版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、 高中數(shù)學(xué)常用公式及常用結(jié)論1。 元素與集合的關(guān)系,.2。德摩根公式 .3。包含關(guān)系4。容斥原理。 5集合的子集個(gè)數(shù)共有 個(gè);真子集有1個(gè);非空子集有 1個(gè);非空的真子集有2個(gè)。6.二次函數(shù)的解析式的三種形式(1)一般式;(2)頂點(diǎn)式;(3)零點(diǎn)式。7.解連不等式常有以下轉(zhuǎn)化形式.8.方程在上有且只有一個(gè)實(shí)根,與不等價(jià),前者是后者的一個(gè)必要而不是充分條件。特別地, 方程有且只有一個(gè)實(shí)根在內(nèi),等價(jià)于,或且,或且.9。閉區(qū)間上的二次函數(shù)的最值 二次函數(shù)在閉區(qū)間上的最值只能在處及區(qū)間的兩端點(diǎn)處取得,具體如下:(1)當(dāng)a0時(shí),若,則;,。(2)當(dāng)a0)(1),則的周期T=a;(2),或,或,或,則的周
2、期T=2a;(3),則的周期T=3a;(4)且,則的周期T=4a;(5),則的周期T=5a;(6),則的周期T=6a。30。分?jǐn)?shù)指數(shù)冪 (1)(,且).(2)(,且).31根式的性質(zhì)(1)。(2)當(dāng)為奇數(shù)時(shí),;當(dāng)為偶數(shù)時(shí),.32有理指數(shù)冪的運(yùn)算性質(zhì)(1) .(2) 。(3)。注: 若a0,p是一個(gè)無理數(shù),則ap表示一個(gè)確定的實(shí)數(shù)上述有理指數(shù)冪的運(yùn)算性質(zhì),對(duì)于無理數(shù)指數(shù)冪都適用.33.指數(shù)式與對(duì)數(shù)式的互化式 .34.對(duì)數(shù)的換底公式 (,且,,且, ).推論 (,且,且,, )。35對(duì)數(shù)的四則運(yùn)算法則若a0,a1,M0,N0,則(1);(2) ;(3).36.設(shè)函數(shù),記.若的定義域?yàn)?,則,且;若的
3、值域?yàn)?則,且.對(duì)于的情形,需要單獨(dú)檢驗(yàn)。37。 對(duì)數(shù)換底不等式及其推廣 若,,則函數(shù) (1)當(dāng)時(shí),在和上為增函數(shù)。, (2)當(dāng)時(shí),在和上為減函數(shù).推論:設(shè),,且,則(1).(2).38。 平均增長(zhǎng)率的問題如果原來產(chǎn)值的基礎(chǔ)數(shù)為N,平均增長(zhǎng)率為,則對(duì)于時(shí)間的總產(chǎn)值,有。39。數(shù)列的同項(xiàng)公式與前n項(xiàng)的和的關(guān)系( 數(shù)列的前n項(xiàng)的和為)。40.等差數(shù)列的通項(xiàng)公式;其前n項(xiàng)和公式為.41。等比數(shù)列的通項(xiàng)公式;其前n項(xiàng)的和公式為或.42.等比差數(shù)列:的通項(xiàng)公式為;其前n項(xiàng)和公式為.43.分期付款(按揭貸款) 每次還款元(貸款元,次還清,每期利率為)。44常見三角不等式(1)若,則。(2) 若,則。(3)
