兩自由度系統(tǒng)振動(dòng)_第1頁
兩自由度系統(tǒng)振動(dòng)_第2頁
兩自由度系統(tǒng)振動(dòng)_第3頁
兩自由度系統(tǒng)振動(dòng)_第4頁
兩自由度系統(tǒng)振動(dòng)_第5頁
已閱讀5頁,還剩42頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、第2次作業(yè)1如圖2-1所示,一小車(重)自高處沿斜面滑下,與緩沖器相撞后,隨同緩沖器一起作自由振動(dòng)。彈簧常數(shù),斜面傾角為,小車與斜面之間摩擦力忽略不計(jì)。試求小車的振動(dòng)周期和振幅。答案:,圖2-12確定圖2-2所示系統(tǒng)的固有頻率。圓盤質(zhì)量為。答案:圖2-23確定圖2-3系統(tǒng)的固有頻率。答案: 圖2-3第三章 兩自由度系統(tǒng)振動(dòng)§3-1 概述單自由度系統(tǒng)的振動(dòng)理論是振動(dòng)理論的基礎(chǔ)。在實(shí)際工程問題中,還經(jīng)常會遇到一些不能簡化為單自由度系統(tǒng)的振動(dòng)問題,因此有必要進(jìn)一步研究多自由度系統(tǒng)的振動(dòng)理論。兩自由度系統(tǒng)是最簡單的多自由度系統(tǒng)。從單自由度系統(tǒng)到兩自由度系統(tǒng),振動(dòng)的性質(zhì)和研究的方法有質(zhì)的不同。

2、研究兩自由度系統(tǒng)是分析和掌握多自由度系統(tǒng)振動(dòng)特性的基礎(chǔ)。所謂兩自由度系統(tǒng)是指要用兩個(gè)獨(dú)立坐標(biāo)才能確定系統(tǒng)在振動(dòng)過程中任何瞬時(shí)的幾何位置的振動(dòng)系統(tǒng)。很多生產(chǎn)實(shí)際中的問題都可以簡化為兩自由度的振動(dòng)系統(tǒng)。例如,車床刀架系統(tǒng)(a)、車床兩頂尖間的工件系統(tǒng)(b)、磨床主軸及砂輪架系統(tǒng)(c)。只要將這些系統(tǒng)中的主要結(jié)合面(或芯軸)視為彈簧(即只計(jì)彈性,忽略質(zhì)量),將系統(tǒng)中的小刀架、工件、砂輪及砂輪架等視為集中質(zhì)量,再忽略存在于系統(tǒng)中的阻尼,就可以把這些系統(tǒng)近似簡化成圖(d)所示的兩自由度振動(dòng)系統(tǒng)的動(dòng)力學(xué)模型。以圖3.1(c)所示的磨床磨頭系統(tǒng)為例分析,因?yàn)樯拜喼鬏S安裝在砂輪架內(nèi)軸承上,可以近似地認(rèn)為是剛性

3、很好的,具有集中質(zhì)量的砂輪主軸系統(tǒng)支承在彈性很好的軸承上,因此可以把它看成是支承在砂輪架內(nèi)的一個(gè)彈簧質(zhì)量系統(tǒng)。此外,砂輪架安裝在砂輪進(jìn)刀拖板上,如果把進(jìn)刀拖板看成是靜止不動(dòng)的,而把砂輪架與進(jìn)刀拖板的結(jié)合面看成是彈簧,把砂輪架看成是集中的質(zhì)量,則砂輪架系統(tǒng)又近似地可以看成是支承在進(jìn)刀拖板上的另一個(gè)彈簧質(zhì)量系統(tǒng)。這樣,磨頭系統(tǒng)就可以近似地簡化為圖示的支承在進(jìn)刀拖板上的兩自由度系統(tǒng)。在這一系統(tǒng)的動(dòng)力學(xué)模型中,m1是砂輪架的質(zhì)量,k1是砂輪架支承在進(jìn)刀拖板上的靜剛度,m2是砂輪及其主軸系統(tǒng)的質(zhì)量,k2是砂輪主軸支承在砂輪架軸承上的靜剛度。取每個(gè)質(zhì)量的靜平衡位置作為坐標(biāo)原點(diǎn),取其鉛垂位移x1及x2分別作

