空間幾何體的表面積和體積例題學(xué)生講義_第1頁(yè)
空間幾何體的表面積和體積例題學(xué)生講義_第2頁(yè)
空間幾何體的表面積和體積例題學(xué)生講義_第3頁(yè)
空間幾何體的表面積和體積例題學(xué)生講義_第4頁(yè)
空間幾何體的表面積和體積例題學(xué)生講義_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、空間幾何體的表面積和體積一課標(biāo)要求:了解球、棱柱、棱錐、臺(tái)的表面積和體積的計(jì)算公式(不要求記憶公式)。二命題走向近些年來(lái)在高考中不僅有直接求多面體、旋轉(zhuǎn)體的面積和體積問(wèn)題,也有已知面積或體積求某些元素的量或元素間的位置關(guān)系問(wèn)題。即使考查空間線面的位置關(guān)系問(wèn)題,也常以幾何體為依托.因而要熟練掌握多面體與旋轉(zhuǎn)體的概念、性質(zhì)以及它們的求積公式.同時(shí)也要學(xué)會(huì)運(yùn)用等價(jià)轉(zhuǎn)化思想,會(huì)把組合體求積問(wèn)題轉(zhuǎn)化為基本幾何體的求積問(wèn)題,會(huì)等體積轉(zhuǎn)化求解問(wèn)題,會(huì)把立體問(wèn)題轉(zhuǎn)化為平面問(wèn)題求解,會(huì)運(yùn)用“割補(bǔ)法”等求解。由于本講公式多反映在考題上,預(yù)測(cè)2016年高考有以下特色:(1)用選擇、填空題考查本章的基本性質(zhì)和求積公式

2、;(2)考題可能為:與多面體和旋轉(zhuǎn)體的面積、體積有關(guān)的計(jì)算問(wèn)題;與多面體和旋轉(zhuǎn)體中某些元素有關(guān)的計(jì)算問(wèn)題;三要點(diǎn)精講1多面體的面積和體積公式名稱側(cè)面積(S側(cè))全面積(S全)體 積(V)棱柱棱柱直截面周長(zhǎng)×lS側(cè)+2S底S底·h=S直截面·h直棱柱chS底·h棱錐棱錐各側(cè)面積之和S側(cè)+S底S底·h正棱錐ch棱臺(tái)棱臺(tái)各側(cè)面面積之和S側(cè)+S上底+S下底h(S上底+S下底+)正棱臺(tái) (c+c)h表中S表示面積,c、c分別表示上、下底面周長(zhǎng),h表斜高,h表示斜高,l表示側(cè)棱長(zhǎng)。2旋轉(zhuǎn)體的面積和體積公式名稱圓柱圓錐圓臺(tái)球S側(cè)2rlrl(r1+r2)lS全2

3、r(l+r)r(l+r)(r1+r2)l+(r21+r22)4R2Vr2h(即r2l)r2hh(r21+r1r2+r22)R3表中l(wèi)、h分別表示母線、高,r表示圓柱、圓錐與球冠的底半徑,r1、r2分別表示圓臺(tái) 上、下底面半徑,R表示半徑。四典例解析題型1:柱體的體積和表面積例1一個(gè)長(zhǎng)方體全面積是20cm2,所有棱長(zhǎng)的和是24cm,求長(zhǎng)方體的對(duì)角線長(zhǎng).例2如圖1所示,在平行六面體ABCDA1B1C1D1中,已知AB=5,AD=4,AA1=3,ABAD,A1AB=A1AD=。(1)求證:頂點(diǎn)A1在底面ABCD上的射影O在BAD的平分線上;(2)求這個(gè)平行六面體的體積。圖1 圖2題型2:柱體的表面積