4、 。45.同角三角函數(shù)的基本關(guān)系式 ,=,。46。正弦、余弦的誘導(dǎo)公式(n為偶數(shù))(n為奇數(shù))(n為偶數(shù))(n為奇數(shù)) 47。和角與差角公式 ;;.(平方正弦公式);。=(輔助角所在象限由點(diǎn)的象限決定, )。48。二倍角公式 。.。49. 三倍角公式 。.。50。三角函數(shù)的周期公式 函數(shù),xR及函數(shù),xR(A,為常數(shù),且A0,0)的周期;函數(shù),(A,為常數(shù),且A0,0)的周期.51.正弦定理。52.余弦定理;。53.面積定理(1)(分別表示a、b、c邊上的高)。(2).(3)。54.三角形內(nèi)角和定理 在ABC中,有.55。 簡(jiǎn)單的三角方程的通解 。 。.特別地,有。 .56.最簡(jiǎn)單的三角不等式
5、及其解集 .。 . 。 .57.實(shí)數(shù)與向量的積的運(yùn)算律設(shè)、為實(shí)數(shù),那么(1) 結(jié)合律:(a)=()a;(2)第一分配律:(+)a=a+a;(3)第二分配律:(a+b)=a+b。58。向量的數(shù)量積的運(yùn)算律:(1) ab= ba (交換律);(2)(a)b= (ab)=ab= a(b);(3)(a+b)c= a c +bc。59。平面向量基本定理 如果e1、e 2是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任一向量,有且只有一對(duì)實(shí)數(shù)1、2,使得a=1e1+2e2不共線的向量e1、e2叫做表示這一平面內(nèi)所有向量的一組基底60向量平行的坐標(biāo)表示 設(shè)a=,b=,且b0,則ab(b0)。53. a與
6、b的數(shù)量積(或內(nèi)積)ab=a|b|cos 61. ab的幾何意義數(shù)量積ab等于a的長(zhǎng)度a|與b在a的方向上的投影b|cos的乘積62.平面向量的坐標(biāo)運(yùn)算(1)設(shè)a=,b=,則a+b=。(2)設(shè)a=,b=,則a-b=. (3)設(shè)A,B,則。(4)設(shè)a=,則a=.(5)設(shè)a=,b=,則ab=。63.兩向量的夾角公式(a=,b=)。64.平面兩點(diǎn)間的距離公式 =(A,B).65。向量的平行與垂直 設(shè)a=,b=,且b0,則Abb=a .ab(a0)ab=0。66。線段的定比分公式 設(shè),是線段的分點(diǎn),是實(shí)數(shù),且,則().67.三角形的重心坐標(biāo)公式 ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為、,則ABC的重心的坐標(biāo)是.6
7、8.點(diǎn)的平移公式 。注:圖形F上的任意一點(diǎn)P(x,y)在平移后圖形上的對(duì)應(yīng)點(diǎn)為,且的坐標(biāo)為。69?!鞍聪蛄科揭啤钡膸讉€(gè)結(jié)論(1)點(diǎn)按向量a=平移后得到點(diǎn)。(2) 函數(shù)的圖象按向量a=平移后得到圖象,則的函數(shù)解析式為。(3) 圖象按向量a=平移后得到圖象,若的解析式,則的函數(shù)解析式為.(4)曲線:按向量a=平移后得到圖象,則的方程為.(5) 向量m=按向量a=平移后得到的向量仍然為m=。70。 三角形五“心”向量形式的充要條件設(shè)為所在平面上一點(diǎn),角所對(duì)邊長(zhǎng)分別為,則(1)為的外心.(2)為的重心.(3)為的垂心.(4)為的內(nèi)心。(5)為的的旁心.71.常用不等式:(1)(當(dāng)且僅當(dāng)ab時(shí)取“=”號(hào)