4、為各質(zhì)量的獨(dú)立坐標(biāo)。這樣x1和x2就是用以確定磨頭系統(tǒng)運(yùn)動(dòng)的廣義坐標(biāo)。(工程實(shí)際中兩自由度振動(dòng)系統(tǒng)) 工程實(shí)例演示§3-2 兩自由度系統(tǒng)的自由振動(dòng)一、系統(tǒng)的運(yùn)動(dòng)微分方程(汽車動(dòng)力學(xué)模型)以圖3.2的雙彈簧質(zhì)量系統(tǒng)為例。設(shè)彈簧的剛度分別為k1和k2,質(zhì)量為m1、m2。質(zhì)量的位移分別用x1和x2來表示,并以靜平衡位置為坐標(biāo)原點(diǎn),以向下為正方向。(分析)在振動(dòng)過程中的任一瞬間t,m1和m2的位移分別為x1及x2。此時(shí),在質(zhì)量m1上作用有彈性恢復(fù)力,在質(zhì)量m2上作用有彈性恢復(fù)力。這些力的作用方向如圖所示。應(yīng)用牛頓運(yùn)動(dòng)定律,可建立該系統(tǒng)的振動(dòng)微分方程式: (3.1)令則(3.1)式可改寫成如下

5、形式: (3.2)這是一個(gè)二階常系數(shù)線性齊次聯(lián)立微分方程組。(分析)在第一個(gè)方程中包含項(xiàng),第二個(gè)方程中則包含項(xiàng),稱為“耦合項(xiàng)”(coupling term)。這表明,質(zhì)量m1除受到彈簧k1的恢復(fù)力的作用外,還受到彈簧k2的恢復(fù)力的作用。m2雖然只受一個(gè)彈簧k2恢復(fù)力的作用,但這一恢復(fù)力也受到第一質(zhì)點(diǎn)m1位移的影響。我們把這種位移之間有耦合的情況稱為彈性耦合。若加速度之間有耦合的情況,則稱之為慣性耦合。二、固有頻率和主振型創(chuàng)造思維:從單自由度系統(tǒng)振動(dòng)理論得知,系統(tǒng)的無阻尼自由振動(dòng)是簡諧振動(dòng)。我們也希望在兩自由度系統(tǒng)無阻尼自由振動(dòng)中找到簡諧振動(dòng)的解。因此可先假設(shè)方程組(3.2)式有簡諧振動(dòng)解,然后

6、用待定系數(shù)法來尋找有簡諧振動(dòng)解的條件。設(shè)在振動(dòng)時(shí),兩個(gè)質(zhì)量按同樣的頻率和相位角作簡諧振動(dòng),故可設(shè)方程組(3.2)式的特解為:(3.3)其中振幅A1與A2、頻率、初相位角都有待于確定。對(3.3)式分別取一階及二階導(dǎo)數(shù): (3.4)將(3.3)、(3.4)式代入(3.2)式,并加以整理后得:(3.5)上式是A1、A2的線性齊次代數(shù)方程組。A1、A2=0顯然不是我們所要的振動(dòng)解,要使A1、A2有非空解,則(3.5)式的系數(shù)行列式必須等于零,即: = 0將上式展開得:(3.6)解上列方程,可得如下的兩個(gè)根: (3.7)由此可見,(3.6)式是決定系統(tǒng)頻率的方程,故稱為系統(tǒng)的頻率方程(frequenc

7、y equation)或特征方程(characteristic equation)。特征方程的特征值(characteristic value)即頻率只與參數(shù)a,b,c有關(guān)。而這些參數(shù)又只決定于系統(tǒng)的質(zhì)量m1,m2和剛度k1,k2,即頻率只決定于系統(tǒng)本身的物理性質(zhì),故稱為系統(tǒng)的固有頻率。兩自由度系統(tǒng)的固有頻率有兩個(gè),即稱為第一階固有頻率(first order natural circular frequency)。基頻稱為第二階固有頻率(second order natural circular frequency)。(推廣)理論證明,n個(gè)自由度系統(tǒng)的頻率方程是的n次代數(shù)方程,在無阻尼的情況

8、下,它的n個(gè)根必定都是正實(shí)根,故主頻率的個(gè)數(shù)與系統(tǒng)的自由度數(shù)目相等。將所求得的和代入(3.5)式中得: (3.8)式中:對應(yīng)于的質(zhì)點(diǎn)m1,m2的振幅;對應(yīng)于的質(zhì)點(diǎn)m1,m2的振幅。由此可見,對應(yīng)于和,振幅A1與A2之間有兩個(gè)確定的比值。稱之為振幅比(amplitude ratio)。將(3.8)式與(3.3)式聯(lián)系起來可以看出,兩個(gè)m1與m2任一瞬間位移的比值也是確定的,并且等于振幅比。系統(tǒng)的其它點(diǎn)的位移都可以由x1及x2來決定。這樣,在振動(dòng)過程中,系統(tǒng)各點(diǎn)位移的相對比值都可以由振幅比確定,也就是振幅比決定了整個(gè)系統(tǒng)的振動(dòng)形態(tài)。因此,我們將振幅比稱為系統(tǒng)的主振型(principal mode)

