冪函數(shù)的圖像性質(zhì)和應用(共9頁)_第1頁
冪函數(shù)的圖像性質(zhì)和應用(共9頁)_第2頁
冪函數(shù)的圖像性質(zhì)和應用(共9頁)_第3頁
冪函數(shù)的圖像性質(zhì)和應用(共9頁)_第4頁
冪函數(shù)的圖像性質(zhì)和應用(共9頁)_第5頁
已閱讀5頁,還剩4頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、精選優(yōu)質(zhì)文檔-傾情為你奉上冪函數(shù)分數(shù)指數(shù)冪正分數(shù)指數(shù)冪的意義是:(,、,且)負分數(shù)指數(shù)冪的意義是:(,、,且)1、 冪函數(shù)的圖像與性質(zhì)冪函數(shù)隨著的不同,定義域、值域都會發(fā)生變化,可以采取按性質(zhì)和圖像分類記憶的方法熟練掌握,當?shù)膱D像和性質(zhì),列表如下從中可以歸納出以下結(jié)論: 它們都過點,除原點外,任何冪函數(shù)圖像與坐標軸都不相交,任何冪函數(shù)圖像都不過第四象限 時,冪函數(shù)圖像過原點且在上是增函數(shù) 時,冪函數(shù)圖像不過原點且在上是減函數(shù) 任何兩個冪函數(shù)最多有三個公共點奇函數(shù)偶函數(shù)非奇非偶函數(shù)OxyOxyOxyOxyOxyOxyOxyOxyOxy冪函數(shù)基本性質(zhì)(1)所有的冪函數(shù)在(0,+)都有定義,并且圖象

2、都過點(1,1);(2)0時,冪函數(shù)的圖象都通過原點,并且在0,+上,是增函數(shù)(3)0時,冪函數(shù)的圖象在區(qū)間(0,+)上是減函數(shù).規(guī)律總結(jié)1在研究冪函數(shù)的性質(zhì)時,通常將分式指數(shù)冪化為根式形式,負整指數(shù)冪化為分式形式再去進行討論;2對于冪函數(shù)y,我們首先應該分析函數(shù)的定義域、值域和奇偶性,由此確定圖象的位置,即所在象限,其次確定曲線的類型,即0,01和1三種情況下曲線的基本形狀,還要注意0,1三個曲線的形狀;對于冪函數(shù)在第一象限的圖象的大致情況可以用口訣來記憶:“正拋負雙,大豎小橫”,即0(1)時圖象是拋物線型;0時圖象是雙曲線型;1時圖象是豎直拋物線型;01時圖象是橫臥拋物線型2、 冪函數(shù)的應

3、用xOy例1、 冪函數(shù)(、,且、互質(zhì))的圖象在第一,二象限,且不經(jīng)過原點,則有 ( ) 、為奇數(shù)且為偶數(shù),為奇數(shù),且為偶數(shù),為奇數(shù),且奇數(shù),為偶數(shù),且xOy例2、 右圖為冪函數(shù)在第一象限的圖像,則的大小關(guān)系是( ) 解:取,由圖像可知:,應選例3、 比較下列各組數(shù)的大小:(1),;(2),;(3),解:(1)底數(shù)不同,指數(shù)相同的數(shù)比大小,可以轉(zhuǎn)化為同一冪函數(shù),不同函數(shù)值的大小問題在上單調(diào)遞增,且,(2)底數(shù)均為負數(shù),可以將其轉(zhuǎn)化為,在上單調(diào)遞增,且,即,(3)先將指數(shù)統(tǒng)一,底數(shù)化成正數(shù),在上單調(diào)遞減,且,即:點評:比較冪形式的兩個數(shù)的大小,一般的思路是:(1)若能化為同指數(shù),則用冪函數(shù)的單調(diào)性