8、)(2)(當(dāng)且僅當(dāng)ab時(shí)取“=”號(hào))(3)(4)柯西不等式(5).72。極值定理已知都是正數(shù),則有(1)若積是定值,則當(dāng)時(shí)和有最小值;(2)若和是定值,則當(dāng)時(shí)積有最大值。推廣 已知,則有(1)若積是定值,則當(dāng)最大時(shí),最大;當(dāng)最小時(shí),最小。(2)若和是定值,則當(dāng)最大時(shí), 最小;當(dāng)最小時(shí), 最大。73。一元二次不等式,如果與同號(hào),則其解集在兩根之外;如果與異號(hào),則其解集在兩根之間.簡(jiǎn)言之:同號(hào)兩根之外,異號(hào)兩根之間.;。74.含有絕對(duì)值的不等式 當(dāng)a 0時(shí),有.或。75.無理不等式(1) .(2)。(3).76。指數(shù)不等式與對(duì)數(shù)不等式 (1)當(dāng)時(shí),; 。(2)當(dāng)時(shí),;77.斜率公式 (、).78。
9、直線的五種方程 (1)點(diǎn)斜式 (直線過點(diǎn),且斜率為)(2)斜截式 (b為直線在y軸上的截距)。(3)兩點(diǎn)式 ()(、 ().(4)截距式 (分別為直線的橫、縱截距,)(5)一般式 (其中A、B不同時(shí)為0).79.兩條直線的平行和垂直 (1)若,;.(2)若,且A1、A2、B1、B2都不為零,;;80.夾角公式 (1)。(,,)(2).(,,).直線時(shí),直線l1與l2的夾角是.81. 到的角公式 (1)。(,)(2).(,,)。直線時(shí),直線l1到l2的角是。82四種常用直線系方程 (1)定點(diǎn)直線系方程:經(jīng)過定點(diǎn)的直線系方程為(除直線),其中是待定的系數(shù); 經(jīng)過定點(diǎn)的直線系方程為,其中是待定的系數(shù)
10、(2)共點(diǎn)直線系方程:經(jīng)過兩直線,的交點(diǎn)的直線系方程為(除),其中是待定的系數(shù)(3)平行直線系方程:直線中當(dāng)斜率k一定而b變動(dòng)時(shí),表示平行直線系方程與直線平行的直線系方程是(),是參變量(4)垂直直線系方程:與直線 (A0,B0)垂直的直線系方程是,是參變量83。點(diǎn)到直線的距離 (點(diǎn),直線:)。84。 或所表示的平面區(qū)域設(shè)直線,則或所表示的平面區(qū)域是:若,當(dāng)與同號(hào)時(shí),表示直線的上方的區(qū)域;當(dāng)與異號(hào)時(shí),表示直線的下方的區(qū)域.簡(jiǎn)言之,同號(hào)在上,異號(hào)在下.若,當(dāng)與同號(hào)時(shí),表示直線的右方的區(qū)域;當(dāng)與異號(hào)時(shí),表示直線的左方的區(qū)域. 簡(jiǎn)言之,同號(hào)在右,異號(hào)在左。85。 或所表示的平面區(qū)域設(shè)曲線(),則或所
11、表示的平面區(qū)域是:所表示的平面區(qū)域上下兩部分;所表示的平面區(qū)域上下兩部分。 86. 圓的四種方程(1)圓的標(biāo)準(zhǔn)方程 。(2)圓的一般方程 (0).(3)圓的參數(shù)方程 。(4)圓的直徑式方程 (圓的直徑的端點(diǎn)是、).87。 圓系方程(1)過點(diǎn),的圓系方程是,其中是直線的方程,是待定的系數(shù)(2)過直線:與圓:的交點(diǎn)的圓系方程是,是待定的系數(shù)(3) 過圓:與圓:的交點(diǎn)的圓系方程是,是待定的系數(shù)88。點(diǎn)與圓的位置關(guān)系點(diǎn)與圓的位置關(guān)系有三種若,則點(diǎn)在圓外;點(diǎn)在圓上;點(diǎn)在圓內(nèi).89。直線與圓的位置關(guān)系直線與圓的位置關(guān)系有三種:;;。其中.90。兩圓位置關(guān)系的判定方法設(shè)兩圓圓心分別為O1,O2,半徑分別為r
