概率分布函數(shù)各種類型_第1頁
概率分布函數(shù)各種類型_第2頁
概率分布函數(shù)各種類型_第3頁
概率分布函數(shù)各種類型_第4頁
概率分布函數(shù)各種類型_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、Diagram of distribution relationshipsProbability distributions have a surprising number inter-connections. A dashed line in the chart below indicates an approximate (limit) relationship between two distribution families. A solid line indicates an exact relationship: special case, sum, or transformat

2、ion.Click on a distribution for the parameterization of that distribution. Click on an arrow for details on the relationship represented by the arrow. Other diagrams on this site:The chart above is adapted from the chart originally published by Lawrence Leemis in 1986 (Relationships Among Common Uni

3、variate Distributions, American Statistician 40:143-146.) Leemis published a larger chart in 2008 which is available online.The precise relationships between distributions depend on parameterization. The relationships detailed below depend on the following parameterizations for the PDFs.Let C(n, k)

4、denote the binomial coefficient(n, k) and B(a, b) = (a) (b) / (a + b).Geometric: f(x) = p (1-p)x for non-negative integers x.Discrete uniform: f(x) = 1/n for x = 1, 2, ., n.Negative binomial: f(x) = C(r + x - 1, x) pr(1-p)x for non-negative integers x. See notes on the negative binomial distribution

5、.Beta binomial: f(x) = C(n, x) B( + x, n + - x) / B(, ) for x = 0, 1, ., n.Hypergeometric: f(x) = C(M, x) C(N-M, K - x) / C(N, K) for x = 0, 1, ., N.Poisson: f(x) = exp(-) x/ x! for non-negative integers x. The parameter is both the mean and the variance.Binomial: f(x) = C(n, x) px(1 - p)n-x for x =

6、 0, 1, ., n.Bernoulli: f(x) = px(1 - p)1-x where x = 0 or 1.Lognormal: f(x) = (22)-1/2 exp( -(log(x) - )2/ 22) / x for positive x. Note that and 2are not the mean and variance of the distribution.Normal : f(x) = (2 2)-1/2 exp( - ½(x - )/)2 ) for all x.Beta: f(x) = ( + ) x-1(1 - x)-1 / () () for

7、 0 x 1.Standard normal: f(x) = (2)-1/2 exp( -x2/2) for all x.Chi-squared: f(x) = x-/2-1 exp(-x/2) / (/2) 2/2 for positive x. The parameter is called the degrees of freedom.Gamma: f(x) = - x-1 exp(-x/) / () for positive x. The parameter is called the shape and is the scale.Uniform: f(x) = 1 for 0 x 1

8、.Cauchy: f(x) = /( (x - )2 + 2) ) for all x. Note that and are location and scale parameters. The Cauchy distribution has no mean or variance.Snedecor F: f(x) is proportional to x(1 - 2)/2 / (1 + (1/2) x)(1 + 2)/2 for positive x.Exponential: f(x) = exp(-x/)/ for positive x. The parameter is the mean

9、.Student t: f(x) is proportional to (1 + (x2/)-( + 1)/2 for positive x. The parameter is called the degrees of freedom.Weibull: f(x) = (/) x-1 exp(- x/) for positive x. The parameter is the shape and is the scale.Double exponential : f(x) = exp(-|x-|/) / 2 for all x. The parameter is the location an

10、d mean; is the scale.For comparison, see distribution parameterizations in R/S-PLUS and Mathematica.In all statements about two random variables, the random variables are implicitly independent.Geometric / negative binomial: If each Xi is geometric random variable with probability of success p then

11、the sum of n Xi's is a negative binomial random variable with parameters n and p.Negative binomial / geometric: A negative binomial distribution with r = 1 is a geometric distribution.Negative binomial / Poisson: If X has a negative binomial random variable with r large, p near 1, and r(1-p) = ,

12、 then FX FY where Y is a Poisson random variable with mean .Beta-binomial / discrete uniform: A beta-binomial (n, 1, 1) random variable is a discrete uniform random variable over the values 0 . n.Beta-binomial / binomial: Let X be a beta-binomial random variable with parameters (n, , ). Let p = /( +

13、 ) and suppose + is large. If Y is a binomial(n, p) random variable then FX FY.Hypergeometric / binomial: The difference between a hypergeometric distribution and a binomial distribution is the difference between sampling without replacement and sampling with replacement. As the population size incr

14、eases relative to the sample size, the difference becomes negligible.Geometric / geometric: If X1 and X2 are geometric random variables with probability of success p1 and p2 respectively, then min(X1, X2) is a geometric random variable with probability of success p = p1 + p2 - p1 p2. The relationshi

15、p is simpler in terms of failure probabilities: q = q1 q2.Poisson / Poisson: If X1 and X2 are Poisson random variables with means 1 and 2respectively, then X1 + X2 is a Poisson random variable with mean 1 + 2.Binomial / Poisson: If X is a binomial(n, p) random variable and Y is a Poisson(np) distrib