4、、體積綜合問(wèn)題例3一個(gè)長(zhǎng)方體共一頂點(diǎn)的三個(gè)面的面積分別是,這個(gè)長(zhǎng)方體對(duì)角線的長(zhǎng)是( )A2 B3 C6 D例4如圖,三棱柱ABCA1B1C1中,若E、F分別為AB、AC 的中點(diǎn),平面EB1C1將三棱柱分成體積為V1、V2的兩部分,那么V1V2= _ _。PABCDOE題型3:錐體的體積和表面積(2015湖北卷3)用與球心距離為的平面去截球,所得的截面面積為,則球的體積為A. B. C. D. 例6(2015北京,19)(本小題滿分12分)ABCMPD如圖,在四棱錐中,平面平面,是等邊三角形,已知,()設(shè)是上的一點(diǎn),證明:平面平面;()求四棱錐的體積ABCMPDO題型4:錐體體積、表面積綜合問(wèn)題

5、例7ABCD是邊長(zhǎng)為4的正方形,E、F分別是AB、AD的中點(diǎn),GC垂直于正方形ABCD所在的平面,且GC2,求點(diǎn)B到平面EFG的距離?例8(2015江西理,12)如圖,在四面體ABCD中,截面AEF經(jīng)過(guò)四面體的內(nèi)切球(與四個(gè)面都相切的球)球心O,且與BC,DC分別截于E、F,如果截面將四面體分成體積相等的兩部分,設(shè)四棱錐ABEFD與三棱錐AEFC的表面積分別是S1,S2,則必有( )AS1<S2 BS1>S2CS1=S2 DS1,S2的大小關(guān)系不能確定題型5:棱臺(tái)的體積、面積及其綜合問(wèn)題例9(2015四川理,19)(本小題滿分12分)如圖,面ABEF面ABCD,四邊形ABEF與四邊

6、形ABCD都是直角梯形,BAD=FAB=90°,BCAD,BEAF,G、H分別是FA、FD的中點(diǎn)。()證明:四邊形BCHG是平行四邊形;()C、D、E、F四點(diǎn)是否共面?為什么?()設(shè)AB=BE,證明:平面ADE平面CDE.GHFEDCBA例10(1)(2015四川理,8)設(shè)是球心的半徑上的兩點(diǎn),且,分別過(guò)作垂線于的面截球得三個(gè)圓,則這三個(gè)圓的面積之比為:( )()()()()例11(2015四川文,12)若三棱柱的一個(gè)側(cè)面是邊長(zhǎng)為2的正方形,另外兩個(gè)側(cè)面都是有一個(gè)內(nèi)角為的菱形,則該棱柱的體積等于( )() () () ()例12如圖99,一個(gè)底面半徑為R的圓柱形量杯中裝有適量的水.若

7、放入一個(gè)半徑為r的實(shí)心鐵球,水面高度恰好升高r,則= 。題型7:圓錐的體積、表面積及綜合問(wèn)題圖例13已知過(guò)球面上三點(diǎn)的截面和球心的距離為球半徑的一半,且,求球的表面積。例14如圖所示,球面上有四個(gè)點(diǎn)P、A、B、C,如果PA,PB,PC兩兩互相垂直,且PA=PB=PC=a,求這個(gè)球的表面積。題型9:球的面積、體積綜合問(wèn)題例15(1)表面積為的球,其內(nèi)接正四棱柱的高是,求這個(gè)正四棱柱的表面積。(2)正四面體ABCD的棱長(zhǎng)為a,球O是內(nèi)切球,球O1是與正四面體的三個(gè)面和球O都相切的一個(gè)小球,求球O1的體積。題型10:球的經(jīng)緯度、球面距離問(wèn)題例19(1)我國(guó)首都靠近北緯緯線,求北緯緯線的長(zhǎng)度等于多少?