12、1,r2,;;;。91.圓的切線方程(1)已知圓若已知切點(diǎn)在圓上,則切線只有一條,其方程是 .當(dāng)圓外時(shí), 表示過兩個(gè)切點(diǎn)的切點(diǎn)弦方程過圓外一點(diǎn)的切線方程可設(shè)為,再利用相切條件求k,這時(shí)必有兩條切線,注意不要漏掉平行于y軸的切線斜率為k的切線方程可設(shè)為,再利用相切條件求b,必有兩條切線(2)已知圓過圓上的點(diǎn)的切線方程為;斜率為的圓的切線方程為。92.橢圓的參數(shù)方程是。93.橢圓焦半徑公式 ,。94橢圓的的內(nèi)外部(1)點(diǎn)在橢圓的內(nèi)部。(2)點(diǎn)在橢圓的外部.95。 橢圓的切線方程 (1)橢圓上一點(diǎn)處的切線方程是。 (2)過橢圓外一點(diǎn)所引兩條切線的切點(diǎn)弦方程是。 (3)橢圓與直線相切的條件是。96。雙
13、曲線的焦半徑公式,。97。雙曲線的內(nèi)外部(1)點(diǎn)在雙曲線的內(nèi)部.(2)點(diǎn)在雙曲線的外部。98.雙曲線的方程與漸近線方程的關(guān)系(1)若雙曲線方程為漸近線方程:. (2)若漸近線方程為雙曲線可設(shè)為. (3)若雙曲線與有公共漸近線,可設(shè)為(,焦點(diǎn)在x軸上,,焦點(diǎn)在y軸上)。99。 雙曲線的切線方程 (1)雙曲線上一點(diǎn)處的切線方程是. (2)過雙曲線外一點(diǎn)所引兩條切線的切點(diǎn)弦方程是. (3)雙曲線與直線相切的條件是.100。 拋物線的焦半徑公式拋物線焦半徑。過焦點(diǎn)弦長(zhǎng)。101.拋物線上的動(dòng)點(diǎn)可設(shè)為P或 P,其中 .102.二次函數(shù)的圖象是拋物線:(1)頂點(diǎn)坐標(biāo)為;(2)焦點(diǎn)的坐標(biāo)為;(3)準(zhǔn)線方程是.
14、103。拋物線的內(nèi)外部(1)點(diǎn)在拋物線的內(nèi)部.點(diǎn)在拋物線的外部。(2)點(diǎn)在拋物線的內(nèi)部.點(diǎn)在拋物線的外部。(3)點(diǎn)在拋物線的內(nèi)部.點(diǎn)在拋物線的外部.(4) 點(diǎn)在拋物線的內(nèi)部。點(diǎn)在拋物線的外部。104. 拋物線的切線方程(1)拋物線上一點(diǎn)處的切線方程是。 (2)過拋物線外一點(diǎn)所引兩條切線的切點(diǎn)弦方程是。 (3)拋物線與直線相切的條件是.105。兩個(gè)常見的曲線系方程(1)過曲線,的交點(diǎn)的曲線系方程是(為參數(shù))。(2)共焦點(diǎn)的有心圓錐曲線系方程,其中.當(dāng)時(shí),表示橢圓; 當(dāng)時(shí),表示雙曲線。106.直線與圓錐曲線相交的弦長(zhǎng)公式 或(弦端點(diǎn)A,由方程 消去y得到,,為直線的傾斜角,為直線的斜率). 107
