版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、 人教版九年級數(shù)學(xué)二次函數(shù)在中考中知識點(diǎn)總結(jié)一、相關(guān)概念及定義1 二次函數(shù)的概念:一般地,形如(是常數(shù),)的函數(shù),叫做二次函數(shù)。這里需要強(qiáng)調(diào):和一元二次方程類似,二次項(xiàng)系數(shù),而可以為零二次函數(shù)的定義域是全體實(shí)數(shù)21教育名師原創(chuàng)作品2 二次函數(shù)的結(jié)構(gòu)特征:(1)等號左邊是函數(shù),右邊是關(guān)于自變量的二次式,的最高次數(shù)是2(2)是常數(shù),是二次項(xiàng)系數(shù),是一次項(xiàng)系數(shù),是常數(shù)項(xiàng)二、二次函數(shù)各種形式之間的變換1二次函數(shù)用配方法可化成:的形式,其中.2 二次函數(shù)由特殊到一般,可分為以下幾種形式:;.三、二次函數(shù)解析式的表示方法1 一般式:(,為常數(shù),);2 頂點(diǎn)式:(,為常數(shù),);3 兩根式:(,是拋物線與軸兩
2、交點(diǎn)的橫坐標(biāo)).4 注意:任何二次函數(shù)的解析式都可以化成一般式或頂點(diǎn)式,但并非所有的二次函數(shù)都可以寫成交點(diǎn)式,只有拋物線與軸有交點(diǎn),即時,拋物線的解析式才可以用交點(diǎn)式表示二次函數(shù)解析式的這三種形式可以互化.四、二次函數(shù)圖象的畫法1 五點(diǎn)繪圖法:利用配方法將二次函數(shù)化為頂點(diǎn)式,確定其開口方向、對稱軸及頂點(diǎn)坐標(biāo),然后在對稱軸兩側(cè),左右對稱地描點(diǎn)畫圖.一般我們選取的五點(diǎn)為:頂點(diǎn)、與軸的交點(diǎn)、以及關(guān)于對稱軸對稱的點(diǎn)、與軸的交點(diǎn),(若與軸沒有交點(diǎn),則取兩組關(guān)于對稱軸對稱的點(diǎn)).【版權(quán)所有:21教育】2 畫草圖時應(yīng)抓住以下幾點(diǎn):開口方向,對稱軸,頂點(diǎn),與軸的交點(diǎn),與軸的交點(diǎn).五、二次函數(shù)的性質(zhì)的符號開口方
3、向頂點(diǎn)坐標(biāo)對稱軸性質(zhì)向上軸時,隨的增大而增大;時,隨的增大而減小;時,有最小值向下軸時,隨的增大而減小;時,隨的增大而增大;時,有最大值六、二次函數(shù)的性質(zhì)的符號開口方向頂點(diǎn)坐標(biāo)對稱軸性質(zhì)向上軸時,隨的增大而增大;時,隨的增大而減??;時,有最小值向下軸時,隨的增大而減?。粫r,隨的增大而增大;時,有最大值七、二次函數(shù)的性質(zhì):的符號開口方向頂點(diǎn)坐標(biāo)對稱軸性質(zhì)向上X=h時,隨的增大而增大;時,隨的增大而減小;時,有最小值向下X=h時,隨的增大而減??;時,隨的增大而增大;時,有最大值八、二次函數(shù)的性質(zhì)的符號開口方向頂點(diǎn)坐標(biāo)對稱軸性質(zhì)向上X=h時,隨的增大而增大;時,隨的增大而減?。粫r,有最小值向下X=h