16、ution then P(X = n) P(Y = n) if n is large and np is small. For more information, see Poisson approximation to binomial.Binomial / Bernoulli: If X is a binomial(n, p) random variable with n = 1, X is a Bernoulli(p) random variable.Bernoulli / Binomial: The sum of n Bernoulli(p) random variables is a

17、 binomial(n, p) random variable.Poisson / normal: If X is a Poisson random variable with large mean and Y is a normal distribution with the same mean and variance as X, then for integers j and k, P(j X k) P(j - 1/2 Y k + 1/2). For more information, see normal approximation to Poisson.Binomial / norm

18、al: If X is a binomial(n, p) random variable and Y is a normal random variable with the same mean and variance as X, i.e. np and np(1-p), then for integers j and k, P(j X k) P(j - 1/2 Y k + 1/2). The approximation is better when p 0.5 and when n is large. For more information, see normal approximati

19、on to binomial.Lognormal / lognormal: If X1 and X2 are lognormal random variables with parameters (1, 12) and (2, 22) respectively, then X1 X2 is a lognormal random variable with parameters (1 + 2, 12 + 22).Normal / lognormal: If X is a normal (, 2) random variable then eX is a lognormal (, 2) rando

20、m variable. Conversely, if X is a lognormal (, 2) random variable then log X is a normal (, 2) random variable.Beta / normal: If X is a beta random variable with parameters and equal and large, FX FY where Y is a normal random variable with the same mean and variance as X, i.e. mean /( + ) and varia

21、nce /(+)2( + + 1). For more information, seenormal approximation to beta.Normal / standard normal: If X is a normal(, 2) random variable then (X - )/ is a standard normal random variable. Conversely, If X is a normal(0,1) random variable then X + is a normal (, 2) random variable.Normal / normal: If

22、 X1 is a normal (1, 12) random variable and X2 is a normal (2, 22) random variable, then X1 + X2 is a normal (1 + 2, 12 + 22) random variable.Gamma / normal: If X is a gamma(, ) random variable and Y is a normal random variable with the same mean and variance as X, then FX FY if the shape parameter

23、is large relative to the scale parameter . For more information, see normal approximation to gamma.Gamma / beta: If X1 is gamma(1, 1) random variable and X2 is a gamma (2, 1) random variable then X1/(X1 + X2) is a beta(1, 2) random variable. More generally, if X1 is gamma(1, 1) random variable and X

24、2 is gamma(2, 2) random variable then 2 X1/(2 X1 + 1 X2) is a beta(1, 2) random variable.Beta / uniform: A beta random variable with parameters = = 1 is a uniform random variable.Chi-squared / chi-squared: If X1 and X2 are chi-squared random variables with 1 and 2 degrees of freedom respectively, th

25、en X1 + X2 is a chi-squared random variable with 1 + 2 degrees of freedom.Standard normal / chi-squared: The square of a standard normal random variable has a chi-squared distribution with one degree of freedom. The sum of the squares of n standard normal random variables is has a chi-squared distri

26、bution with n degrees of freedom.Gamma / chi-squared: If X is a gamma (, ) random variable with = /2 and = 2, then X is a chi-squared random variable with degrees of freedom.Cauchy / standard normal: If X and Y are standard normal random variables, X/Y is a Cauchy(0,1) random variable.Student t / st

27、andard normal: If X is a t random variable with a large number of degrees of freedom then FX FY where Y is a standard normal random variable. For more information, see normal approximation to t.Snedecor F / chi-squared: If X is an F(, ) random variable with large, then X is approximately distributed

28、 as a chi-squared random variable with degrees of freedom.Chi-squared / Snedecor F: If X1 and X2 are chi-squared random variables with 1 and 2 degrees of freedom respectively, then (X1/1)/(X2/2) is an F(1, 2) random variable.Chi-squared / exponential: A chi-squared distribution with 2 degrees of fre

29、edom is an exponential distribution with mean 2.Exponential / chi-squared: An exponential random variable with mean 2 is a chi-squared random variable with two degrees of freedom.Gamma / exponential: The sum of n exponential() random variables is a gamma(n, ) random variable.Exponential / gamma: A g

30、amma distribution with shape parameter = 1 and scale parameter is an exponential() distribution.Exponential / uniform: If X is an exponential random variable with mean , then exp(-X/) is a uniform random variable. More generally, sticking any random variable into its CDF yields a uniform random vari

31、able.Uniform / exponential: If X is a uniform random variable, - log X is an exponential random variable with mean . More generally, applying the inverse CDF of any random variable X to a uniform random variable creates a variable with the same distribution as X.Cauchy reciprocal: If X is a Cauchy (, ) random variable, then 1/X is a Cauchy (/c, /c) random variable where c = 2 + 2.Cauchy sum: If X1 is a Cauchy (1, 1) random variable and X2 is a Cauchy (2, 2), then X1 + X2 is a Cauchy (1 + 2, 1 + 2) random vari

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論