15、。圓錐曲線的兩類對(duì)稱問題(1)曲線關(guān)于點(diǎn)成中心對(duì)稱的曲線是。(2)曲線關(guān)于直線成軸對(duì)稱的曲線是。108?!八木€”一方程 對(duì)于一般的二次曲線,用代,用代,用代,用代,用代即得方程,曲線的切線,切點(diǎn)弦,中點(diǎn)弦,弦中點(diǎn)方程均是此方程得到。109證明直線與直線的平行的思考途徑(1)轉(zhuǎn)化為判定共面二直線無交點(diǎn);(2)轉(zhuǎn)化為二直線同與第三條直線平行;(3)轉(zhuǎn)化為線面平行;(4)轉(zhuǎn)化為線面垂直;(5)轉(zhuǎn)化為面面平行。110證明直線與平面的平行的思考途徑(1)轉(zhuǎn)化為直線與平面無公共點(diǎn);(2)轉(zhuǎn)化為線線平行;(3)轉(zhuǎn)化為面面平行。111證明平面與平面平行的思考途徑(1)轉(zhuǎn)化為判定二平面無公共點(diǎn);(2)轉(zhuǎn)化為線面
16、平行;(3)轉(zhuǎn)化為線面垂直.112證明直線與直線的垂直的思考途徑(1)轉(zhuǎn)化為相交垂直;(2)轉(zhuǎn)化為線面垂直;(3)轉(zhuǎn)化為線與另一線的射影垂直;(4)轉(zhuǎn)化為線與形成射影的斜線垂直.113證明直線與平面垂直的思考途徑(1)轉(zhuǎn)化為該直線與平面內(nèi)任一直線垂直;(2)轉(zhuǎn)化為該直線與平面內(nèi)相交二直線垂直;(3)轉(zhuǎn)化為該直線與平面的一條垂線平行;(4)轉(zhuǎn)化為該直線垂直于另一個(gè)平行平面;(5)轉(zhuǎn)化為該直線與兩個(gè)垂直平面的交線垂直。114證明平面與平面的垂直的思考途徑(1)轉(zhuǎn)化為判斷二面角是直二面角;(2)轉(zhuǎn)化為線面垂直.115.空間向量的加法與數(shù)乘向量運(yùn)算的運(yùn)算律(1)加法交換律:ab=ba(2)加法結(jié)合律:
17、(ab)c=a(bc)(3)數(shù)乘分配律:(ab)=ab116.平面向量加法的平行四邊形法則向空間的推廣始點(diǎn)相同且不在同一個(gè)平面內(nèi)的三個(gè)向量之和,等于以這三個(gè)向量為棱的平行六面體的以公共始點(diǎn)為始點(diǎn)的對(duì)角線所表示的向量.117。共線向量定理對(duì)空間任意兩個(gè)向量a、b(b0 ),ab存在實(shí)數(shù)使a=b三點(diǎn)共線。、共線且不共線且不共線.118。共面向量定理 向量p與兩個(gè)不共線的向量a、b共面的存在實(shí)數(shù)對(duì),使推論 空間一點(diǎn)P位于平面MAB內(nèi)的存在有序?qū)崝?shù)對(duì),使,或?qū)臻g任一定點(diǎn)O,有序?qū)崝?shù)對(duì),使。119.對(duì)空間任一點(diǎn)和不共線的三點(diǎn)A、B、C,滿足(),則當(dāng)時(shí),對(duì)于空間任一點(diǎn),總有P、A、B、C四點(diǎn)共面;當(dāng)時(shí)
18、,若平面ABC,則P、A、B、C四點(diǎn)共面;若平面ABC,則P、A、B、C四點(diǎn)不共面四點(diǎn)共面與、共面(平面ABC)。120.空間向量基本定理 如果三個(gè)向量a、b、c不共面,那么對(duì)空間任一向量p,存在一個(gè)唯一的有序?qū)崝?shù)組x,y,z,使pxaybzc推論 設(shè)O、A、B、C是不共面的四點(diǎn),則對(duì)空間任一點(diǎn)P,都存在唯一的三個(gè)有序?qū)崝?shù)x,y,z,使.121。射影公式已知向量=a和軸,e是上與同方向的單位向量.作A點(diǎn)在上的射影,作B點(diǎn)在上的射影,則=ae122.向量的直角坐標(biāo)運(yùn)算設(shè)a,b則(1)ab;(2)ab;(3)a (R);(4)ab;123。設(shè)A,B,則= .124空間的線線平行或垂直設(shè),,則;.1
