




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、由于混凝土路面收縮而產(chǎn)生的裂縫間距預(yù)測(cè)分析模型G.Chen and G.Baker 摘要:本文研究了在混凝土路面的最小和最大裂縫間距,從節(jié)能的觀點(diǎn)和探討了控制間距的機(jī)制。該模型是由兩個(gè)聚裂紋和一個(gè)彈性桿限制分布式彈性彈簧,被提出作為在混凝土裂化的理想化。通過(guò)改變彈性條的長(zhǎng)度分析模型,作用于內(nèi)聚裂紋和能量輪廓的拉伸力進(jìn)行了研究。它表明,該裂解模式與彈性桿(即,兩個(gè)可能的裂紋之間的間隔)的長(zhǎng)度,從該最小值和變化獲得最大裂縫間距。數(shù)值分析是由一個(gè)模型路面,它根據(jù)能量最小化原則,即支配開(kāi)裂模式。通過(guò)數(shù)值分析評(píng)估的實(shí)際間距降落到最小范圍內(nèi)和最大裂縫間距,以實(shí)際觀測(cè)給出。DOI: 10.1061/(ASC
2、E)0733-9445(2004)130:10(1529)CE數(shù)據(jù)庫(kù)主題詞:混凝土路面;收縮;開(kāi)裂; 間距; 本土化;能源法介紹無(wú)論是收縮還是溫度變化而引起的平行橫向裂縫都會(huì)出現(xiàn)在混凝土路面上。近年來(lái),收縮和人行道的熱裂解已經(jīng)得到相當(dāng)?shù)闹匾暋?McCullough描述導(dǎo)致收縮和熱裂的主要機(jī)制。由于具體的運(yùn)動(dòng)是通過(guò)摩擦抑制路基或鋼筋的拉伸應(yīng)力的發(fā)展,直到它到達(dá)混凝土的抗拉強(qiáng)度,然后產(chǎn)生裂紋。George、Penev和Kawamura衍生用于計(jì)算引起的收縮裂縫間距的公式。 根據(jù)實(shí)地調(diào)查的實(shí)證模型也被開(kāi)發(fā)用來(lái)預(yù)測(cè)裂縫間距。Zhang和Li提出了混凝土路面的一維模型以研究的配套基地特性的影響收縮引起的
3、應(yīng)力變化。 然而,關(guān)于路面裂縫的形成的機(jī)理一些方面仍然不清楚。眾所周知的是,路面裂縫大致分布均勻。裂縫間隔的大小有一定的范圍。 但是,目前并沒(méi)有滿意地解釋為什么最小間距存在。Shen和Kirkner試圖用一維模型來(lái)解決這個(gè)問(wèn)題。在他們的模型中,路面被分為宏觀結(jié)構(gòu),子結(jié)構(gòu)的層次結(jié)構(gòu),并且一個(gè)子內(nèi)的一系列聚裂縫結(jié)構(gòu)體。該模型是復(fù)雜的,它引入了缺陷開(kāi)裂模式的預(yù)測(cè),這在臨界條件,可能占主導(dǎo)地位的預(yù)測(cè)。本研究提供了一個(gè)分析模型來(lái)預(yù)測(cè)混凝土路面上的最小和最大裂縫間距。該路面是由一系列包括子結(jié)構(gòu)表示一個(gè)有凝聚力的裂紋與彈性桿分布式的限制彈性彈簧。首先,一個(gè)分析模型,由兩個(gè)聚裂紋,采用調(diào)查開(kāi)裂圖案與彈性條的長(zhǎng)
4、度的變化(即,兩個(gè)可能的裂紋之間的間距)。接著對(duì)作用于力凝聚力裂紋和能量輪廓進(jìn)行了研究。作者使用的能量最小化原理來(lái)預(yù)測(cè)同化和裂縫間距。其主要目標(biāo)是建立能量變化和開(kāi)裂模式之間的關(guān)系,以證明能量最小化支配開(kāi)裂模式。最小和最大裂縫間距從分析模型出現(xiàn)。最后,能量最小化原理應(yīng)用于收縮模型中的路面裂化和結(jié)論呈現(xiàn)。分析模型在混凝土路面,拉伸應(yīng)力通常是最大的縱向方向,它事實(shí)裂縫通常是橫向的。在這些情況下,路面的行為作為縱向梁。據(jù)推測(cè),在一定距離內(nèi)的所有傷害被同化為一個(gè)有凝聚力的裂縫。因此,一個(gè)路面可以通過(guò)一系列的子結(jié)構(gòu),這是由一個(gè)內(nèi)聚裂紋和彈性桿的方法來(lái)表示。彈性條表示未開(kāi)裂混凝土?;炷恋倪\(yùn)動(dòng)由鋼筋限制任一