4、時,隨的增大而減?。粫r,隨的增大而增大;時,有最大值九、拋物線的三要素:開口方向、對稱軸、頂點(diǎn).1 的符號決定拋物線的開口方向:當(dāng)時,開口向上;當(dāng)時,開口向下;相等,拋物線的開口大小、形狀相同.2對稱軸:平行于軸(或重合)的直線記作.特別地,軸記作直線.3頂點(diǎn)坐標(biāo):4頂點(diǎn)決定拋物線的位置.幾個不同的二次函數(shù),如果二次項(xiàng)系數(shù)相同,那么拋物線的開口方向、開口大小完全相同,只是頂點(diǎn)的位置不同.十、拋物線中,與函數(shù)圖像的關(guān)系1 二次項(xiàng)系數(shù)二次函數(shù)中,作為二次項(xiàng)系數(shù),顯然 當(dāng)時,拋物線開口向上,越大,開口越小,反之的值越小,開口越大; 當(dāng)時,拋物線開口向下,越小,開口越小,反之的值越大,開口越大總結(jié)起來
5、,決定了拋物線開口的大小和方向,的正負(fù)決定開口方向,的大小決定開口的大小2一次項(xiàng)系數(shù)在二次項(xiàng)系數(shù)確定的前提下,決定了拋物線的對稱軸 在的前提下,當(dāng)時,即拋物線的對稱軸在軸左側(cè);當(dāng)時,即拋物線的對稱軸就是軸;當(dāng)時,即拋物線對稱軸在軸的右側(cè) 在的前提下,結(jié)論剛好與上述相反,即當(dāng)時,即拋物線的對稱軸在軸右側(cè);當(dāng)時,即拋物線的對稱軸就是軸;當(dāng)時,即拋物線對稱軸在軸的左側(cè)總結(jié)起來,在確定的前提下,決定了拋物線對稱軸的位置總結(jié):3常數(shù)項(xiàng) 當(dāng)時,拋物線與軸的交點(diǎn)在軸上方,即拋物線與軸交點(diǎn)的縱坐標(biāo)為正; 當(dāng)時,拋物線與軸的交點(diǎn)為坐標(biāo)原點(diǎn),即拋物線與軸交點(diǎn)的縱坐標(biāo)為; 當(dāng)時,拋物線與軸的交點(diǎn)在軸下方,即拋物線與
6、軸交點(diǎn)的縱坐標(biāo)為負(fù) 總結(jié)起來,決定了拋物線與軸交點(diǎn)的位置 總之,只要都確定,那么這條拋物線就是唯一確定的十一、求拋物線的頂點(diǎn)、對稱軸的方法1公式法:,頂點(diǎn)是,對稱軸是直線.2配方法:運(yùn)用配方的方法,將拋物線的解析式化為的形式,得到頂點(diǎn)為(,),對稱軸是直線.3運(yùn)用拋物線的對稱性:由于拋物線是以對稱軸為軸的軸對稱圖形,所以對稱軸的連線的垂直平分線是拋物線的對稱軸,對稱軸與拋物線的交點(diǎn)是頂點(diǎn). 用配方法求得的頂點(diǎn),再用公式法或?qū)ΨQ性進(jìn)行驗(yàn)證,才能做到萬無一失.十二、用待定系數(shù)法求二次函數(shù)的解析式1一般式:.已知圖像上三點(diǎn)或三對、的值,通常選擇一般式.2頂點(diǎn)式:.已知圖像的頂點(diǎn)或?qū)ΨQ軸,通常選擇頂點(diǎn)
7、式.3交點(diǎn)式:已知圖像與軸的交點(diǎn)坐標(biāo)、,通常選用交點(diǎn)式:.十三、直線與拋物線的交點(diǎn)1軸與拋物線得交點(diǎn)為(0, ).2與軸平行的直線與拋物線有且只有一個交點(diǎn)(,).3拋物線與軸的交點(diǎn):二次函數(shù)的圖像與軸的兩個交點(diǎn)的橫坐標(biāo)、,是對應(yīng)一元二次方程的兩個實(shí)數(shù)根.拋物線與軸的交點(diǎn)情況可以由對應(yīng)的一元二次方程的根的判別式判定:21教育網(wǎng) 有兩個交點(diǎn)拋物線與軸相交; 有一個交點(diǎn)(頂點(diǎn)在軸上)拋物線與軸相切; 沒有交點(diǎn)拋物線與軸相離.4平行于軸的直線與拋物線的交點(diǎn) 可能有0個交點(diǎn)、1個交點(diǎn)、2個交點(diǎn).當(dāng)有2個交點(diǎn)時,兩交點(diǎn)的縱坐標(biāo)相等,設(shè)縱坐標(biāo)為,則橫坐標(biāo)是的兩個實(shí)數(shù)根.5 一次函數(shù)的圖像與二次函數(shù)的圖像的交