19、25。夾角公式 設(shè)a,b,則cosa,b=.推論 ,此即三維柯西不等式.126. 四面體的對(duì)棱所成的角四面體中, 與所成的角為,則.127異面直線所成角=(其中()為異面直線所成角,分別表示異面直線的方向向量)128。直線與平面所成角(為平面的法向量).129。若所在平面若與過若的平面成的角,另兩邊,與平面成的角分別是、,為的兩個(gè)內(nèi)角,則。特別地,當(dāng)時(shí),有。130.若所在平面若與過若的平面成的角,另兩邊,與平面成的角分別是、,為的兩個(gè)內(nèi)角,則.特別地,當(dāng)時(shí),有.131。二面角的平面角或(,為平面,的法向量).132.三余弦定理設(shè)AC是內(nèi)的任一條直線,且BCAC,垂足為C,又設(shè)AO與AB所成的角
20、為,AB與AC所成的角為,AO與AC所成的角為則.133。 三射線定理若夾在平面角為的二面角間的線段與二面角的兩個(gè)半平面所成的角是,,與二面角的棱所成的角是,則有 ;(當(dāng)且僅當(dāng)時(shí)等號(hào)成立)。134.空間兩點(diǎn)間的距離公式 若A,B,則 =.135。點(diǎn)到直線距離(點(diǎn)在直線上,直線的方向向量a=,向量b=)。136。異面直線間的距離 (是兩異面直線,其公垂向量為,分別是上任一點(diǎn),為間的距離)。137.點(diǎn)到平面的距離 (為平面的法向量,是經(jīng)過面的一條斜線,).138。異面直線上兩點(diǎn)距離公式 .(). (兩條異面直線a、b所成的角為,其公垂線段的長(zhǎng)度為h.在直線a、b上分別取兩點(diǎn)E、F,). 139.三
21、個(gè)向量和的平方公式 140。 長(zhǎng)度為的線段在三條兩兩互相垂直的直線上的射影長(zhǎng)分別為,夾角分別為,則有。(立體幾何中長(zhǎng)方體對(duì)角線長(zhǎng)的公式是其特例).141. 面積射影定理 。(平面多邊形及其射影的面積分別是、,它們所在平面所成銳二面角的為)。142. 斜棱柱的直截面已知斜棱柱的側(cè)棱長(zhǎng)是,側(cè)面積和體積分別是和,它的直截面的周長(zhǎng)和面積分別是和,則。143作截面的依據(jù)三個(gè)平面兩兩相交,有三條交線,則這三條交線交于一點(diǎn)或互相平行。144棱錐的平行截面的性質(zhì)如果棱錐被平行于底面的平面所截,那么所得的截面與底面相似,截面面積與底面面積的比等于頂點(diǎn)到截面距離與棱錐高的平方比(對(duì)應(yīng)角相等,對(duì)應(yīng)邊對(duì)應(yīng)成比例的多邊
22、形是相似多邊形,相似多邊形面積的比等于對(duì)應(yīng)邊的比的平方);相應(yīng)小棱錐與小棱錐的側(cè)面積的比等于頂點(diǎn)到截面距離與棱錐高的平方比145。歐拉定理(歐拉公式) (簡(jiǎn)單多面體的頂點(diǎn)數(shù)V、棱數(shù)E和面數(shù)F).(1)=各面多邊形邊數(shù)和的一半.特別地,若每個(gè)面的邊數(shù)為的多邊形,則面數(shù)F與棱數(shù)E的關(guān)系:;(2)若每個(gè)頂點(diǎn)引出的棱數(shù)為,則頂點(diǎn)數(shù)V與棱數(shù)E的關(guān)系:.146.球的半徑是R,則其體積,其表面積147.球的組合體 (1)球與長(zhǎng)方體的組合體: 長(zhǎng)方體的外接球的直徑是長(zhǎng)方體的體對(duì)角線長(zhǎng)。 (2)球與正方體的組合體:正方體的內(nèi)切球的直徑是正方體的棱長(zhǎng), 正方體的棱切球的直徑是正方體的面對(duì)角線長(zhǎng), 正方體的外接球的