9、,也可稱為固有振型(natural mode)。其中:第一主振型,即對應(yīng)于第一主頻率的振幅比;第二主振型,即對應(yīng)于第二主頻率的振幅比。當(dāng)系統(tǒng)以某一階固有頻率按其相應(yīng)的主振型作振動(dòng)時(shí),即稱為系統(tǒng)的主振動(dòng)(principal vibration)。所以,第一主振動(dòng)為:(3.9)第二主振動(dòng)為:(3.10)為了進(jìn)一步研究主振型的性質(zhì),可以將(3.7)式改寫成如下形式:因?yàn)?因?yàn)樯鲜降牡仁接疫吅愦笥诹?,所以,由?.8)式知,因?yàn)樯鲜降牡仁接疫吅阈∮诹?,所以,由?.8)式知,。(說明)由此可見,表示的符號相同,即第一主振動(dòng)中兩個(gè)質(zhì)點(diǎn)的相位相同。因此,若系統(tǒng)按第一主振型進(jìn)行振動(dòng)的話,兩個(gè)質(zhì)點(diǎn)就同時(shí)向同方

10、向運(yùn)動(dòng),它們同時(shí)經(jīng)過平衡位置,又同時(shí)達(dá)到最大偏離位置。而,則表示第二主振動(dòng)中兩個(gè)質(zhì)點(diǎn)的相位相反,永遠(yuǎn)相差180°。當(dāng)質(zhì)量m1到達(dá)最低位置時(shí),質(zhì)量m2恰好到達(dá)最高位置。它們一會相互分離,一會又相向運(yùn)動(dòng),這樣,在整個(gè)第二主振動(dòng)的任一瞬間的位置都不改變。這樣的點(diǎn)稱為“節(jié)點(diǎn)”(nodal point)。振動(dòng)理論證明,多自由度系統(tǒng)的i階主振型一般有i1個(gè)節(jié)點(diǎn)。這就是說,高一階的主振型就比前一階主振型多一個(gè)節(jié)點(diǎn)。階次越高的主振動(dòng),節(jié)點(diǎn)數(shù)就越多,故其相應(yīng)的振幅就越難增大。相反,低階的主振動(dòng)由于節(jié)點(diǎn)數(shù)少,故振動(dòng)就容易激起。所以,在多自由度系統(tǒng)中,低頻主振動(dòng)比高頻主振動(dòng)危險(xiǎn)。三、系統(tǒng)對初始條件的響應(yīng)思

11、維方式:前面分析了兩自由度系統(tǒng)的主振動(dòng),而這些主振動(dòng)又都是簡諧振動(dòng)。但兩自由度系統(tǒng)在受到干擾后出現(xiàn)的自由振動(dòng)究竟是什么形式呢?這要取決于初始條件。從微分方程的理論來說,兩階主振動(dòng)只是微分方程組的兩組特解。而它的通解則應(yīng)由這兩組特解相疊加組成。從振動(dòng)的實(shí)踐來看,兩自由度系統(tǒng)受到任意的初干擾時(shí),一般來說,系統(tǒng)的各階主振動(dòng)都要激發(fā)。因而出現(xiàn)的自由振動(dòng)應(yīng)是這些簡諧振動(dòng)的合成。所以,在一般的初干擾下,系統(tǒng)的響應(yīng)是:(3.11)式中,四個(gè)未知數(shù)要由振動(dòng)的四個(gè)初始條件來決定。設(shè)初始條件為:t=0時(shí),經(jīng)過運(yùn)算,可以求出: (3.12)將(3.12)式代入(3.11)就得到系統(tǒng)在上述初始下響應(yīng)。四、振動(dòng)特性的討

12、論1運(yùn)動(dòng)規(guī)律從(3.11)式可以看出,兩自由度系統(tǒng)無阻尼自由振動(dòng)是由兩個(gè)簡諧振動(dòng)合成的。但從(3.7)式來看,這兩個(gè)分振動(dòng)的頻率的比值卻不一定是有理數(shù),因此合成不一定呈周期性。所以系統(tǒng)的自由振動(dòng)一般來說是一種非周期的復(fù)雜運(yùn)動(dòng)。在這一振動(dòng)中,各階主振動(dòng)所占的比例由初始條件決定。但由于低階振型易被激發(fā),所以通常情況下總是低階主振動(dòng)占優(yōu)勢。只有在某種特殊的初始條件下,系統(tǒng)才按一種主振型進(jìn)行振動(dòng)。2頻率和振型兩自由度系統(tǒng)有兩個(gè)不同數(shù)值的固有頻率,稱為主頻率,當(dāng)系統(tǒng)按任一個(gè)固有頻率作自由振動(dòng)時(shí),即稱為主振動(dòng)。系統(tǒng)作主振動(dòng)時(shí),任何瞬間的各點(diǎn)位移之間具有一相對比值,即整個(gè)系統(tǒng)具有確定的振動(dòng)形態(tài),稱為主振型。

