勾股定理經(jīng)典例題(教師版) 2_第1頁
勾股定理經(jīng)典例題(教師版) 2_第2頁
勾股定理經(jīng)典例題(教師版) 2_第3頁
勾股定理經(jīng)典例題(教師版) 2_第4頁
勾股定理經(jīng)典例題(教師版) 2_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、 類型一:勾股定理的直接用法1、在RtABC中,C=90°(1已知a=6,c=10,求b,(2已知a=40,b=9,求c;(3已知c=25,b=15,求a.思路點(diǎn)撥:寫解的過程中,一定要先寫上在哪個直角三角形中,注意勾股定理的變形使用。解析:(1 在ABC中,C=90°,a=6,c=10,b=(2 在ABC中,C=90°,a=40,b=9,c=(3 在ABC中,C=90°,c=25,b=15,a=舉一反三【變式】:如圖B=ACD=90°, AD=13,CD=12, BC=3,則AB的長是多少? 【答案】ACD=90°AD=13, CD

2、=12AC2 =AD2-CD2=132-122=25AC=5又ABC=90°且BC=3由勾股定理可得AB2=AC2-BC2=52-32=16AB= 4AB的長是4.類型二:勾股定理的構(gòu)造應(yīng)用2、如圖,已知:在中,. 求:BC的長. 思路點(diǎn)撥:由條件,想到構(gòu)造含角的直角三角形,為此作于D,則有 ,再由勾股定理計算出AD、DC的長,進(jìn)而求出BC的長.解析:作于D,則因,(的兩個銳角互余(在中,如果一個銳角等于,那么它所對的直角邊等于斜邊的一半.根據(jù)勾股定理,在中, .根據(jù)勾股定理,在中, . .舉一反三【變式1】如圖,已知:,于P. 求證:. 解析:連結(jié)BM,根據(jù)勾股定理,在中,.而在中

3、,則根據(jù)勾股定理有 . 又(已知,.在中,根據(jù)勾股定理有 ,.【變式2】已知:如圖,B=D=90°,A=60°,AB=4,CD=2。求:四邊形ABCD的面積。 分析:如何構(gòu)造直角三角形是解本題的關(guān)鍵,可以連結(jié)AC,或延長AB、DC交于F,或延長AD、BC交于點(diǎn)E,根據(jù)本題給定的角應(yīng)選后兩種,進(jìn)一步根據(jù)本題給定的邊選第三種較為簡單。解析:延長AD、BC交于E。A=60°,B=90°,E=30°。 AE=2AB=8,CE=2CD=4,BE2=AE2-AB2=82-42=48,BE=。DE2= CE2-CD2=42-22=12,DE=。 S四邊形AB

4、CD=SABE-SCDE=AB²BE-CD²DE=類型三:勾股定理的實(shí)際應(yīng)用(一 用勾股定理求兩點(diǎn)之間的距離問題3、如圖所示,在一次夏令營活動中,小明從營地A點(diǎn)出發(fā),沿北偏東60°方向走了 到達(dá)B點(diǎn),然后再沿北偏西30°方向走了500m到達(dá)目的地C點(diǎn)。(1求A、C兩點(diǎn)之間的距離。(2確定目的地C在營地A的什么方向。解析:(1過B點(diǎn)作BE/ADDAB=ABE=60°30°+CBA+ABE=180°CBA=90°即ABC為直角三角形由已知可得:BC=500m,AB=由勾股定理可得:所以(2在RtABC中,BC=500m

5、,AC=1000mCAB=30°DAB=60°DAC=30°即點(diǎn)C在點(diǎn)A的北偏東30°的方向舉一反三【變式】一輛裝滿貨物的卡車,其外形高2.5米,寬1.6米,要開進(jìn)廠門形狀如圖的某工廠,問這輛卡車能否通過該工廠的廠門? 【答案】由于廠門寬度是否足夠卡車通過,只要看當(dāng)卡車位于廠門正中間時其高度是否小于CH.如圖所示,點(diǎn)D在離廠門中線0.8米處,且CDAB,與地面交于H.解:OC=1米(大門寬度一半, OD=0.8米(卡車寬度一半在RtOCD中,由勾股定理得:CD=0.6米,C H=0.6+2.3=2.9(米>2.5(米.因此高度上有0.4米的余量,所