23、直徑是正方體的體對(duì)角線長(zhǎng)。 (3) 球與正四面體的組合體: 棱長(zhǎng)為的正四面體的內(nèi)切球的半徑為,外接球的半徑為.148柱體、錐體的體積(是柱體的底面積、是柱體的高)。(是錐體的底面積、是錐體的高)。149.分類計(jì)數(shù)原理(加法原理).150.分步計(jì)數(shù)原理(乘法原理)。151。排列數(shù)公式 =。(,N*,且)注:規(guī)定.152.排列恒等式 (1);(2);(3); (4);(5).(6) 。153。組合數(shù)公式 =(N*,,且)。154.組合數(shù)的兩個(gè)性質(zhì)(1)= ;(2) +=.注:規(guī)定. 155。組合恒等式(1);(2);(3); (4)=;(5)。(6).(7). (8)。(9).(10).156。排
24、列數(shù)與組合數(shù)的關(guān)系 .157單條件排列以下各條的大前提是從個(gè)元素中取個(gè)元素的排列.(1)“在位”與“不在位”某(特)元必在某位有種;某(特)元不在某位有(補(bǔ)集思想)(著眼位置)(著眼元素)種。(2)緊貼與插空(即相鄰與不相鄰)定位緊貼:個(gè)元在固定位的排列有種。浮動(dòng)緊貼:個(gè)元素的全排列把k個(gè)元排在一起的排法有種。注:此類問題常用捆綁法;插空:兩組元素分別有k、h個(gè)(),把它們合在一起來作全排列,k個(gè)的一組互不能挨近的所有排列數(shù)有種。(3)兩組元素各相同的插空 個(gè)大球個(gè)小球排成一列,小球必分開,問有多少種排法?當(dāng)時(shí),無解;當(dāng)時(shí),有種排法。(4)兩組相同元素的排列:兩組元素有m個(gè)和n個(gè),各組元素分別
25、相同的排列數(shù)為.158分配問題(1)(平均分組有歸屬問題)將相異的、個(gè)物件等分給個(gè)人,各得件,其分配方法數(shù)共有。(2)(平均分組無歸屬問題)將相異的個(gè)物體等分為無記號(hào)或無順序的堆,其分配方法數(shù)共有.(3)(非平均分組有歸屬問題)將相異的個(gè)物體分給個(gè)人,物件必須被分完,分別得到,,件,且,,,這個(gè)數(shù)彼此不相等,則其分配方法數(shù)共有。(4)(非完全平均分組有歸屬問題)將相異的個(gè)物體分給個(gè)人,物件必須被分完,分別得到,,件,且,,這個(gè)數(shù)中分別有a、b、c、個(gè)相等,則其分配方法數(shù)有 。(5)(非平均分組無歸屬問題)將相異的個(gè)物體分為任意的,件無記號(hào)的堆,且,,,這個(gè)數(shù)彼此不相等,則其分配方法數(shù)有.(6)
26、(非完全平均分組無歸屬問題)將相異的個(gè)物體分為任意的,件無記號(hào)的堆,且,,,這個(gè)數(shù)中分別有a、b、c、個(gè)相等,則其分配方法數(shù)有.(7)(限定分組有歸屬問題)將相異的()個(gè)物體分給甲、乙、丙,等個(gè)人,物體必須被分完,如果指定甲得件,乙得件,丙得件,時(shí),則無論,,等個(gè)數(shù)是否全相異或不全相異其分配方法數(shù)恒有.159“錯(cuò)位問題”及其推廣貝努利裝錯(cuò)箋問題:信封信與個(gè)信封全部錯(cuò)位的組合數(shù)為.推廣: 個(gè)元素與個(gè)位置,其中至少有個(gè)元素錯(cuò)位的不同組合總數(shù)為.160不定方程的解的個(gè)數(shù)(1)方程()的正整數(shù)解有個(gè)。(2) 方程()的非負(fù)整數(shù)解有 個(gè)。(3) 方程()滿足條件(,)的非負(fù)整數(shù)解有個(gè)。(4) 方程()滿