13、3節(jié)點(diǎn)和節(jié)面在兩自由度系統(tǒng)的高階主振型中存在著節(jié)點(diǎn),而在第一階主振型中卻不存在節(jié)點(diǎn)。對多自由度系統(tǒng)來說也是如此,而且主振型的階數(shù)越高,則節(jié)點(diǎn)數(shù)也就越多。一般來說,第i階主振型有i-1個(gè)節(jié)點(diǎn)。對于彈性體來說,節(jié)點(diǎn)已經(jīng)不再是一個(gè)點(diǎn),而是聯(lián)成線或面,稱為節(jié)線(nodal line)和節(jié)面(nodal surface)。4阻尼若系統(tǒng)存在阻尼,則阻尼對多自由度系統(tǒng)的影響和單自由度系統(tǒng)相似。由于在工程結(jié)構(gòu)中一般阻尼較小,故可略去不計(jì)。例 試求如圖3.4所示的系統(tǒng)的固有頻率和主振型。已知。又若已知初始條件為,試求系統(tǒng)的響應(yīng)。 解:該系統(tǒng)的運(yùn)動(dòng)微分方程式為令 則可解出:類比前面形式:主行列式為零。因?yàn)?故根據(jù)

14、給定的初始條件,代入(3.12)式得:故系統(tǒng)的響應(yīng)為:五、主振型的正交性如前所述,兩自由度系統(tǒng)有二個(gè)固有頻率和二個(gè)相應(yīng)的主振型?,F(xiàn)在我們來研究這二個(gè)主振型之間的關(guān)系。為了便于分析研究,我們先來討論以下幾個(gè)例子。例1一個(gè)質(zhì)量為m的小球,固定在垂直安裝的細(xì)長圓截面彈性桿的頂端,桿子下端固定在地面,如圖3.6所示。桿子質(zhì)量略去不計(jì)?,F(xiàn)分析其振動(dòng)情況。設(shè)O點(diǎn)是平衡位置,小球在水平面xoy上的小范圍內(nèi)運(yùn)動(dòng),其任一瞬時(shí)的位置可以用矢量r來確定。小球的坐標(biāo)則可通過方向余弦求得:式中:i,j分別表示x,y軸上的單位矢量。當(dāng)小球偏離平衡位置O點(diǎn)后,就要受到圓桿的彈性恢復(fù)力F的作用。由于圓桿在任何方向上的剛度k都

15、相等,故將力投影到x,y軸上得:因此,可建立系統(tǒng)的運(yùn)動(dòng)微分方程式:這是兩個(gè)彼此獨(dú)立的單自由度系統(tǒng)的運(yùn)動(dòng)微分方程式,在x方向和y方向兩個(gè)自由度上沒有耦合,而且由于在這兩個(gè)方向上k相等,故兩個(gè)方向的振動(dòng)頻率也相等。即所以兩個(gè)方向的自由振動(dòng)都是簡諧振動(dòng),且頻率相等。其合成結(jié)果一般情況下是個(gè)橢圓。由此可見,在x,y方向,系統(tǒng)均按其固有頻率作自由振動(dòng),故均為主振動(dòng)。也就是說,在x和y方向,系統(tǒng)均具有確定的振動(dòng)形態(tài)。所以系統(tǒng)的兩個(gè)主振型也分別沿x和y方向,也就是說,系統(tǒng)的兩個(gè)主振型是互相垂直的。例2若將圖3.6所示系統(tǒng)中的彈性桿的截面改成矩形,試分析其振動(dòng)情況。由于彈性桿截面為矩形,故桿件在兩個(gè)互相垂直的