6、以卡車能通過廠門.(二用勾股定理求最短問題4、國家電力總公司為了改善農(nóng)村用電電費(fèi)過高的現(xiàn)狀,目前正在全國各地農(nóng)村進(jìn)行電網(wǎng)改造,某地有四個村莊A、B、C、D,且正好位于一個正方形的四個頂點(diǎn),現(xiàn)計劃在四個村莊聯(lián)合架設(shè)一條線路,他們設(shè)計了四種架設(shè)方案,如圖實(shí)線部分.請你幫助計算一下,哪種架設(shè)方案最省電線. 思路點(diǎn)撥:解答本題的思路是:最省電線就是線路長最短,通過利用勾股定理計算線路長,然后進(jìn)行比較,得出結(jié)論.解析:設(shè)正方形的邊長為1,則圖(1、圖(2中的總線路長分別為AB+BC+CD=3,AB+BC+CD=3圖(3中,在RtABC中 同理圖(3中的路線長為圖(4中,延長EF交BC于H,則FHBC,B

7、H=CH由FBH=及勾股定理得:EA=ED=FB=FC=EF=1-2FH=1-此圖中總線路的長為4EA+EF= 3>2.828>2.732圖(4的連接線路最短,即圖(4的架設(shè)方案最省電線. 舉一反三【變式】如圖,一圓柱體的底面周長為20cm,高AB為4cm,BC是上底面的直徑.一只螞蟻從點(diǎn)A出發(fā),沿著圓柱的側(cè)面爬行到點(diǎn)C,試求出爬行的最短路程.解: 如圖,在RtABC中,BC=底面周長的一半=10cm,根據(jù)勾股定理得(提問:勾股定理AC=10.77(cm(勾股定理.答:最短路程約為10.77cm. 類型四:利用勾股定理作長為的線段5、作長為、的線段。思路點(diǎn)撥:由勾股定理得,直角邊為

8、1的等腰直角三角形,斜邊長就等于,直角邊為和1的直角三角形斜邊長就是,類似地可作。作法:如圖所示 (1作直角邊為1(單位長的等腰直角ACB,使AB為斜邊;(2以AB為一條直角邊,作另一直角邊為1的直角。斜邊為;(3順次這樣做下去,最后做到直角三角形,這樣斜邊、的長度就是 、。 舉一反三【變式】在數(shù)軸上表示的點(diǎn)。解析:可以把看作是直角三角形的斜邊,為了有利于畫圖讓其他兩邊的長為整數(shù),而10又是9和1這兩個完全平方數(shù)的和,得另外兩邊分別是3和1。作法:如圖所示在數(shù)軸上找到A點(diǎn),使OA=3,作ACOA且截取AC=1,以O(shè)C為半徑,以O(shè)為圓心做弧,弧與數(shù)軸的交點(diǎn)B即為。類型五:逆命題與勾股定理逆定理6

9、、寫出下列原命題的逆命題并判斷是否正確1.原命題:貓有四只腳.(正確2.原命題:對頂角相等(正確3.原命題:線段垂直平分線上的點(diǎn),到這條線段兩端距離相等.(正確4.原命題:角平分線上的點(diǎn),到這個角的兩邊距離相等.(正確思路點(diǎn)撥:掌握原命題與逆命題的關(guān)系。解析:1. 逆命題:有四只腳的是貓(不正確2. 逆命題:相等的角是對頂角(不正確3. 逆命題:到線段兩端距離相等的點(diǎn),在這條線段的垂直平分線上.(正確4. 逆命題:到角兩邊距離相等的點(diǎn),在這個角的平分線上.(正確總結(jié)升華:本題是為了學(xué)習(xí)勾股定理的逆命題做準(zhǔn)備。7、如果ABC的三邊分別為a、b、c,且滿足a2+b2+c2+50=6a+8b+10c

10、,判斷ABC的形狀。思路點(diǎn)撥:要判斷ABC的形狀,需要找到a、b、c的關(guān)系,而題目中只有條件a2+b2+c2+50=6a+8b+10c,故只有從該條件入手,解決問題。解析:由a2+b2+c2+50=6a+8b+10c,得:a2-6a+9+b2-8b+16+c2-10c+25=0,(a-32+(b-42+(c-52=0。(a-320, (b-420, (c-520。a=3,b=4,c=5。32+42=52,a2+b2=c2。由勾股定理的逆定理,得ABC是直角三角形。總結(jié)升華:勾股定理的逆定理是通過數(shù)量關(guān)系來研究圖形的位置關(guān)系的,在證明中也常要用到。舉一反三【變式1】四邊形ABCD中,B=90&#