5、者或路基的摩擦,這是由分布建模彈簧。一個(gè)典型的子結(jié)構(gòu)示于圖。圖1(a)。為了研究的最小和最大間隔;考慮由內(nèi)斂的彈性桿的分析模型和兩個(gè)聚裂縫圖1(b)。圖一這里關(guān)注的是怎樣的彈性桿的長(zhǎng)度會(huì)影響開(kāi)裂模式。 承擔(dān)該彈性桿由兩個(gè)點(diǎn)定義,以及裂縫是無(wú)量綱的。 表示位移左側(cè)和初裂的右側(cè),顯示第二裂紋兩側(cè)的位移。由于凝聚力裂縫是無(wú)量綱的,開(kāi)始之前,和。首先,考慮彈性桿的平衡條件。從圖1(c),結(jié)果在公式(1)獲得 (1)其中,在彈性桿的橫截面 =應(yīng)力;=由分布彈簧所施加的剪應(yīng)力; 彈性桿的橫截面積為A = BD,其中B是寬度和D路面的深度。剪切應(yīng)力被認(rèn)為是正比于混凝土的滑移,u,即 (2)其中k是每單位面積
6、的分布彈簧的剛度()。另一方面,應(yīng)力被相關(guān)的應(yīng)變通過(guò)楊氏模量路面,E為 (3)其中,=初始應(yīng)變導(dǎo)致無(wú)論是溫度變化或收縮,假定沿著彈性桿的常數(shù)。通過(guò)結(jié)合公式(1)-(3),獲得的控制方程 (4)方程(4)的解為 (5)且,通過(guò)公式(5),形變及應(yīng)力被表達(dá)為 (6)和 (7)其中。彈性的應(yīng)變能酒吧和存儲(chǔ)在分布式彈簧的能量是 (8)和 (9)其中在左和右端的作用力彈性桿可以從方程來(lái)計(jì)算(7): (10)和 (11)其次,考慮裂縫內(nèi)聚裂紋的本構(gòu)關(guān)系,如圖 1(d)中所示,為 (12)其中=破解開(kāi)放,=臨界裂紋開(kāi)口; =內(nèi)聚裂紋的拉伸應(yīng)力。存儲(chǔ)在能量?jī)?nèi)聚裂紋即在圖1(d)中的陰影區(qū)域的條件判斷是 (13
7、)用于第一和第二裂縫裂縫開(kāi)口 (14)假設(shè)裂縫開(kāi)始之間的平衡狀態(tài)第一條裂縫和彈性桿導(dǎo)致到。因此,通過(guò)應(yīng)用公式(10)和(12),可知平衡條件變?yōu)?(15)通過(guò)解方程(15)和(14)可得和: (16)和 (17)引入Heaviside函數(shù) (18)兩個(gè)裂縫的海維賽德功能分別和。通過(guò)使用Heaviside函數(shù),方程(17)可以被改寫(xiě)為 (19)很明顯,式(19)是合適的之前和之后的第一至破解發(fā)起。初裂發(fā)起,之前即,方程(19)退化到預(yù)期。同樣,彈性桿之間的平衡條件第二裂紋產(chǎn)生F 2=房顫。因此,通過(guò)使用公式。 (11)和(12),平衡條件變?yōu)椋?(20)通過(guò)與方程解決它(14)中,和獲得: (2
8、1) (22)第二裂縫發(fā)起之前即,方程(22)退化到。設(shè), 通過(guò)求解方程(19)和(22)可得:(23)這是很容易檢查將導(dǎo)致到,將導(dǎo)致最小和最大裂縫的間距在本節(jié)中,這是研究如何在兩者之間的距離裂紋影響裂紋圖案。假設(shè)收縮沿人行道均勻分布,裂縫開(kāi)始之前,不會(huì)發(fā)生相對(duì)運(yùn)動(dòng)。因此,通過(guò)讓及方程(10)和(11),且該力作用在兩條裂縫,可得。當(dāng)達(dá)到臨界值時(shí), (24)力F1和F 2達(dá)到臨界值,如果進(jìn)一步增加,既裂紋有幸發(fā)起。有三種可能性:(1)只有在第一裂縫打開(kāi)時(shí),即,本地化為損傷第一條裂縫;(2)兩個(gè)裂縫打開(kāi),即,損壞分布在兩個(gè)裂縫; (3)僅在第二裂縫打開(kāi)時(shí),即,損壞本地化為第二裂紋。分析模型是對(duì)稱