16、方向上抗彎剛度就有所不同?,F(xiàn)取桿截面的兩個(gè)慣性主軸作為x、y坐標(biāo)軸,則x軸方向上的剛度為kx,y軸方向上的剛度為ky,因而系統(tǒng)的運(yùn)動(dòng)微分方程式即成為:兩個(gè)方向上的頻率不等,它們分別為:。這時(shí),在x,y兩個(gè)方向上是不同頻率的簡諧振動(dòng),其合成結(jié)果就是不同頻率的李沙如圖。振動(dòng)運(yùn)動(dòng)學(xué)知識在x和y方向,系統(tǒng)仍按固有頻率作自由振動(dòng),故仍是主振動(dòng),因而主振型分別沿x和y方向,所以系統(tǒng)的兩個(gè)主振型仍互相垂直。系統(tǒng)的第一主振型和第二主振型互相垂直,主振型這種互相垂直的性質(zhì),叫做主振型的正交性(orthogonal properties of principal mades)主振型的正交性的幾何意義就是兩個(gè)主振型

17、直線互相垂直。 (能量各個(gè)獨(dú)立,不相干擾)§3-3 兩自由度系統(tǒng)的受迫振動(dòng)一、系統(tǒng)的運(yùn)動(dòng)微分方程和單自由度系統(tǒng)一樣,兩自由度系統(tǒng)在受到持續(xù)的激振力作用時(shí)就會產(chǎn)生受迫振動(dòng),而且在一定條件下也會產(chǎn)生共振。圖3.8所示為兩自由度無阻尼受迫振動(dòng)系統(tǒng)的動(dòng)力學(xué)模型。我們稱簡諧激振力作用的m1-k1質(zhì)量彈簧系統(tǒng)稱為主系統(tǒng)。把不受激振力作用的m2-k2質(zhì)量彈簧系統(tǒng)稱為副系統(tǒng)。這一振動(dòng)系統(tǒng)的運(yùn)動(dòng)微分方程式為:(3.13)令則(3.13)式可改寫成:(3.14)這是一個(gè)二階線性常系數(shù)非齊次微分方程組,其通解由兩部分組成。一是對應(yīng)于齊次方程組的解,即為上一節(jié)討論過的自由振動(dòng)。二是對應(yīng)于上述非齊次方程組的一

18、個(gè)特解,它是由激振力引起的受迫振動(dòng),即系統(tǒng)的穩(wěn)態(tài)振動(dòng)。我們只研究穩(wěn)態(tài)振動(dòng),故設(shè)上列微分方程組有簡諧振動(dòng)的特解: (3.15)式中,B1、B2是m1、m2的振幅,在方程組中是待定常數(shù)。對(3.15)式分別求一階、二階導(dǎo)數(shù),(3.16)將(3.15)及(3.16)式代入(3.14)式得:(3.17)這是一個(gè)二元非齊次聯(lián)立代數(shù)方程,它的解可用行列式原理求出: (3.18)這就是說,我們期待的方程組(3.14)式的簡諧振動(dòng)特解是可以得到的。二、振動(dòng)特性的討論1運(yùn)動(dòng)規(guī)律由(3.15)式得知,兩自由度系統(tǒng)無阻尼受迫振動(dòng)的運(yùn)動(dòng)規(guī)律是簡諧振動(dòng)。2頻率兩自由度系統(tǒng)受迫振動(dòng)的頻率與激振力的頻率相同。3振幅由(3.

19、18)式得知,兩自由度系統(tǒng)受迫振動(dòng)的振幅決定于激振力力幅、激振力頻率,以及系統(tǒng)本身的物理性質(zhì)?,F(xiàn)分別討論如下:(1)激振力幅值p0的影響因?yàn)閜p0,所以p0與B1、B2成線性關(guān)系。即p0越大,振幅B1、B2也越大。(2)激振力頻率的影響為了說明對振幅的影響,我們以B1、B2為縱坐標(biāo),以為橫坐標(biāo),將(3.18)式作成曲線示圖3.9中,稱之為振幅頻率響應(yīng)曲線,或稱幅頻特性曲線。它表明了系統(tǒng)位移對頻率的響應(yīng)特性。討論:當(dāng),這表明,此時(shí)激振力的作用和靜力的作用相當(dāng)。當(dāng),即激振力頻率等于系統(tǒng)第一或第二階固有頻率時(shí),系統(tǒng)即出現(xiàn)共振現(xiàn)象,振幅B1、B2均急劇增加。這就是說,在兩自由度系統(tǒng)中,如果激振力的頻率

