版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
1、南京信息工程大學碩士研究生招生入學考試數(shù)學(理)考試大綱科目代碼:601考試科目:數(shù)學(理)一、函數(shù)、極限、連續(xù)考試內(nèi)容:函數(shù)的概念及表示法函數(shù)的有界性、單調(diào)性、周期性和奇偶性復合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù)基本初等函數(shù)的性質(zhì)及其圖形初等函數(shù)簡單應用問題的函數(shù)關系的建立數(shù)列極限與函數(shù)極限的定義及其性質(zhì)函數(shù)的左極限與右極限無窮小和無窮大的概念及其關系無窮小的性質(zhì)及無窮小的比較有界準則和夾逼準則兩個重要極限:極限的四則運算極限存在的兩個準則:單調(diào)sin xlim =1x0 xlim 1 1xxfTX函數(shù)連續(xù)的概念函數(shù)間斷點的類型初等函數(shù)的連續(xù)性閉區(qū)間上連續(xù)函數(shù)的性質(zhì) 考試要求:1 .理解函數(shù)的概
2、念,掌握函數(shù)的表示法,并會建立簡單應用問題中的函數(shù)關系式。2 . 了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性。3 .理解復合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念。4 .掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念。5 .理解極限的概念,理解函數(shù)左極限與右極限的概念,以及函數(shù)極限存在與左、右極 限之間的關系。6 . 了解極限的性質(zhì),掌握極限的四則運算法則。7 .掌握極限存在的兩個準則,并會利用它們求極限,掌握利用兩個重要極限求極限的 方法。8 .理解無窮小、無窮大的概念,會用無窮小的比較方法,掌握等價無窮小求極限的方 法。9 .理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會判別函數(shù)間
3、斷點的類型。10了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理) ,并會應用這些性質(zhì)。二、一元函數(shù)微分學考試內(nèi)容:導數(shù)和微分的概念 導數(shù)的幾何意義和物理意義 函數(shù)的可導性與連續(xù)性之間的關系平面曲線的切線和法線基本初等函數(shù)的導數(shù) 導數(shù)和微分的四則運算復合函數(shù)、反函數(shù)、隱函數(shù)以及參數(shù)方程所確定的函數(shù)的微分法高階導數(shù) 一階微分形式的不變性微分中值定理洛必達( L Hospital )法則 函數(shù)單調(diào)性的判別 函數(shù)的極值 函數(shù)圖形的凹凸性、 拐點及漸近線 函數(shù)圖形的描繪 函數(shù)最大值和最小值 弧微分 曲率的概念 曲率半徑考試要求:1理解導數(shù)和微分的概
4、念,理解導數(shù)與微分的關系,理解導數(shù)的幾何意義,會求平面曲線的切線方程和法線方程, 了解導數(shù)的物理意義, 會用導數(shù)描述一些物理量, 理解函數(shù)的可導性與連續(xù)性之間的關系。2 掌握導數(shù)的四則運算法則和復合函數(shù)的求導法則, 掌握基本初等函數(shù)的導數(shù)公式 了解微分的四則運算法則和一階微分形式的不變性,會求函數(shù)的微分。3了解高階導數(shù)的概念,會求簡單函數(shù)的n 階導數(shù)。4會求分段函數(shù)的一階、二階導數(shù)。5會求隱函數(shù)和由參數(shù)方程所確定的函數(shù)以及反函數(shù)的導數(shù)。6理解并會用羅爾定理、拉格朗日中值定理,了解并會用柯西中值定理和泰勒定理。7理解函數(shù)的極值概念,掌握用導數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)極值的方法,掌握函數(shù)最大值和最
5、小值的求法及其簡單應用。8 會用導數(shù)判斷函數(shù)圖形的凹凸性, 會求函數(shù)圖形的拐點以及水平、 鉛直和斜漸近線,會描繪函數(shù)的圖形。9掌握用洛必達法則求未定式極限的方法。10 了解曲率和曲率半徑的概念,會計算曲率和曲率半徑。三、一元函數(shù)積分學原函數(shù)和不定積分的概念不定積分的基本性質(zhì)基本積分公式定積分的概念和基本性質(zhì) 定積分中值定理積分上限的函數(shù)及其導數(shù)牛頓一萊布尼茨( Newton-Leibniz ) 公式 不定積分和定積分的換元積分法與分部積分法有理函數(shù)、 三角函數(shù)的有理式和簡單無理函數(shù)的積分廣義積分定積分的應用考試要求:1 理解原函數(shù)概念,理解不定積分和定積分的概念2 掌握不定積分的基本公式,掌握