9、的兩個(gè)裂紋。從而,它僅需要考慮前兩種情況。對(duì)于每一種情況下,U 1和U 2可以通過(guò)使用式(23)來(lái)計(jì)算,與邊界條件,和通過(guò)使用式(11)中的力F 2讓 = 1.03。至少有一個(gè)裂縫將啟動(dòng),否則結(jié)束作用于裂縫力量會(huì)超過(guò)臨界值。假定第一裂紋總是在這種情況下打開(kāi),(即,H 1 = 1)。該計(jì)算是由作用于力第二裂縫F 2,為H 2 = 0兩者的情況下,和H 2= 1與彈性桿的長(zhǎng)度不同。該材料路面的關(guān)系是:楊氏模量E = 30 GPA,拉伸壓力F T = 3.0兆帕,關(guān)鍵的裂縫寬度W C =480毫米。假定路面具有B = 10微米的寬度和厚度D = 0.2微米,剛度假定K = 0.416 GN/ m 3
10、,該結(jié)果繪于圖2.圖2示出的是,對(duì)于局部解決方案中,力F2,上升到了,即,6.0e+ 06 N,為L(zhǎng)= 8.1Hz微米。因此,當(dāng)時(shí),一定會(huì)產(chǎn)生裂紋,即在這種情況下不存在同化的解決方案。當(dāng),同時(shí)為集中和分散的溶液中力比,即較小,這兩種解決方案是可能的。這是由內(nèi)聚裂紋的卸引起的分岔問(wèn)題。其中多個(gè)解決方案,它是支配模式應(yīng)遵循哪種解決方案的能量最小化原則。隨著固定,通過(guò)改變u1和u 2,相應(yīng)的能量被求和方程(8),(9)和(13)計(jì)算。能量分布示于圖3,能量分布具有兩個(gè)最小值對(duì)應(yīng)于兩個(gè)解。這個(gè)表示使L分鐘= 8.1Hz m是最小裂縫間距。圖2 圖2最小間距的存在表明,由所述第一裂縫的開(kāi)口引起的卸載,由
11、分布式彈性彈簧的最小間距內(nèi)的限制內(nèi)的最小間距,沒(méi)有新的裂縫可以發(fā)起與第一裂縫的開(kāi)口誘導(dǎo)接壤混凝土的卸載。實(shí)際裂縫間距,但是,會(huì)比較小。當(dāng)兩條裂縫之間的間隔接近,由兩個(gè)裂縫的開(kāi)口引起的未裝載的中間消失,并且新裂可以形成在那里。因此,實(shí)際的間隔將落在最小和最大間隔內(nèi)。由于路面收縮而產(chǎn)生的裂縫間距模型它是能量最小化原則,即支配啟動(dòng)裂縫,并且確定實(shí)際裂縫間距。作為一個(gè)例子,考慮收縮模型中路面為100米,兩端固定的長(zhǎng)度開(kāi)裂。作為路面上方被假定具有B = 10米的寬度和厚度D= 0.2米。材料特性和之前一樣,E=30 GPA,F(xiàn) T=3.0兆帕,W C= 480毫米,且k=0.416 GN /立方米。該路
12、面是由一系列子結(jié)構(gòu)建模為示于圖5(a)。第j子結(jié)構(gòu)的細(xì)節(jié)示于圖5(b)。子結(jié)構(gòu)的行為可以由被充分描述其兩端的位移,和。設(shè)表示彈性桿的右端的位移。通過(guò)讓,解方程(21)和(22)可得和 (25)和 (26)從式(25),可以看出當(dāng) (27)第j個(gè)裂紋開(kāi)始啟動(dòng)。對(duì)于每個(gè)子結(jié)構(gòu),如果兩端的位移是已知,裂紋的萌生由方程(27)判斷后,解得裂縫寬度H,位移彈性桿,和位移彈性桿的右端,由公式(25)和(26)決定。子結(jié)構(gòu)的能量,通過(guò)總結(jié)計(jì)算方程(8),(9)和(13)可得;路面的總能量是通過(guò)總結(jié)所有的子結(jié)構(gòu)的能量獲得的。圖4圖5當(dāng)收縮變形比臨界值大,一些裂痕開(kāi)始打開(kāi);位移場(chǎng),應(yīng)力場(chǎng)重新分配。位移場(chǎng)是通過(guò)最