8、(地球半徑大約為)(2)在半徑為的球面上有三點(diǎn),求球心到經(jīng)過(guò)這三點(diǎn)的截面的距離。例16在北緯圈上有兩點(diǎn),設(shè)該緯度圈上兩點(diǎn)的劣弧長(zhǎng)為(為地球半徑),求兩點(diǎn)間的球面距離。31、已知圓臺(tái)的上下底面半徑分別是2、5,且側(cè)面面積等于兩底面面積之和,求該圓臺(tái)的母線長(zhǎng).32、一塊邊長(zhǎng)為10的正方形鐵片按如圖所示的陰影部分裁下,然后用余下的四個(gè)全等的等腰三角形加工成一個(gè)正四棱錐形容器,試建立容器的容積與的函數(shù)關(guān)系式,并求出函數(shù)的定義域. (12分)33.已知兩個(gè)幾何體的三視圖如下,試求它們的表面積和體積。單位:CM圖(2圖(1)34.養(yǎng)路處建造圓錐形倉(cāng)庫(kù)用于貯藏食鹽(供融化高速公路上的積雪之用),已建的倉(cāng)庫(kù)的

9、底面直徑為12M,高4M。養(yǎng)路處擬建一個(gè)更大的圓錐形倉(cāng)庫(kù),以存放更多食鹽?,F(xiàn)有兩種方案:一是新建的倉(cāng)庫(kù)的底面直徑比原來(lái)大4M(高不變);二是高度增加4M(底面直徑不變)。(1) 分別計(jì)算按這兩種方案所建的倉(cāng)庫(kù)的體積;(2) 分別計(jì)算按這兩種方案所建的倉(cāng)庫(kù)的表面積;(3) 哪個(gè)方案更經(jīng)濟(jì)些?35 (14分) (如圖)在底半徑為,母線長(zhǎng)為的圓錐中內(nèi)接一個(gè)高為的圓柱,求圓柱的表面積.36.(2015年廣東省惠州市高三調(diào)研)如圖,已知正三棱柱ABCA1B1C1的底面邊長(zhǎng)是2,D,E是CC1,BC的中點(diǎn),AEDE.(1)求此正三棱柱的側(cè)棱長(zhǎng);(2)正三棱柱ABCA1B1C1的表面積五思維總結(jié)1正四面體的

10、性質(zhì) 設(shè)正四面體的棱長(zhǎng)為a,則這個(gè)正四面體的(1)全面積:S全=a2;(2)體積:V=a3;(3)對(duì)棱中點(diǎn)連線段的長(zhǎng):d=a;(4)內(nèi)切球半徑:r=a;(5)外接球半徑 R=a;(6)正四面體內(nèi)任意一點(diǎn)到四個(gè)面的距離之和為定值(等于正四面體的高)。2直角四面體的性質(zhì) 有一個(gè)三面角的各個(gè)面角都是直角的四面體叫做直角四面體.直角四面 體有下列性質(zhì):如圖,在直角四面體AOCB中,AOB=BOC=COA=90°,OA=a,OB=b,OC=c。則:不含直角的底面ABC是銳角三角形;直角頂點(diǎn)O在底面上的射影H是ABC的垂心;體積 V=abc;底面ABC=;S2ABC=SBHC·SABC

11、;S2BOC=S2AOB+S2AOC=S2ABC=+; 外切球半徑 R=;內(nèi)切球半徑 r=3圓錐軸截面兩腰的夾角叫圓錐的頂角.如圖,圓錐的頂角為,母線與下底面所成角為,母線為l,高為h,底面半徑為r,則 sin=cos = ,+=90° cos=sin = .圓臺(tái) 如圖,圓臺(tái)母線與下底面所成角為,母線為l,高為h,上、下底面半徑分別為r 、r,則h=lsin,r-r=lcos。球的截面用一個(gè)平面去截一個(gè)球,截面是圓面.(1)過(guò)球心的截面截得的圓叫做球的大圓;不經(jīng)過(guò)球心的截面截得的圓叫做球的小圓;(2)球心與截面圓圓心的連線垂直于截面;(3)球心和截面距離d,球半徑R,截面半徑r有關(guān)系:r=.4經(jīng)度、緯度:經(jīng)線:球面上從北極到南極的半個(gè)大圓;緯線:與赤道平面平行的平面截球面所得的小圓

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論