20、和系統(tǒng)的任何一階固有頻率相近時(shí),系統(tǒng)都將產(chǎn)生共振。也就是說,兩自由度系統(tǒng)有兩個(gè)共振區(qū)?,F(xiàn)在我們來分析一下系統(tǒng)共振時(shí)的振型。由(3.18)式可得質(zhì)量m1和m2的振幅比為:(3.19)這說明,在一定的激振頻率下,兩個(gè)質(zhì)量的振幅比是一個(gè)確定值。當(dāng)激振頻率等于第一階固有頻率時(shí),兩個(gè)質(zhì)量的振幅比的即為:(3.20)當(dāng)時(shí),則(3.21)這表明,系統(tǒng)以那一階固有頻率共振,則此時(shí)的共振振型就是那一階主振型。這是多自由度系統(tǒng)受迫振動(dòng)的一個(gè)極為重要的特性。在實(shí)踐中,經(jīng)常用共振法測定系統(tǒng)的固有頻率,并根據(jù)測出的振型來判定固有頻率的階次,就是利用了上述這一規(guī)律。當(dāng)故這就是說,副系統(tǒng)通過彈簧k2傳給主系統(tǒng)的力,正好與作

21、用在主系統(tǒng)上的激振力相平衡。這樣,主系統(tǒng)的受迫振動(dòng)就被副系統(tǒng)吸收掉了。主系統(tǒng)的質(zhì)量m1就如同不受激振力作用一樣,保持靜止。這種現(xiàn)象可以被利用來作為減小振動(dòng)的一種措施。當(dāng),即激振力的頻率很高時(shí),兩個(gè)質(zhì)量m1和m2都幾乎不動(dòng)。這時(shí)受迫振動(dòng)現(xiàn)象也進(jìn)入慣性區(qū)了。4相位由于系統(tǒng)是無阻尼的情況,所以只要觀察振幅的正負(fù)變化就可以說明相位的變化。現(xiàn)將振幅計(jì)算公式(3.18)式的分母作如下的變換:(3.23)由系統(tǒng)的頻率方程(3.6)式,可以得知頻率方程的兩個(gè)根必定滿足下列關(guān)系式:(代數(shù)方程的性質(zhì)) (3.24)將(3.24)式代入(3.23)式得:(3.25)因而(3.18)式可改寫成:(3.26)從(3.2

22、6)式中可以看出:在階段,B1、B2均為正值。故質(zhì)量m1、m2的位移和激振力是同相的,即兩個(gè)質(zhì)量的位移也同相。當(dāng)時(shí),運(yùn)動(dòng)的相位對于激振力要出現(xiàn)相位突跳的反相。當(dāng)時(shí),B1=0,此后,B1又重新成為正值,但B2卻仍保持負(fù)值。這就是說,在階段,B1與激振力同相,B2與激振力反相。即兩個(gè)質(zhì)量之間的相位相反。當(dāng)以后,B1又改變?yōu)樨?fù)值,而B2卻保持正值。根據(jù)以上分析,可作出如圖3.10所示的相頻特性曲線三、動(dòng)力減振器根據(jù)兩自由度系統(tǒng)受迫振動(dòng)的振動(dòng)特性的分析得知,只要適當(dāng)?shù)剡x擇系統(tǒng)的參數(shù),就可以使主系統(tǒng)的受迫振動(dòng)被副系統(tǒng)所吸收,從而使主系統(tǒng)不動(dòng),動(dòng)力減振器就是應(yīng)用這一原理來設(shè)計(jì)的。動(dòng)力減振器是用彈性元件把一

23、個(gè)輔助質(zhì)量固定到振動(dòng)系統(tǒng)上的一種減振裝置,其動(dòng)力學(xué)模型如圖3.11所示。圖中m1、k1為原振動(dòng)系統(tǒng)(主系統(tǒng))的質(zhì)量(主質(zhì)量)和彈簧剛度。m2、k2為動(dòng)力減振器(附加系統(tǒng))的質(zhì)量(輔助質(zhì)量)和彈簧剛度,c為動(dòng)力減振器的阻尼。為作用在主系統(tǒng)上的激振力。從圖3.11可以看出,在主系統(tǒng)上增加了附加系統(tǒng)后,即使原來的單自由度系統(tǒng)變?yōu)閮勺杂啥认到y(tǒng)。其運(yùn)動(dòng)微分方程式為: (3.27)設(shè)上列方程組的特解為:(穩(wěn)態(tài)振動(dòng))(3.28)將(3.28)式及其一階、二階導(dǎo)數(shù)代入(3.27)式得: (3.29)解上列聯(lián)立方程,求出主系統(tǒng)的振幅B1,并化成實(shí)數(shù)形式:(3.30)為了簡化計(jì)算,引進(jìn)下列符號:主系統(tǒng)在激振力力幅