11、176;,AB=3,BC=4,CD=12,AD=13,求四邊形ABCD的面積。【答案】:連結(jié)AC B=90°,AB=3,BC=4AC2=AB2+BC2=25(勾股定理AC=5AC2+CD2=169,AD2=169AC2+CD2=AD2ACD=90°(勾股定理逆定理 【變式2】已知:ABC的三邊分別為m2-n2,2mn,m2+n2(m,n為正整數(shù),且m>n,判斷ABC是否為直角三角形.分析:本題是利用勾股定理的的逆定理,只要證明:a2+b2=c2即可 證明: 所以ABC是直角三角形. 【變式3】如圖正方形ABCD,E為BC中點(diǎn),F為AB上一點(diǎn),且BF=AB。請問FE與D

12、E是否垂直?請說明。【答案】答:DEEF。證明:設(shè)BF=a,則BE=EC=2a, AF=3a,AB=4a, EF2=BF2+BE2=a2+4a2=5a2;DE2=CE2+CD2=4a2+16a2=20a2。連接DF(如圖DF2=AF2+AD2=9a2+16a2=25a2。DF2=EF2+DE2,FEDE。經(jīng)典例題精析類型一:勾股定理及其逆定理的基本用法1、若直角三角形兩直角邊的比是3:4,斜邊長是20,求此直角三角形的面積。思路點(diǎn)撥:在直角三角形中知道兩邊的比值和第三邊的長度,求面積,可以先通過比值設(shè)未知數(shù),再根據(jù)勾股定理列出方程,求出未知數(shù)的值進(jìn)而求面積。解析:設(shè)此直角三角形兩直角邊分別是3

13、x,4x,根據(jù)題意得:(3x2+(4x2=202化簡得x2=16;直角三角形的面積=³3x³4x=6x2=96總結(jié)升華:直角三角形邊的有關(guān)計算中,常常要設(shè)未知數(shù),然后用勾股定理列方程(組求解。 舉一反三【變式1】等邊三角形的邊長為2,求它的面積?!敬鸢浮咳鐖D,等邊ABC,作ADBC于D則:BD=BC(等腰三角形底邊上的高與底邊上的中線互相重合AB=AC=BC=2(等邊三角形各邊都相等BD=1在直角三角形ABD中,AB2=AD2+BD2,即:AD2=AB2-BD2=4-1=3AD=SABC=BC²AD=注:等邊三角形面積公式:若等邊三角形邊長為a,則其面積為a?!咀?/p>

14、式2】直角三角形周長為12cm,斜邊長為5cm,求直角三角形的面積。【答案】設(shè)此直角三角形兩直角邊長分別是x,y,根據(jù)題意得: 由(1得:x+y=7,(x+y2=49,x2+2xy+y2=49 (3(3-(2,得:xy=12直角三角形的面積是xy=³12=6(cm2【變式3】若直角三角形的三邊長分別是n+1,n+2,n+3,求n。思路點(diǎn)撥:首先要確定斜邊(最長的邊長n+3,然后利用勾股定理列方程求解。解:此直角三角形的斜邊長為n+3,由勾股定理可得:(n+12+(n+22=(n+32化簡得:n2=4n=±2,但當(dāng)n=-2時,n+1=-1<0,n=2總結(jié)升華:注意直角三

15、角形中兩“直角邊”的平方和等于“斜邊”的平方,在題目沒有給出哪條是直角邊哪條是斜邊的情況下,首先要先確定斜邊,直角邊?!咀兪?】以下列各組數(shù)為邊長,能組成直角三角形的是(A、8,15,17B、4,5,6C、5,8,10D、8,39,40解析:此題可直接用勾股定理的逆定理來進(jìn)行判斷,對數(shù)據(jù)較大的可以用c2=a2+b2的變形:b2=c2-a2=(c-a(c+a來判斷。例如:對于選擇D,82(40+39³(40-39,以8,39,40為邊長不能組成直角三角形。同理可以判斷其它選項(xiàng)?!敬鸢浮?A【變式5】四邊形ABCD中,B=90°,AB=3,BC=4,CD=12,AD=13,求四