8、點(diǎn),由方程組 的解的數(shù)目來確定:方程組有兩組不同的解時與有兩個交點(diǎn); 方程組只有一組解時與只有一個交點(diǎn);方程組無解時與沒有交點(diǎn)6拋物線與軸兩交點(diǎn)之間的距離:若拋物線與軸兩交點(diǎn)為,由于、是方程的兩個根,故十四、二次函數(shù)圖象的對稱:二次函數(shù)圖象的對稱一般有五種情況,可以用一般式或頂點(diǎn)式表達(dá)1關(guān)于軸對稱 關(guān)于軸對稱后,得到的解析式是; 關(guān)于軸對稱后,得到的解析式是;2關(guān)于軸對稱 關(guān)于軸對稱后,得到的解析式是; 關(guān)于軸對稱后,得到的解析式是;3關(guān)于原點(diǎn)對稱 關(guān)于原點(diǎn)對稱后,得到的解析式是; 關(guān)于原點(diǎn)對稱后,得到的解析式是;4關(guān)于頂點(diǎn)對稱 關(guān)于頂點(diǎn)對稱后,得到的解析式是;關(guān)于頂點(diǎn)對稱后,得到的解析式是5
9、關(guān)于點(diǎn)對稱 關(guān)于點(diǎn)對稱后,得到的解析式是總結(jié):根據(jù)對稱的性質(zhì),顯然無論作何種對稱變換,拋物線的形狀一定不會發(fā)生變化,因此永遠(yuǎn)不變求拋物線的對稱拋物線的表達(dá)式時,可以依據(jù)題意或方便運(yùn)算的原則,選擇合適的形式,習(xí)慣上是先確定原拋物線(或表達(dá)式已知的拋物線)的頂點(diǎn)坐標(biāo)及開口方向,再確定其對稱拋物線的頂點(diǎn)坐標(biāo)及開口方向,然后再寫出其對稱拋物線的表達(dá)式21·cn·jy·com十五、二次函數(shù)圖象的平移1.平移步驟: 將拋物線解析式轉(zhuǎn)化成頂點(diǎn)式,確定其頂點(diǎn)坐標(biāo); 保持拋物線的形狀不變,將其頂點(diǎn)平移到處,具體平移方法如下:2平移規(guī)律 在原有函數(shù)的基礎(chǔ)上 “值正右移,負(fù)左移;值正上
10、移,負(fù)下移”概括成八個字 “左加右減,上加下減”十六、根據(jù)條件確定二次函數(shù)表達(dá)式的幾種基本思路。1.三點(diǎn)式。(1)已知拋物線y=ax2+bx+c 經(jīng)過A(,0),B(,0),C(0,-3)三點(diǎn),求拋物線的解析式。www.21-cn-(2)已知拋物線y=a(x-1)+4 , 經(jīng)過點(diǎn)A(2,3),求拋物線的解析式。2.頂點(diǎn)式。(1)已知拋物線y=x2-2ax+a2+b 頂點(diǎn)為A(2,1),求拋物線的解析式。(1)已知拋物線 y=4(x+a)2-2a 的頂點(diǎn)為(3,1),求拋物線的解析式。3.交點(diǎn)式。(1)已知拋物線與 x 軸兩個交點(diǎn)分別為(3,0),(5,0),求拋物線y=(x-a)(x-b)的解
11、析式。2·1·c·n·j·y(2)已知拋物線線與 x 軸兩個交點(diǎn)(4,0),(1,0)求拋物線y=a(x-2a)(x-b)的解析式?!緛碓矗?1·世紀(jì)·教育·網(wǎng)】4.定點(diǎn)式。(1)在直角坐標(biāo)系中,不論a 取何值,拋物線經(jīng)過x 軸上一定點(diǎn)Q,直線經(jīng)過點(diǎn)Q,求拋物線的解析式。(2)拋物線y= x2 +(2m-1)x-2m與x軸的一定交點(diǎn)經(jīng)過直線y=mx+m+4,求拋物線的解析式。21·世紀(jì)*教育網(wǎng)(3) 拋物線y=ax2+ax-2過直線y=mx-2m+2上的定點(diǎn)A,求拋物線的解析式。5.平移式。(1)把拋物線