24、p0作用下產(chǎn)生的靜變位;主系統(tǒng)的固有頻率;附加系統(tǒng)的固有頻率;激振力頻率與主系統(tǒng)固有頻率之比;減振器固有頻率與主系統(tǒng)固有頻率之比;輔助質(zhì)量與主質(zhì)量之比;減振器的阻尼比。則(3.29)式可改寫成下列無量綱形式: (3.31)現(xiàn)根據(jù)減振器分類進(jìn)行討論:(普遍式)1無阻尼動(dòng)力減振器若減振器沒有阻尼元件,則,故(3.31)式簡化為:(3.32)由此可見,當(dāng)時(shí),B1=0。即當(dāng)減振器的固有頻率等于激振頻率時(shí),輔助m2通過彈性元件k2作用于主質(zhì)量m1上的力,正好和激振力大小相等,方向相反,互相抵消,所以主系統(tǒng)振幅為零,從而達(dá)到消振的目的。當(dāng)激振頻率等于主系統(tǒng)固有頻率,即=1時(shí),主系統(tǒng)產(chǎn)生共振。為了消除系統(tǒng)共

25、振,應(yīng)使減振器固有頻率等于主系統(tǒng)固有頻率,即令。若再取質(zhì)量比,則(3.32)式中的四個(gè)變量就固定了兩個(gè)。對即可作出主系統(tǒng)的幅頻響應(yīng)曲線,如圖3.12所示。從圖中可以看到,主系統(tǒng)共振點(diǎn)的振幅已經(jīng)消失。但又出現(xiàn)了兩個(gè)新的共振點(diǎn)。這兩點(diǎn)的坐標(biāo)值可以從(3.32)式的分項(xiàng)等于零時(shí)求出: 因?yàn)?故上式成為 所以(3.33)對于,質(zhì)量比為的系統(tǒng),兩個(gè)固有頻率(主頻率)為:(3.34)顯然,當(dāng)激振頻率正好等于或時(shí),都會使系統(tǒng)產(chǎn)生新的共振。根據(jù)(3.33)式可作出與的關(guān)系曲線,如圖3.13所示它們表示了系統(tǒng)的兩個(gè)主頻率或的相隔范圍。我們希望這兩個(gè)主頻率相距較遠(yuǎn)。但對于穩(wěn)定的定速運(yùn)轉(zhuǎn)機(jī)械,值則還可以取得小些。由

26、以上分析可見,使用無阻尼動(dòng)力減振器時(shí)要特別慎重,應(yīng)用不當(dāng)會帶來新的禍害。所以,這種減振器主要用于激振頻率變化不大的情況。教學(xué)演示片:2有阻尼動(dòng)力減振器(本科自學(xué))當(dāng)減振器有阻尼元件時(shí),則根據(jù)(3.31)式,以為參變量,仍令,所作出的主系統(tǒng)的幅頻響應(yīng)曲線如圖3.15所示。 ()從圖上可以看出:1)無論阻尼的為何值,幅頻響應(yīng)曲線均經(jīng)過P、Q兩點(diǎn),也就是說,當(dāng)頻率比位于P點(diǎn)和Q點(diǎn)相應(yīng)的頻率比值時(shí),主系統(tǒng)的受迫振動(dòng)的振幅與阻尼比的大小無關(guān),這一物理現(xiàn)象是設(shè)計(jì)有阻尼動(dòng)力減振器的重要依據(jù)。2)若令相等,就可求得P點(diǎn)和Q點(diǎn)的橫坐標(biāo)值。當(dāng)時(shí)從(3.31)式得:(3.35)令(3.32)式與(3.35)式相等得

27、上式等號左邊若取正號,則解出=0,這對減振沒有意義。故取負(fù)號,則上式可展開得: (3.36)解上列代數(shù)方程得:(3.37)將求得的值代入(3.32)式(3.35)式,即可得P、Q兩點(diǎn)的縱坐標(biāo)值: (3.38)這里需要說明一點(diǎn),即Q點(diǎn)的縱坐標(biāo)值之所以為負(fù)值,是因?yàn)镻、Q兩點(diǎn)在共振點(diǎn)()的兩側(cè),兩者的相位是相反的,所以這兩點(diǎn)的振幅的符號也相反,因此,在圖3.15中,在右邊的曲線,實(shí)際上應(yīng)該畫在橫坐標(biāo)軸的下方,(現(xiàn)在為了直觀起見)。3)既然無論值是多少,所有的幅頻響應(yīng)曲線都要經(jīng)過P、Q兩點(diǎn)。因此,的最高點(diǎn)都不會低于P、Q兩點(diǎn)的縱坐標(biāo)。思想方法為了使減振器獲得較好的減振效果,就應(yīng)該設(shè)法降低P、Q兩點(diǎn),