4、;(2)若能化為同底數(shù),則用指數(shù)函數(shù)的單調(diào)性;(3)若既不能化為同指數(shù),也不能化為同底數(shù),則需尋找一個恰當?shù)臄?shù)作為橋梁來比較大小例4、 若,求實數(shù)的取值范圍分析:若,則有三種情況,或解:根據(jù)冪函數(shù)的性質(zhì),有三種可能:或或,解得:例3已知冪函數(shù)()的圖象與軸、軸都無交點,且關(guān)于原點對稱,求的值解:冪函數(shù)()的圖象與軸、軸都無交點,;,又函數(shù)圖象關(guān)于原點對稱,是奇數(shù),或例4、設(shè)函數(shù)f(x)x3,(1)求它的反函數(shù);(2)分別求出f1(x)f(x),f1(x)f(x),f1(x)f(x)的實數(shù)x的范圍解析:(1)由yx3兩邊同時開三次方得x,f1(x)x(2)函數(shù)f(x)x3和f1(x)x的圖象都經(jīng)

5、過點(0,0)和(1,1)f1(x)f(x)時,x1及0;在同一個坐標系中畫出兩個函數(shù)圖象,由圖可知f1(x)f(x)時,x1或0x1;f1(x)f(x)時,x1或1x0點評:本題在確定x的范圍時,采用了數(shù)形結(jié)合的方法,若采用解不等式或方程則較為麻煩例5、求函數(shù)y2x4(x32)值域解析:設(shè)tx,x32,t2,則yt22t4(t1)23當t1時,ymin3函數(shù)y2x4(x32)的值域為3,)點評:這是復合函數(shù)求值域的問題,應用換元法【同步練習】1. 下列函數(shù)中不是冪函數(shù)的是( )答案:2. 下列函數(shù)在上為減函數(shù)的是( )答案:3. 下列冪函數(shù)中定義域為的是( )答案:4函數(shù)y(x22x)的定義

6、域是()Ax|x0或x2B(,0)(2,) C(,0)2,D(0,2)解析:函數(shù)可化為根式形式,即可得定義域答案:B5函數(shù)y(1x2)的值域是()A0,B(0,1) C(0,1) D0,1解析:這是復合函數(shù)求值域問題,利用換元法,令t1x2,則y1x1,0t1,0y1答案:D6函數(shù)y的單調(diào)遞減區(qū)間為()A(,1)B(,0) C0,D(,)解析:函數(shù)y是偶函數(shù),且在0,)上單調(diào)遞增,由對稱性可知選B答案:B7若aa,則a的取值范圍是()Aa1Ba0 C1a0 D1a0解析:運用指數(shù)函數(shù)的性質(zhì),選C答案:C8函數(shù)y的定義域是 。解析:由(152xx2)30152xx203x5答案:A9函數(shù)y在第二

7、象限內(nèi)單調(diào)遞增,則m的最大負整數(shù)是_解析:m的取值應該使函數(shù)為偶函數(shù)故m1答案:m110、討論函數(shù)y的定義域、值域、奇偶性、單調(diào)性,并畫出圖象的示意圖思路:函數(shù)y是冪函數(shù)(1)要使y有意義,x可以取任意實數(shù),故函數(shù)定義域為R(2)xR,x20y0(3)f(x)f(x),函數(shù)y是偶函數(shù);(4)n0,冪函數(shù)y在0,上單調(diào)遞增由于冪函數(shù)y是偶函數(shù),冪函數(shù)y在(,0)上單調(diào)遞減(5)其圖象如下圖所示12已知函數(shù)y(1)求函數(shù)的定義域、值域;(2)判斷函數(shù)的奇偶性;(3)求函數(shù)的單調(diào)區(qū)間解析:這是復合函數(shù)問題,利用換元法令t152xx2,則y,(1)由152xx20得函數(shù)的定義域為5,3,t16(x1)20,16函數(shù)的值域為0,2(2)函數(shù)的定義域為5,3且關(guān)于原點不對稱,函數(shù)既不是奇函數(shù)也不是偶函數(shù)(3)函數(shù)的定義域為5,3,對稱軸為x1,x5,1時,t隨x的增大而增大;x(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論