12、y= -2x2 向左平移2個單位長度,再向下平移1個單位長度,得到拋物線y=a( x-h)2 +k,求此拋物線解析式。www-2-1-cnjy-com(2)拋物線向上平移,使拋物線經(jīng)過點(diǎn)C(0,2),求拋物線的解析式.6.距離式。(1)拋物線y=ax2+4ax+1(a0)與x軸的兩個交點(diǎn)間的距離為2,求拋物線的解析式。(2)已知拋物線y=m x2+3mx-4m(m0)與 x軸交于A、B兩點(diǎn),與 軸交于C點(diǎn),且AB=BC,求此拋物線的解析式。2-1-c-n-j-y7.對稱軸式。(1)拋物線y=x2-2x+(m2-4m+4)與x軸有兩個交點(diǎn),這兩點(diǎn)間的距離等于拋物線頂點(diǎn)到y(tǒng)軸距離的2倍,求拋物線的解析式。21*cnjy*com(2)已知拋物線y=-x2+ax+4, 交x軸于A,B(點(diǎn)A在點(diǎn)B左邊)兩點(diǎn),交 y軸于點(diǎn)C,且OB-OA=OC,求此拋物線的解析式?!緛碓矗?1cnj*y.co*m】8.對稱式。(1)平行四邊形ABCD對角線AC在x軸上,且A(-10,0),AC=16,D(2,6)。AD交y 軸于E,將三角形ABC沿x 軸折疊,點(diǎn)B到B1的位置,求經(jīng)過A,B,E三點(diǎn)的拋物線的解析式。【出處:21教育名師】(2)求與拋物線y=x2+4x+3關(guān)于y軸(或x軸)對稱的拋物線的解析式。9.切點(diǎn)式。(1)已知直線y=ax-a2(a0)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度建筑模板研發(fā)與技術(shù)支持合同4篇
- 臨時工勞動合同范本(2024版)
- 中醫(yī)承師合同模板
- 2025版外貿(mào)鞋子購銷合同模板:品牌設(shè)計(jì)合作協(xié)議3篇
- 2025年度汽車維修行業(yè)深度合作框架協(xié)議
- 二零二五年度解除租賃合同及約定租賃物租賃期限變更協(xié)議
- 二零二五年度洗車行業(yè)培訓(xùn)與認(rèn)證協(xié)議
- 2025年度市政基礎(chǔ)設(shè)施竣工驗(yàn)收合同
- 二零二五年度勞動合同解除員工離職賠償金支付協(xié)議
- 二零二五年度水利工程測繪數(shù)據(jù)保密協(xié)議書
- 西方史學(xué)史課件3教學(xué)
- 2024年中國醫(yī)藥研發(fā)藍(lán)皮書
- 廣東省佛山市 2023-2024學(xué)年五年級(上)期末數(shù)學(xué)試卷
- 臺兒莊介紹課件
- 疥瘡病人的護(hù)理
- 人工智能算法與實(shí)踐-第16章 LSTM神經(jīng)網(wǎng)絡(luò)
- 17個崗位安全操作規(guī)程手冊
- 2025年山東省濟(jì)南市第一中學(xué)高三下學(xué)期期末統(tǒng)一考試物理試題含解析
- 中學(xué)安全辦2024-2025學(xué)年工作計(jì)劃
- 網(wǎng)絡(luò)安全保障服務(wù)方案(網(wǎng)絡(luò)安全運(yùn)維、重保服務(wù))
- 現(xiàn)代科學(xué)技術(shù)概論智慧樹知到期末考試答案章節(jié)答案2024年成都師范學(xué)院
評論
0/150
提交評論