28、并使P、Q兩點(diǎn)的縱坐標(biāo)相等,而且成為曲線上的最高點(diǎn)。這樣,減振后主系統(tǒng)振幅B1與靜變位的比值就會減小,并限制在P、Q兩點(diǎn)所對應(yīng)的振幅以下(見圖3.16)。研究工作證明,為了使P、Q兩點(diǎn)等高,就要適當(dāng)選擇值;為了使的最大值在P、Q兩點(diǎn)上,就要適當(dāng)選擇值。所以選擇的和值,分別稱為最佳頻率比(optimum frequency ratio)和最佳阻尼比(optimum damping ratio)。下面就來分別介紹它們的確定方法。(1)最佳頻率比的確定。(第一步)為了使P、Q兩點(diǎn)等高,即使P、Q兩點(diǎn)的縱坐標(biāo)相等,應(yīng)使(3.38)式所表示的與相等。即:解之得:(3.39)根據(jù)代數(shù)方程理論,由(3.36

29、)式得知(3.40)聯(lián)立(3.39)式及(3.40)式,并求解得:所以 (3.41)將值代入(3.37)式,即得到與P、Q兩點(diǎn)相應(yīng)的橫坐標(biāo)值: (3.42)將(3.42)式代入(3.32)式或(3.35)式,即得到在選取最佳頻率比的情況下,P、Q兩點(diǎn)的縱坐標(biāo)值: (3.43)分析可見,要降低P、Q兩點(diǎn)的縱坐標(biāo),應(yīng)使質(zhì)量比增大,即增加減振器中的輔助質(zhì)量m2。m2越大,減振效果越好。但輔助質(zhì)量m2的大小,還要根據(jù)減振器的安放空間,激振力的大小、主系統(tǒng)質(zhì)量大小等因素來綜合考慮決定。(2)最佳阻尼比的確定(第二步)根據(jù)(3.31)式,使,求出相應(yīng)的值,即應(yīng)是使P、Q點(diǎn)成為幅頻響應(yīng)曲線最高點(diǎn)時(shí)的最佳阻尼

30、比。求出與相對應(yīng)的值,并將值代入其中,可分別求出使P點(diǎn)或Q點(diǎn)成為曲線最高點(diǎn)時(shí)的阻尼比: (3.44)分析上式表明,根據(jù)P點(diǎn)和Q點(diǎn)分別成為曲線最高點(diǎn)而推導(dǎo)出來的阻尼比不一樣。換句話說,在適當(dāng)選擇值時(shí),只能使曲線在P點(diǎn)(或Q點(diǎn))為極大值。圖3.16)中就分別表示出以P點(diǎn)為最大值,以及以Q點(diǎn)為最大值的兩條曲線。但它們彼此相差不多。所以,可取的平均值為最佳阻尼比,則(3.45)(3)設(shè)計(jì)步驟(*)1)根據(jù)主系統(tǒng)的振動(dòng)情況,測定振動(dòng)頻率,計(jì)算主系統(tǒng)固有頻率和振幅放大系數(shù)。然后根據(jù)減振要求,按(3.43)式計(jì)算出質(zhì)量比的值。2)測定主系統(tǒng)的靜剛度k1,然后算出主系統(tǒng)的當(dāng)量質(zhì)量m1,再根據(jù)m1與值,計(jì)算減振

31、器質(zhì)量m2,即3)根據(jù)(3.41)式,計(jì)算最佳頻率比。再根據(jù)、m2、m1及k1計(jì)算減振器彈簧剛度k2。因?yàn)?所以 4)根據(jù)(3.45)式計(jì)算減振器最佳阻尼比及相應(yīng)的阻尼系數(shù)COP,即(3.46)然后,根據(jù)COP來計(jì)算減振器中油的粘度。第3次作業(yè)題:1、如圖所示起重機(jī)小車,其質(zhì)量為m1=2220kg,在質(zhì)心A處用繩懸掛一重物B,其質(zhì)量為m2=2040kg。繩長l=14m,左側(cè)彈簧是緩沖器,剛度系數(shù)k=852.6kN/m。設(shè)繩和彈簧質(zhì)量均忽略不計(jì),當(dāng)車連同重物B以勻速v0=1m/s碰上緩沖器后,求小車和重物的運(yùn)動(dòng)。2、兩個(gè)質(zhì)量塊m1和m2用一彈簧k相連,m1的上端用繩子拴住,放在一個(gè)與水平面成角的光滑斜面上,如習(xí)題下圖所示。若t=0時(shí)突然割斷繩子,兩質(zhì)量塊將沿斜面下滑。試求瞬時(shí)t兩質(zhì)量塊的位置。答案: 3、如圖,已知m22×m1=m,k3=2k1=2k2=2k,x10=1.2,x20=0,試求系

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論