16、邊形ABCD的面積。解:連結(jié)ACB=90°,AB=3,BC=4 AC2=AB2+BC2=25(勾股定理AC=5AC2+CD2=169,AD2=169AC2+CD2=AD2ACD=90°(勾股定理逆定理 S四邊形ABCD=SABC+SACD=AB²BC+AC²CD=36類型二:勾股定理的應(yīng)用2、如圖,公路MN和公路PQ在點(diǎn)P處交匯,且QPN=30°,點(diǎn)A處有一所中學(xué),AP=160m。假設(shè)拖拉機(jī)行駛時,周圍100m以內(nèi)會受到噪音的影響,那么拖拉機(jī)在公路MN上沿PN方向行駛時,學(xué)校是否會受到噪聲影響?請說明理由,如果受影響,已知拖拉機(jī)的速度為18km

17、/h,那么學(xué)校受影響的時間為多少秒? 思路點(diǎn)撥:(1要判斷拖拉機(jī)的噪音是否影響學(xué)校A,實(shí)質(zhì)上是看A到公路的距離是否小于100m, 小于100m則受影響,大于100m則不受影響,故作垂線段AB并計算其長度。(2要求出學(xué)校受影響的時間,實(shí)質(zhì)是要求拖拉機(jī)對學(xué)校A的影響所行駛的路程。因此必須找到拖拉機(jī)行至哪一點(diǎn)開始影響學(xué)校,行至哪一點(diǎn)后結(jié)束影響學(xué)校。解析:作ABMN,垂足為B。在RtABP中,ABP=90°,APB=30°,AP=160,AB=AP=80。(在直角三角形中,30°所對的直角邊等于斜邊的一半點(diǎn)A到直線MN的距離小于100m,這所中學(xué)會受到噪聲的影響。如圖,假

18、設(shè)拖拉機(jī)在公路MN上沿PN方向行駛到點(diǎn)C處學(xué)校開始受到影響,那么AC=100(m,由勾股定理得:BC=100-80=3600,BC=60。 同理,拖拉機(jī)行駛到點(diǎn)D處學(xué)校開始脫離影響,那么,AD=100(m,BD=60(m,CD=120(m。拖拉機(jī)行駛的速度為: 18km/h=5m/st=120m÷5m/s=24s。答:拖拉機(jī)在公路MN上沿PN方向行駛時,學(xué)校會受到噪聲影響,學(xué)校受影響的時間為24秒??偨Y(jié)升華:勾股定理是求線段的長度的很重要的方法,若圖形缺少直角條件,則可以通過作輔助垂線的方法,構(gòu)造直角三角形以便利用勾股定理。舉一反三【變式1】如圖學(xué)校有一塊長方形花園,有極少數(shù)人為了避

19、開拐角而走“捷徑”,在花園內(nèi)走出了一條“路”。他們僅僅少走了_步路(假設(shè)2步為1m,卻踩傷了花草。 解析:他們原來走的路為3+4=7(m設(shè)走“捷徑”的路長為xm,則故少走的路長為7-5=2(m又因?yàn)?步為1m,所以他們僅僅少走了4步路?!敬鸢浮?【變式2】如圖中的虛線網(wǎng)格我們稱之為正三角形網(wǎng)格,它的每一個小三角形都是邊長為1的正三角形,這樣的三角形稱為單位正三角形。(1直接寫出單位正三角形的高與面積。(2圖中的平行四邊形ABCD含有多少個單位正三角形?平行四邊形ABCD的面積是多少?(3求出圖中線段AC的長(可作輔助線。 【答案】(1單位正三角形的高為,面積是。(2如圖可直接得出平行四邊形ABCD含有24個單位正三角形,因此其面積。(3過A作AKBC于點(diǎn)K(如圖所示,則在RtACK中, ,故類型三:數(shù)學(xué)思想方法(一轉(zhuǎn)化的思想方法我們在求三角形的邊或角,或進(jìn)行推理論證時,常常作垂線,構(gòu)造直角三角形,將問題轉(zhuǎn)化為直角三角形問題來解決.3、如圖所示,ABC是等腰直角三角形,AB=AC,D是斜邊BC的中點(diǎn),E、F分別是AB、AC邊上的點(diǎn),且DEDF,若BE=12,CF=5.求線段EF的長。 思路點(diǎn)撥:現(xiàn)已知BE、CF,要求EF,但這三條線段不在同一三角形中,所以關(guān)鍵是線段的轉(zhuǎn)化,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論