27、足條件(,)的正整數(shù)解有個(gè).161.二項(xiàng)式定理 ;二項(xiàng)展開式的通項(xiàng)公式.162。等可能性事件的概率。163.互斥事件A,B分別發(fā)生的概率的和P(AB)=P(A)P(B)164.個(gè)互斥事件分別發(fā)生的概率的和P(A1A2An)=P(A1)P(A2)P(An)165.獨(dú)立事件A,B同時(shí)發(fā)生的概率P(AB)= P(A)P(B).166.n個(gè)獨(dú)立事件同時(shí)發(fā)生的概率 P(A1 A2 An)=P(A1) P(A2) P(An)167.n次獨(dú)立重復(fù)試驗(yàn)中某事件恰好發(fā)生k次的概率168.離散型隨機(jī)變量的分布列的兩個(gè)性質(zhì)(1);(2).169。數(shù)學(xué)期望170。數(shù)學(xué)期望的性質(zhì)(1).(2)若,則。(3) 若服從幾何分布,且,則.171.方差172.標(biāo)準(zhǔn)差=.173.方差的性質(zhì)(1);(2)若,則。(3) 若服從幾何分布,且,則.174.方差與期望的關(guān)系。175。正態(tài)分布密度函數(shù),式中的實(shí)數(shù),(0)是參數(shù),分別表示個(gè)體的平均數(shù)與標(biāo)準(zhǔn)差.176.標(biāo)準(zhǔn)正態(tài)分布密度函數(shù).
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 機(jī)器人課件-機(jī)器人控制
- 【物理課件】阿基米的原理課件
- 《情商訓(xùn)練》課件
- 《企業(yè)安全知識(shí)演講》課件
- 單位管理制度展示合集【人事管理篇】十篇
- 單位管理制度展示大全【人力資源管理】十篇
- 豐田改善內(nèi)部課件.圖
- 單位管理制度品讀選集【員工管理篇】十篇
- 2024年汽車銷售工作計(jì)劃書(34篇)
- 食品安全監(jiān)管基礎(chǔ)與風(fēng)險(xiǎn)防控課件
- 2024年度公務(wù)員勞動(dòng)合同范本社保福利全面保障3篇
- 2025年內(nèi)蒙古包鋼公司招聘筆試參考題庫(kù)含答案解析
- 【8地星球期末】安徽省合肥市包河區(qū)智育聯(lián)盟校2023-2024學(xué)年八年級(jí)上學(xué)期期末地理試題(含解析)
- 2024-2025學(xué)年冀人版科學(xué)四年級(jí)上冊(cè)期末測(cè)試卷(含答案)
- 教科版科學(xué)一年級(jí)上冊(cè)期末測(cè)試卷含完整答案(必刷)
- 2024年危險(xiǎn)化學(xué)品生產(chǎn)單位安全生產(chǎn)管理人員證考試題庫(kù)及答案
- 江蘇省宿遷市沭陽(yáng)縣2023-2024學(xué)年八年級(jí)上學(xué)期期末英語(yǔ)試題
- 【8物(科)期末】合肥市廬陽(yáng)區(qū)2023-2024學(xué)年八年級(jí)上學(xué)期期末質(zhì)量檢測(cè)物理試卷
- 國(guó)家安全知識(shí)教育
- 安全隱患大排查大整治專項(xiàng)行動(dòng)方案
- 2024-2030年中國(guó)停車場(chǎng)建設(shè)行業(yè)發(fā)展趨勢(shì)投資策略研究報(bào)告
評(píng)論
0/150
提交評(píng)論