6、不定積分和定積分的性質(zhì)及定積分中值定理,掌握換元積分法與分部積分法3 會求有理函數(shù)、三角函數(shù)有理式及簡單無理函數(shù)的積分4 理解積分上限的函數(shù),會求它的導數(shù),掌握牛頓一萊布尼茨公式5 了解廣義積分的概念,會計算廣義積分6 掌握用定積分表達和計算一些幾何量與物理量 (平面圖形的面積、 平面曲線的弧長、旋轉(zhuǎn)體的體積、平行截面面積為已知的立體體積、功、引力、壓力)及函數(shù)的平均值等四、向量代數(shù)和空間解析幾何考試內(nèi)容:向量的概念 向量的線性運算 向量的數(shù)量積和向量積 向量的混合積兩向量垂直、 平行的條件兩向量的夾角 向量的坐標表達式及其運算單位向量方向數(shù)與方向余弦 曲面方程和空間曲線方程的概念平面方程、
7、直線方程平面與平面、 平面與直線、 直線與直線的以及平行、 垂直的條件 點到平面和點到直線的距離球面 母線平行于坐標軸的柱面 旋轉(zhuǎn)軸為坐標軸的旋轉(zhuǎn)曲面的方程常用的二次曲面方程及其圖形 空間曲線的參數(shù)方程和一般方程 空間曲線在坐標面上的投影曲線方程考試要求:1 . 理解空間直角坐標系,理解向量的概念及其表示。2 掌握向量的運算(線性運算、數(shù)量積、向量積、混合積) ,了解兩個向量垂直、平行的條件。3 理解單位向量、方向數(shù)與方向余弦、向量的坐標表達式,掌握用坐標表達式進行向量運算的方法。4 掌握平面方程和直線方程及其求法。5 會求平面與平面、平面與直線、 直線與直線之間的夾角,并會利用平面、直線的
8、相互關系(平行、垂直、相交等)解決有關問題。6 會求點到直線以及點到平面的距離。7 .了解曲面方程和空間曲線方程的概念。8 .了解常用二次曲面的方程及其圖形,會求以坐標軸為旋轉(zhuǎn)軸的旋轉(zhuǎn)曲面及母線平行于坐標軸的柱面方程。9 . 了解空間曲線的參數(shù)方程和一般方程. 了解空間曲線在坐標平面上的投影,并會求該投影曲線的方程。五、多元函數(shù)微分學考試內(nèi)容:多元函數(shù)的概念二元函數(shù)的幾何意義二元函數(shù)的極限和連續(xù)的概念有界閉區(qū)域上多元連續(xù)函數(shù)的性質(zhì) 多元函數(shù)偏導數(shù)和全微分全微分存在的必要條件和充分條件多元復合函數(shù)、 隱函數(shù)的求導法二階偏導數(shù)方向?qū)?shù)和梯度 空間曲線的切線和法平面曲面的切平面和法線二元函數(shù)的二階泰
9、勒公式多元函數(shù)的極值和條件極值 多元函數(shù)的最大值、最小值及其簡單應用考試要求:1 理解多元函數(shù)的概念,理解二元函數(shù)的幾何意義。2 了解二元函數(shù)的極限與連續(xù)性的概念, 以及有界閉區(qū)域上連續(xù)函數(shù)的性質(zhì)。3理解多元函數(shù)偏導數(shù)和全微分的概念, 會求全微分, 了解全微分存在的必要條件和充分條件, 了解全微分形式的不變性。4 理解方向?qū)?shù)與梯度的概念并掌握其計算方法。5 掌握多元復合函數(shù)一階、二階偏導數(shù)的求法。6 了解隱函數(shù)存在定理,會求多元隱函數(shù)的偏導數(shù)。7 了解空間曲線的切線和法平面及曲面的切平面和法線的概念,會求它們的方程。8 了解二元函數(shù)的二階泰勒公式。9 理解多元函數(shù)極值和條件極值的概念,掌握多
10、元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件, 會求二元函數(shù)的極值, 會用拉格朗日乘數(shù)法求條件極值, 會求簡單多元函數(shù)的最大值和最小值,并會解決一些簡單的應用問題。六、多元函數(shù)積分學考試內(nèi)容:重積分、三重積分的概念及性質(zhì)重積分與三重積分的計算和應用兩類曲線積分的概念、性質(zhì)及計算 兩類曲線積分的關系 格林(Green)公式 平面曲線積分與路徑 無關的條件 已知全微分求原函數(shù) 兩類曲面積分的概念、性質(zhì)及計算 兩類曲面積分的關系 高斯(Gauss)公式 斯托克斯(STOKE法式 散度、旋度的概念及計算曲線積分和曲面積分的應用考試要求:1 .理解二重積分、三重積分的概念,了解重積分的性質(zhì),
11、了解二重積分的中值定理。2 .掌握二重積分的計算方法(直角坐標、極坐標),會計算三重積分(直角坐標、柱面坐標、球面坐標)。3 .理解兩類曲線積分的概念,了解兩類曲線積分的性質(zhì)及兩類曲線積分的關系。4 .掌握計算兩類曲線積分的方法。5 .掌握格林公式并會運用平面曲線積分與路徑無關的條件,會求全微分的原函數(shù)。6 . 了解兩類曲面積分的概念、性質(zhì)及兩類曲面積分的關系,掌握計算兩類曲面積分的方法,會用高斯公式、斯托克斯公式計算曲面、曲線積分。7 . 了解散度與旋度的概念,并會計算。8 .會用重積分、曲線積分及曲面積分求一些幾何量與物理量(平面圖形的面積、體積、曲面面積、弧長、質(zhì)量、重心、轉(zhuǎn)動慣量、引力
