)議:2024年標準版版B版
- 二零二五版網(wǎng)絡(luò)信息安全技術(shù)服務(wù)合同范本2篇
- 2025版新產(chǎn)品發(fā)布宣傳片制作服務(wù)協(xié)議2篇
- 2025年度個人之間房屋買賣合同爭議解決條款范本2篇
- 二零二五版月子中心嬰兒早教及產(chǎn)后恢復(fù)服務(wù)合同2篇
- 光伏自發(fā)自用項目年用電清單和消納計算表
- 量子計算在醫(yī)學圖像處理中的潛力
- 阿里商旅整體差旅解決方案
- 浙江天臺歷史文化名城保護規(guī)劃說明書
- 邏輯思維訓練500題
- 第八講 發(fā)展全過程人民民主PPT習概論2023優(yōu)化版教學課件
- 實體瘤療效評價標準RECIST-1.1版中文
- 企業(yè)新春茶話會PPT模板
- GB/T 19185-2008交流線路帶電作業(yè)安全距離計算方法
- DIC診治新進展課件
- 公路工程施工現(xiàn)場安全檢查手冊
評論
0/150
提交評論