13、小化確定路面的總能量。最小化由Powell偶聯(lián)方法。Powell的方法是二次收斂的方法可以在正找到步驟在正二次函數(shù)的最小值點(diǎn)變量。對(duì)于任何連續(xù)函數(shù),它可以隨時(shí)可以通過(guò)一個(gè)二次之一其最小的附近近似點(diǎn)。因此,如果初始點(diǎn)被選擇的最低鄰近點(diǎn),Powell的方法總能找到最低點(diǎn)很快。開(kāi)裂發(fā)生前,所有的位移零;因此,最初的點(diǎn)僅僅是原始點(diǎn)。Powell方法包括沿搜索方向構(gòu)建搜索方向和搜索最低.考慮 = 1.03的實(shí)例。路面是由一系列的200子結(jié)構(gòu)建模。裂紋開(kāi)始在8.9,18.2,26.9,35.9,45.4,54.0,63.2,72.0,81.7,90.6米的左端離開(kāi),如圖所示。圖5(c)。裂縫分布均勻差不多,平均裂縫間距為9.1米,為實(shí)踐結(jié)論和討論本文的主要目的是調(diào)查的混凝土路面上最低和最大裂縫間距。該分析模型提出了通過(guò)獲得作用于凝聚力裂紋和能量分布的力,對(duì)最小和最大裂縫間距進(jìn)行了調(diào)查,通過(guò)能量最小化演繹。分析模型表明,裂縫開(kāi)口引起的卸載由分布式彈性彈簧的最小間
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 環(huán)保行業(yè)廢棄物處理風(fēng)險(xiǎn)協(xié)議
- 高級(jí)化妝品行業(yè)售后免責(zé)協(xié)議
- 建設(shè)工程施工協(xié)議(32篇)
- 上海手房買賣協(xié)議
- 臨時(shí)租車協(xié)議書(shū)
- 班班通設(shè)備管理和使用協(xié)議
- 物流配送中心建設(shè)委托代理合同
- 建筑工地安全施工責(zé)任與免責(zé)合同
- 房地產(chǎn)項(xiàng)目銷售居間合同
- 教練與學(xué)員合同協(xié)議
- 光伏電站小EPC規(guī)定合同范本
- 2024年01月江蘇2024年昆山鹿城村鎮(zhèn)銀行第三期校園招考筆試歷年參考題庫(kù)附帶答案詳解
- 中國(guó)人口研究專題報(bào)告-中國(guó)2025-2100年人口預(yù)測(cè)與政策建議-西南財(cái)經(jīng)大學(xué)x清華大學(xué)-202501
- 建筑工程安全與管理
- 2025年內(nèi)蒙古機(jī)電職業(yè)技術(shù)學(xué)院高職單招職業(yè)技能測(cè)試近5年常考版參考題庫(kù)含答案解析
- 2024年05月齊魯銀行總行2024年社會(huì)招考筆試歷年參考題庫(kù)附帶答案詳解
- 2024年醫(yī)療器械經(jīng)營(yíng)質(zhì)量管理規(guī)范培訓(xùn)課件
- 中華人民共和國(guó)學(xué)前教育法-知識(shí)培訓(xùn)
- 2023年新高考(新課標(biāo))全國(guó)2卷數(shù)學(xué)試題真題(含答案解析)
- GB/T 19228.1-2024不銹鋼卡壓式管件組件第1部分:卡壓式管件
- 2024年計(jì)算機(jī)二級(jí)WPS考試題庫(kù)380題(含答案)
評(píng)論
0/150
提交評(píng)論