12、、功及流量等)。七、無窮級數(shù)考試內(nèi)容:常數(shù)項級數(shù)的收斂與發(fā)散的概念收斂級數(shù)的和的概念級數(shù)的基本性質(zhì)與收斂的必要條件幾何級數(shù)與p級數(shù)以及它們的收斂性正項級數(shù)收斂性的判別法交錯級數(shù)與萊布尼茨定理任意項級數(shù)的絕對收斂與條件收斂函數(shù)項級數(shù)的收斂域與和函數(shù)的概念哥級數(shù)及其收斂半徑、收斂區(qū)間(指開區(qū)間)和收斂域哥級數(shù)的和函數(shù) 哥級數(shù)在其收斂 區(qū)間內(nèi)的基本性質(zhì) 簡單哥級數(shù)的和函數(shù)的求法初等函數(shù)的哥級數(shù)展開式函數(shù)的傅里葉(Fourier )系數(shù)與傅里葉級數(shù)狄利克雷(Dlrichlei )定理 函數(shù)在-l,l上的傅里葉級數(shù) 函數(shù)在0, l上的正弦級數(shù)和余弦級數(shù)考試要求:1 .理解常數(shù)項級數(shù)收斂、發(fā)散以及收斂級數(shù)
13、的和的概念,掌握級數(shù)的基本性質(zhì)及收斂的必要條件。2 .掌握幾何級數(shù)與 p級數(shù)的收斂與發(fā)散的條件。3 .掌握正項級數(shù)收斂性的比較判別法和比值判別法,會用根值判別法。4 .掌握交錯級數(shù)的萊布尼茨判別法。5 . 了解任意項級數(shù)絕對收斂與條件收斂的概念,以及絕對收斂與條件收斂的關系。6 . 了解函數(shù)項級數(shù)的收斂域及和函數(shù)的概念。7 .理解哥級數(shù)的收斂半徑的概念、并掌握哥級數(shù)的收斂半徑、收斂區(qū)間及收斂域的求法。8 . 了解哥級數(shù)在其收斂區(qū)間內(nèi)的一些基本性質(zhì)(和函數(shù)的連續(xù)性、 逐項微分和逐項積分),會求一些哥級數(shù)在收斂區(qū)間內(nèi)的和函數(shù),并會由此求出某些數(shù)項級數(shù)的和。9. 了解函數(shù)展開為泰勒級數(shù)的充分必要條件
14、。10. 掌握ex、sinx、cosx、ln(1+x)及(1+x)&的麥克勞林展開式,會用它們將一 些簡單函數(shù)間接展開成哥級數(shù)。11. 了解傅里葉級數(shù)的概念和狄利克雷收斂定理,會將定義在-1,1上的函數(shù)展開為傅里葉級數(shù),會將定義在 0, 1上的函數(shù)展開為正弦級數(shù)與余弦級數(shù),會寫出傅里葉級數(shù)的 和的表達式。八、常微分方程考試內(nèi)容:常微分方程的基本概念變量可分離的方程齊次微分方程一階線性微分方程伯努利(Bernoulli )方程 全微分方程 可用簡單的變量代換求解的某些微分方程可降階的高階微分方程線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理二階常系數(shù)齊次線性微分方程高于二階的某些常系數(shù)齊次線性微分方程簡單的二階常系數(shù)非齊次線性微分方程歐拉(Euler )方程 微分方程簡單應用考試要求:1 . 了解微分方程及其解、階、通解、初始條件和特解等概念.2 .掌握變量可分離的方程及一階線性方程的解法.3 .會解齊次方程、伯努利方程和全微
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年租賃合同具體條款與條件
- 2025年度建筑材料綠色生產(chǎn)技術(shù)合同3篇
- 2025年測繪技術(shù)成果保密及許可使用合同3篇
- 2025年度5G通信基礎設施建設與運維服務合同3篇
- 2024智能語音識別系統(tǒng)開發(fā)合同
- 2024年鋼筋施工勞務合作協(xié)議版
- 家電知識培訓課件下載
- 2024年甲乙雙方關于保險合同的合同
- 2024茶葉品牌專屬訂購銷售協(xié)議樣本版B版
- 中國美術(shù)學院《經(jīng)濟社會系統(tǒng)仿真實驗》2023-2024學年第一學期期末試卷
- 假發(fā)項目市場營銷與品牌管理方案
- 1-6年級健康教育課程安排表
- 《石墨類負極材料檢測方法 第1部分:石墨化度的測定》
- 紅色經(jīng)典影片與近現(xiàn)代中國發(fā)展期末考試答案
- 建設工程設計文件質(zhì)量檢查報告范例
- 施工圖審查要點-全專業(yè)
- 千字文毛筆楷書描紅字帖-米字格A4版
- 男人來自火星女人來自金星
- 高等教育心理學課后習題及答案
- 醫(yī)院病案科績效考核標準
- 高中數(shù)學競賽真題9平面幾何(學生版+解析版50題)
評論
0/150
提交評論